Fontcode: Embedding Information in Text Documents Using Glyph Perturbation

Total Page:16

File Type:pdf, Size:1020Kb

Fontcode: Embedding Information in Text Documents Using Glyph Perturbation FontCode: Embedding Information in Text Documents using Glyph Perturbation CHANG XIAO, CHENG ZHANG, and CHANGXI ZHENG, Columbia University !"#$!" !"#!$!"#!$ -!$$ 3 4 4 3 "%&'()*)+,) ..!/"01#&$!/"01#&$ 3 4 2 4 3 3 3 Fig. 1. Augmented poster. Among many applications enabled by our FontCode method, here we create a poster embedded with an unobtrusive optical barcode (le). The poster uses text fonts that look almost identical from the standard Times New Roman, and has no traditional black-and-white barcode paern. But our smartphone application allows the user to take a snapshot (right) and decode the hidden message, in this case, a Youtube link (middle). We introduce FontCode, an information embedding technique for text docu- Additional Key Words and Phrases: Font manifold, glyph perturbation, error ments. Provided a text document with specic fonts, our method embeds correction coding, text document signature user-specied information in the text by perturbing the glyphs of text char- acters while preserving the text content. We devise an algorithm to choose ACM Reference format: unobtrusive yet machine-recognizable glyph perturbations, leveraging a Chang Xiao, Cheng Zhang, and Changxi Zheng. 2017. FontCode: Embedding recently developed generative model that alters the glyphs of each charac- Information in Text Documents using Glyph Perturbation. ACM Trans. Graph. ter continuously on a font manifold. We then introduce an algorithm that 1, 1, Article 1 (December 2017), 16 pages. embeds a user-provided message in the text document and produces an en- https://doi.org/10.1145/nnnnnnn.nnnnnnn coded document whose appearance is minimally perturbed from the original document. We also present a glyph recognition method that recovers the embedded information from an encoded document stored as a vector graphic 1 INTRODUCTION or pixel image, or even on a printed paper. In addition, we introduce a new Information embedding, the technique of embedding a message into error-correction coding scheme that recties a certain number of recognition host data, has numerous applications: Digital photographs have errors. Lastly, we demonstrate that our technique enables a wide array of metadata embedded to record such information as capture date, applications, using it as a text document metadata holder, an unobtrusive exposure time, focal length, and camera’s GPS location. Watermarks optical barcode, a cryptographic message embedding scheme, and a text embedded in images, videos, and audios have been one of the most document signature. important means in digital production to claim copyright against CCS Concepts: • Computing methodologies → Image processing; • Ap- piracies [Bloom et al. 1999]. And indeed, the idea of embedding plied computing → Text editing; Document metadata; information in light signals has grown into an emerging eld of visual light communication (e.g., see [Jo et al. 2016]). In all these areas, information embedding techniques meet two ACM acknowledges that this contribution was authored or co-authored by an employee, or contractor of the national government. As such, the Government retains a nonexclu- desiderata: (i) the host medium is minimally perturbed, implying sive, royalty-free right to publish or reproduce this article, or to allow others to do so, that the embedded message must be minimally intrusive; and (ii) for Government purposes only. Permission to make digital or hard copies for personal the embedded message can be robustly recovered by the intended or classroom use is granted. Copies must bear this notice and the full citation on the rst page. Copyrights for components of this work owned by others than ACM must decoder even in the presence of some decoding errors. be honored. To copy otherwise, distribute, republish, or post, requires prior specic Remaining reclusive is the information embedding technique for permission and/or a fee. Request permissions from [email protected]. text documents, in both digital and physical form. While explored © 2017 Association for Computing Machinery. 0730-0301/2017/12-ART1 $15.00 by many previous works on digital text steganography, information https://doi.org/10.1145/nnnnnnn.nnnnnnn embedding for text documents is considered more challenging to ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017. 1:2 • Xiao, C. et al meet the aforementioned desiderata than its counterparts for im- 2 RELATED WORK ages, videos, and audios [Agarwal 2013]. This is because the “pixel” We begin by clarifying a few typographic terminologies [Campbell of a text document is individual letters, which, unlike an image pixel, and Kautz 2014]: the typeface of a character refers to a set of fonts cannot be changed into other letters without causing noticeable each composed of glyphs that represent the specic design and dierences. Consequently, existing techniques have limited infor- features of the character. With this terminology, our method embeds mation capacity or work only for specic digital le formats (such messages by perturbing the glyphs of the fonts of text letters. as PDF or Microsoft Word). We propose FontCode, a new information embedding technique Font manipulation. While our method perturbs glyphs using the for text documents. Instead of changing text letters into dierent generative model by Campbell and Kautz [2014], other methods ones, we alter the glyphs (i.e., the particular shape designs) of their create fonts and glyphs with either computer-aided tools [Rugglcs fonts to encode information, leveraging the recently developed con- 1983] or automatic generation. The early system by [Knuth 1986] cept of font manifold [Campbell and Kautz 2014] in computer graph- creates parametric fonts and was used to create most of the Com- ics. Thereby, the readability of the original document is fully re- puter Modern typeface family. Later, Shamir and Rappoport [1998] tained. We carefully choose the glyph perturbation such that it has proposed a system that generate fonts using high-level parametric a minimal eect on the typeface appearance of the text document, features and constraints to adjust glyphs. This idea was extended to while ensuring that glyph perturbation can be recognized through parameterize glyph shape components [Hu and Hersch 2001]. Other Convolutional Neural Networks (CNNs). To recover the embedded approaches generate fonts by deriving from examples and tem- information, we develop a decoding algorithm that recovers the plates [Lau 2009; Suveeranont and Igarashi 2010], similarity [Lovis- information from an input encoded document—whether it is repre- cach 2010] or crowdsourced attributes [O’Donovan et al. 2014]. Re- sented as a vector graphics le (such as a PDF) or a rasterized pixel cently, Phan et al. [2015] utilize a machine learning method trained image (such as a photograph). through a small set of glyphs in order to synthesize typefaces that Exploiting the features specic to our message embedding and have a consistent style. retrieval problems, we further devise an error-correction coding Font recognition. Automatic font recognition from a photo or scheme that is able to fully recover embedded information up to a image has been studied [Avilés-Cruz et al. 2005; Jung et al. 1999; certain number of recognition errors, making a smartphone into a Ramanathan et al. 2009]. These methods identify fonts by extracting robust FontCode reader (see Fig. 1). statistical and/or typographical features of the document. Recently in [Chen et al. 2014], the authors proposed a scalable solution lever- Applications. As a result, FontCode is not only an information aging supervised learning. Then, Wang et al. [2015] improved font embedding technique for text documents but also an unobtrusive recognition using Convolutional Neural Networks. Their algorithm tagging mechanism, nding a wide array of applications. We demon- can run without resorting to character segmentation and optical strate four of them. (i) It serves as a metadata holder in a text doc- character recognition methods. In our work, we use existing algo- ument, which can be freely converted to dierent le formats or rithms to recognize text fonts of the input document, but further printed on paper without loss of the metadata—across various dig- devise an algorithm to recognize glyph perturbation for recovering ital and physical forms, the metadata is always preserved. (ii) It the embedded information. Unlike existing font recognition meth- enables to embed in a text unobtrusive optical codes, ones that can ods that identify fonts from a text of many letters, our algorithm replace optical barcodes (such as QR codes) in artistic designs such aims to identify glyph perturbation for individual letters. as posters and yers to minimize visual distraction caused by the barcodes. (iii) By construction, it oers a basic cryptographic scheme Text steganography. Our work is related to digital steganography that not only embeds but also encrypts messages, without resorting (such as digital watermarks for copyright protection), which has to any additional cryptosystem. And (iv) it oers a new text signa- been studied for decades, mostly focusing on videos, images, and ture mechanism, one that allows to verify document authentication audios—for example, we refer to [Cheddad et al. 2010] for a compre- and integrity, regardless of its digital format or physical form. hensive overview of digital imaging steganography. However, digital text steganography is much more challenging [Agarwal 2013], and thus much less developed.
Recommended publications
  • Resources Ton 'QX Repository (For Details, Contact Peter Ab- Bott, E-Mail Address Above)
    TUGboat, Volume 10 (1989), No. 2 Janet users may obtain back issues from the As- Resources ton 'QX repository (for details, contact Peter Ab- bott, e-mail address above). DECnetISPAN users may obtain back issues from the European (con- Announcing (belatedly) -MAG tact Massimo Calvani, fisicaQastrpd.infn. it) or American (contact Ed Bell, 7388 : :bell) DECnet Don Hosek T)?J repositories. University of Illinois at Chicago Others with network access should send a mes- After being chided for not publicizing my electronic sage to archive-serverQsun.soe.clarkson.edu "magazine" enough, I have decided to make a formal with the first line being path followed by an address announcement of its availability to the 'J&X cornmu- from Clarkson to you, and then a line nity at large. get texmag texmag.v.nn What is =MAG? for each back issue desired where v is the volume number and nn the issue number. The line index WMAG is available free of charge to anyone reach- texmag will give a list of back issues available. able by electronic mail and is published approxi- A typical mail request may resemble: mately every two months. The subject material index t exmag generally falls somewhere between the somewhat get texmag texmag.l.08 chaotic (but still useful) correspondence of 'QXHAX and UKW, and the printed matter in TUGboat How do I submit articles to TEXMAG? and QXline. Some previous articles have included I was hoping you would ask. Articles are accepted an early version of Dominik Wujastyk's article on on all aspects of T)?J, M'QX, and METAFONT from fonts from TUB 9#2; an overview of the differ- specific information on interfacing graphics packages ent font files used by 'QX, METAFONT, and device with particular DVI drivers to general information drivers; macros for commutative diagrams and sim- on macro writing to product reviews to whatever ple chemical equations and many other topics.
    [Show full text]
  • Font HOWTO Font HOWTO
    Font HOWTO Font HOWTO Table of Contents Font HOWTO......................................................................................................................................................1 Donovan Rebbechi, elflord@panix.com..................................................................................................1 1.Introduction...........................................................................................................................................1 2.Fonts 101 −− A Quick Introduction to Fonts........................................................................................1 3.Fonts 102 −− Typography.....................................................................................................................1 4.Making Fonts Available To X..............................................................................................................1 5.Making Fonts Available To Ghostscript...............................................................................................1 6.True Type to Type1 Conversion...........................................................................................................2 7.WYSIWYG Publishing and Fonts........................................................................................................2 8.TeX / LaTeX.........................................................................................................................................2 9.Getting Fonts For Linux.......................................................................................................................2
    [Show full text]
  • Surviving the TEX Font Encoding Mess Understanding The
    Surviving the TEX font encoding mess Understanding the world of TEX fonts and mastering the basics of fontinst Ulrik Vieth Taco Hoekwater · EuroT X ’99 Heidelberg E · FAMOUS QUOTE: English is useful because it is a mess. Since English is a mess, it maps well onto the problem space, which is also a mess, which we call reality. Similary, Perl was designed to be a mess, though in the nicests of all possible ways. | LARRY WALL COROLLARY: TEX fonts are mess, as they are a product of reality. Similary, fontinst is a mess, not necessarily by design, but because it has to cope with the mess we call reality. Contents I Overview of TEX font technology II Installation TEX fonts with fontinst III Overview of math fonts EuroT X ’99 Heidelberg 24. September 1999 3 E · · I Overview of TEX font technology What is a font? What is a virtual font? • Font file formats and conversion utilities • Font attributes and classifications • Font selection schemes • Font naming schemes • Font encodings • What’s in a standard font? What’s in an expert font? • Font installation considerations • Why the need for reencoding? • Which raw font encoding to use? • What’s needed to set up fonts for use with T X? • E EuroT X ’99 Heidelberg 24. September 1999 4 E · · What is a font? in technical terms: • – fonts have many different representations depending on the point of view – TEX typesetter: fonts metrics (TFM) and nothing else – DVI driver: virtual fonts (VF), bitmaps fonts(PK), outline fonts (PFA/PFB or TTF) – PostScript: Type 1 (outlines), Type 3 (anything), Type 42 fonts (embedded TTF) in general terms: • – fonts are collections of glyphs (characters, symbols) of a particular design – fonts are organized into families, series and individual shapes – glyphs may be accessed either by character code or by symbolic names – encoding of glyphs may be fixed or controllable by encoding vectors font information consists of: • – metric information (glyph metrics and global parameters) – some representation of glyph shapes (bitmaps or outlines) EuroT X ’99 Heidelberg 24.
    [Show full text]
  • Using Fonts Installed in Local Texlive - Tex - Latex Stack Exchange
    27-04-2015 Using fonts installed in local texlive - TeX - LaTeX Stack Exchange sign up log in tour help TeX ­ LaTeX Stack Exchange is a question and answer site for users of TeX, LaTeX, ConTeXt, and related Take the 2­minute tour × typesetting systems. It's 100% free, no registration required. Using fonts installed in local texlive I have installed texlive at ~/texlive . I have installed collection­fontsrecommended using tlmgr . Now, ~/texlive/2014/texmf­dist/fonts/ has several folders: afm , cmap , enc , ... , vf . Here is the output of tlmgr info helvetic package: helvetic category: Package shortdesc: URW "Base 35" font pack for LaTeX. longdesc: A set of fonts for use as "drop­in" replacements for Adobe's basic set, comprising: ­ Century Schoolbook (substituting for Adobe's New Century Schoolbook); ­ Dingbats (substituting for Adobe's Zapf Dingbats); ­ Nimbus Mono L (substituting for Abobe's Courier); ­ Nimbus Roman No9 L (substituting for Adobe's Times); ­ Nimbus Sans L (substituting for Adobe's Helvetica); ­ Standard Symbols L (substituting for Adobe's Symbol); ­ URW Bookman; ­ URW Chancery L Medium Italic (substituting for Adobe's Zapf Chancery); ­ URW Gothic L Book (substituting for Adobe's Avant Garde); and ­ URW Palladio L (substituting for Adobe's Palatino). installed: Yes revision: 31835 sizes: run: 2377k relocatable: No cat­date: 2012­06­06 22:57:48 +0200 cat­license: gpl collection: collection­fontsrecommended But when I try to compile: \documentclass{article} \usepackage{helvetic} \begin{document} Hello World! \end{document} It gives an error: ! LaTeX Error: File `helvetic.sty' not found. Type X to quit or <RETURN> to proceed, or enter new name.
    [Show full text]
  • Proposal to Represent the Slashed Zero Variant of Empty
    L2/15-268 Title: Proposal to Represent the Slashed Zero Variant of Empty Set Source: Barbara Beeton (American Mathematical Society), Asmus Freytag (ASMUS, Inc.), Laurențiu Iancu and Murray Sargent III (Microsoft Corporation) Status: Individual contribution Action: For consideration by the Unicode Technical Committee Date: 2015-10-30 Abstract As of Unicode Version 8.0, the symbol for empty set is encoded as the character U+2205 EMPTY SET, with no standardized variation sequences. In scientific publications, the symbol is typeset in one of three var- iant forms, chosen by notational style: a slashed circle, ∅, a slashed wide oval in the shape a letter, ∅, or a slashed narrow oval in the shape of a digit zero, . The slashed circle and the slashed zero forms are the most widely used, and correspond to the LaTeX commands \varnothing and \emptyset, respectively. Having one Unicode representation to map to, fonts that provide glyphs for more than one form of the symbol typically implement a stylistic variant or a mapping to a PUA code point. However, the wide- spread use of the slashed zero variant and its mapping to the main LaTeX command for the symbol, \emptyset, make it a candidate for a dedicated means to distinctly represent it in Unicode. This document evaluates three approaches for representing in Unicode the slashed zero variant of the empty set symbol and proposes a solution based on a variation sequence. Additional related characters resulting from the investigation and needed to complete the solution are also proposed for encoding. 1. The empty set symbol 1.1. Historical references The introduction of the modern symbol for the empty set is attributed to André Weil of the Nicholas Bourbaki group.
    [Show full text]
  • Metatype Project: Creating Truetype Fonts Based on M
    Metatype project: creating TrueType fonts based on Metafont Serge Vakulenko Cronyx Engineering, Moscow Russia [email protected] http://www.vak.ru/proj/metatype Abstract The purpose of Metatype project is the development of freeware TrueType fonts for generic user community. Metafont language is chosen for creating character glyphs. Currently, glyph im- ages are converted to cubic outlines using bitmap tracing algorithm, and then to conic outlines. Two font families are currently been under development as a part of Metatype project: 1. TeX font family, based on Computer Modern fonts by Donald E. Knuth, retaining their “look and feel”. A rich set of typefaces is available, including Roman, Sans Serif, Monotype and Math faces with Normal, Bold, Italic, Bold Italic, Narrow and Wide variations. 2. Maestro font family is designed, as a Times-lookalike. It also uses Computer Mod- ern sources, with a lot of modifications. Why TrueType? representation of text strings. Far-seeing operational sys- tems, such as Windows NT, provide support Unicode at The world becomes closer. Now we observe, how the a kernel level. Word-processors use Unicode for stor- Internet and globalization of economics cause increase age of documents (XML, RTF and other formats). The of intensity of contacts between representatives of dif- amount of Internet sites with Unicode encoding grows ferent peoples, cultures, races. The world becomes more every day. Cellular telephones use Unicode for Inter- and more multilingual. The computer branch for a long net browsing (WAP). The world is slowly moving toward time has realized this fact: the draft variant of standard Unicode. And TrueType seems to be a natural result of Unicode is dated 1989 [1].
    [Show full text]
  • THE MATHALPHA, AKA MATHALFA PACKAGE the Math Alphabets
    THE MATHALPHA, AKA MATHALFA PACKAGE MICHAEL SHARPE The math alphabets normally addressed via the macros \mathcal, \mathbb, \mathfrak and \mathscr are in a number of cases not well-adapted to the LATEX math font structure. Some suffer from one or more of the following defects: • font sizes are locked into a sequence that was appropriate for metafont{generated rather than scalable fonts; • there is no option in the loading package to enable scaling; • the font metrics are designed for text rather than math mode, leading to awkward spacing, subscript placement and accent placement when used for the latter; • the means of selecting a set of math alphabets varies from package to package. The goal of this package is to provide remedies for the above, where possible. This means, in effect, providing virtual fonts with my personal effort at correcting the metric issues, rewriting the font-loading macros usually found in a .sty and/or .fd files to admit a scale factor in all cases, and providing a .sty file which is extensible and from which any such math alphabet may be specified using a standard recipe. For example, the following fonts are potentially suitable as targets for \mathcal or \mathscr and are either included as part of TEXLive 2011, as free downloads from CTAN or other free sources, or from commercial sites. cm % Computer Modern Math Italic (cmsy) euler % euscript rsfs % Ralph Smith Formal Script---heavily sloped rsfso % based on rsfs, much less sloped lucida % From Lucida New Math (commercial) mathpi % Adobe Mathematical Pi or clones thereof
    [Show full text]
  • Optimal Use of Fonts on Linux
    Optimal Use of Fonts on Linux Avi Alkalay Donovan Rebbechi Hal Burgiss Copyright © 2006 Avi Alkalay, Donovan Rebbechi, Hal Burgiss 2007−04−15 Revision History Revision 2007−04−15 15 Apr 2007 Revised by: avi Included support to SUSE installation for the RPM scriptlets on template spec file, listed SUSE as a BCI−enabled distro. Revision 2007−02−08 08 Feb 2007 Revised by: avi Fixed some typos, updated Luc's page URL, added DejaVu sections, added link to FC6 Freetype RPMs, added link to Debian MS Core fonts, and added reference to the gnome−font−properties command. Revision 2006−07−02 02 Jul 2006 Revised by: avi Included link to Debian FreeType BCI package, improved the glossary with Latin1 descriptions, more clear links on the webcore fonts section, instructions on how to rebuild source RPM packages in the BCI appendix, updated the freetype recompilation appendix to cover new versions of the lib, authorship section reorganized. Revision 2006−04−02 02 Apr 2006 Revised by: avi Included link to FC5 Freetype.bci contribution by Cody DeHaan. Revision 2006−03−25 25 Mar 2006 Revised by: avi Updated link to BCI Freetype RPMs to be more distro version specific. Revision 2005−07−19 19 May 2005 Revised by: avi Renamed Microsoft Fonts to Webcore Fonts, and links updated.Added X.org Subsystems section. Revision 2005−05−25 25 May 2005 Revised by: avi Comment related to web pages in the Microsoft Fonts section Revision 2005−05−10 10 May 2005 Revised by: avi Old section−based glossary converted to real DocBook glossary.Modernized terms and explanations on the glossary.Included concepts as charsets, Unicode and UTF−8 in the glossary.
    [Show full text]
  • Math Symbol Tables
    APPENDIX A Math symbol tables A.1 Hebrew and Greek letters Hebrew letters Type Typeset \aleph ℵ \beth ℶ \daleth ℸ \gimel ℷ © Springer International Publishing AG 2016 481 G. Grätzer, More Math Into LATEX, DOI 10.1007/978-3-319-23796-1 482 Appendix A Math symbol tables Greek letters Lowercase Type Typeset Type Typeset Type Typeset \alpha \iota \sigma \beta \kappa \tau \gamma \lambda \upsilon \delta \mu \phi \epsilon \nu \chi \zeta \xi \psi \eta \pi \omega \theta \rho \varepsilon \varpi \varsigma \vartheta \varrho \varphi \digamma ϝ \varkappa Uppercase Type Typeset Type Typeset Type Typeset \Gamma Γ \Xi Ξ \Phi Φ \Delta Δ \Pi Π \Psi Ψ \Theta Θ \Sigma Σ \Omega Ω \Lambda Λ \Upsilon Υ \varGamma \varXi \varPhi \varDelta \varPi \varPsi \varTheta \varSigma \varOmega \varLambda \varUpsilon A.2 Binary relations 483 A.2 Binary relations Type Typeset Type Typeset < < > > = = : ∶ \in ∈ \ni or \owns ∋ \leq or \le ≤ \geq or \ge ≥ \ll ≪ \gg ≫ \prec ≺ \succ ≻ \preceq ⪯ \succeq ⪰ \sim ∼ \approx ≈ \simeq ≃ \cong ≅ \equiv ≡ \doteq ≐ \subset ⊂ \supset ⊃ \subseteq ⊆ \supseteq ⊇ \sqsubseteq ⊑ \sqsupseteq ⊒ \smile ⌣ \frown ⌢ \perp ⟂ \models ⊧ \mid ∣ \parallel ∥ \vdash ⊢ \dashv ⊣ \propto ∝ \asymp ≍ \bowtie ⋈ \sqsubset ⊏ \sqsupset ⊐ \Join ⨝ Note the \colon command used in ∶ → 2, typed as f \colon x \to x^2 484 Appendix A Math symbol tables More binary relations Type Typeset Type Typeset \leqq ≦ \geqq ≧ \leqslant ⩽ \geqslant ⩾ \eqslantless ⪕ \eqslantgtr ⪖ \lesssim ≲ \gtrsim ≳ \lessapprox ⪅ \gtrapprox ⪆ \approxeq ≊ \lessdot
    [Show full text]
  • A Module for Using METAFONT Directly Inside the Freetype Rasterizer 138 Tugboat, Volume 39 (2018), No
    136 TUGboat, Volume 39 (2018), No. 2 FreeType MF Module: Fonts are the graphical representation of text A module for using METAFONT directly in a specific style and size. These fonts are mainly inside the FreeType rasterizer categorized in two types: outline fonts and bitmap fonts. Outline fonts are the most popular fonts for Jaeyoung Choi, Ammar Ul Hassan, producing high-quality output used in digital envi- Geunho Jeong ronments. However, to create a new font style as Abstract an outline font, font designers have to design a new font with consequent extensive cost and time. This METAFONT is a font description language which gen- recreation of font files for each variant of a font can erates bitmap fonts for the use by the T X system, E be especially painful for font designers in the case of printer drivers, and related programs. One advan- CJK fonts, which require designing of thousands in- tage of METAFONT over outline fonts is its capability dividual glyphs one by one. Compared to alphabetic for producing different font styles by changing pa- scripts, CJK scripts have both many more characters rameter values defined in its font specification file. and generally more complex shapes, expressed by Another major advantage of using METAFONT is combinations of radicals [3]. Thus it often takes more that it can produce various font styles like bold, than a year to design a CJK font set. italic, and bold-italic from one source file, unlike A programmable font language, METAFONT, outline fonts, which require development of a sepa- has been developed which does not have the above rate font file for each style in one font family.
    [Show full text]
  • Creating Truetype Fonts Based on METAFONT
    The METATYPE Project: Creating TrueType Fonts Based on METAFONT Serge Vakulenko Cronyx Engineering, Moscow, Russia [email protected] http://www.vak.ru/proj/metatype Abstract The purpose of the METATYPE project is the development of freeware TrueType fonts for the general user community. The METAFONT language was chosen for creating character glyphs. Currently, glyph images are converted to cubic outlines using a bitmap tracing algorithm, and then to conic outlines. Two font families are currently under development as part of the METATYPE project: the TeX font family, based on Computer Modern fonts by Donald E. Knuth, retaining their look and feel. A rich set of typefaces is available, including Roman, Sans Serif, Monowidth and Math faces with Normal, Bold, Italic, Bold Italic, Narrow and Wide variations; and second, the Maestro font family, which is designed as a Times look-alike. It also uses Computer Modern sources, but with numerous modifications. Résumé Le but du projet METATYPE est le développement de fontes TrueType libres pour la commu- nauté générale d’utilisateurs. Le langage de programmation METAFONT est utilisé pour créer les glyphes. Actuellement, les glyphes sont convertis d’abord en contours cubiques, en utilisant un al- gorithme d’auto-traçage de bitmap, et ensuite en contours coniques. Deux familles de fontes sont actuellement en développement, dans le cadre du projet META- TYPE : la famille «TeX font», basée sur les fontes Computer Modern de Donald E. Knuth, et proposant du romain, du sans empattements, du mono-chasse, et les fontes mathématiques, dans les styles : régulier, gras, italique, gras italique, étroitisé et élargi ; la famille «Maestro», qui est un clone du Times.
    [Show full text]
  • Organization MFG Discussion Document Task 1
    MFG discussion document Task 1: Organization 1 Summary of math font-related activities mote the use of MathML on the World Wide Web at EuroTEX '98 without being restricted to the symbol complement provided by the system fonts. 1 Introduction Information about the list of symbols collected The subject of math symbol fonts has been one of by the STIX project currently resides on internal the major topics of interest at the 10th European pages on the AMS Web server [2] and is kept in a TEX Conference (EuroTEX '98), which was held on format similar to the Unicode symbol tables [3], but March 29{31, 1998 at St. Malo, France as part of there are plans to release a printable version of these the 2nd Week on Electronic Publishing and Digital tables in PDF format to the general public soon. Typography (WEPT '98). It was pointed out that a printable version of During the conference a paper summarizing the the symbol tables from the MathML specification is 1 MFG supposed to be available in PDF format on the W3C activities of the Math Font Group ( ) [1] was 2 presented and two BOF sessions on math fonts were Web server [4]. The latest version of the MathML held, bringing together members of the MFG and specification also includes some background infor- representatives of other interested parties, such as mation about the STIX project and references to the W3C MathML working group, the STIX project, various other glyph collections [5, Chapter 6]. as well as publishers and typesetters. 3 Implementation of new 8-bit math fonts In addition, there were also many private dis- for (LA)TEX cussions on math fonts at lunches, dinners, and at informal get-togethers in the local caf´es or pubs.
    [Show full text]