Gene 628 (2017) 275–280

Total Page:16

File Type:pdf, Size:1020Kb

Gene 628 (2017) 275–280 Gene 628 (2017) 275–280 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Research paper Molecular adaptive convergence in the α-globin gene in subterranean MARK octodontid rodents ⁎ Ivanna H. Tomascoa, , Nicolás Boullosaa, Federico G. Hoffmannb,c, Enrique P. Lessaa a Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay b Department of Biochemistry and Molecular Biology, Mississippi State University, MS, USA c Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA ARTICLE INFO ABSTRACT Keywords: Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An en- Molecular evolution ergetically demanding lifestyle within the hypoxic/hypercapnic underground atmosphere may change the se- Caviomorphs lective regime on genes involved in O2 transport in blood. In addition, some species of tuco-tucos may be found Fossoriality at high altitude, thus facing additional reductions in changes O2 availabily. We examined sequence variation in Hemoglobine the alpha globin subunit gene of hemoglobine in these lineages, within a robust phylogenetic context. Using different approaches (classical and Bayesian maximum likelihood (PAML/Datamonkey) and alternatives methods (TreeSAAP)) we found at least 2 sites with evidence of positive selection in the basal branch of Octodontidae, but not in tuco-tucos. These results suggest some adaptive changes associated to fossoriality, but not strictly to life underground. 1. Introduction environment (Darden, 1972; Arieli, 1990; Shams et al., 2005). Maximal CO2 levels (6.1%) and minimal O2 levels (7.2%) were recorded in Assessing the predictability of evolution is a central question in mounds of Spalax carmeli in Israel (Shams et al., 2005). Models of dif- current evolutionary research. In a macroevolutionary framework, fusion gas exchange (Withers, 1978) and experimental data (MacLean, phylogenetically independent invasions of specialized niches by sets of 1981) show that burrow atmospheres are generally hypoxic and hy- relatively closely related species have proven to be powerful study percapnic (Buffenstein, 2000). systems. Among vertebrates, the independent invasion of high-altitude Under low O2 partial pressure in the burrow atmosphere and facing environments by multiple birds, the evolution of diving in multiple the potential CO2 perturbation of their blood acid-base balance, sub- mammalian taxa or the independent invasion of the subterranean niche terranean mammals are expected to avoid excessive energy expenditure by rodents represent natural study systems to address these type of in respiratory work. The mechanisms by which this is achieved are not questions (see Lacey et al., 2000). fully understood, but apparently include several physiological adjust- Subterranean rodents live most of their lives underground in their ments in relation to the predicted values of mammals of similar body usually closed burrows, which are dark, hypoxic, hypercapnic, and mass (predicted by Stahl, 1967) and at different levels (reviewed by thermally stable relative to their above-ground counterparts. From a Boggs et al., 1984, Buffenstein, 2000, Nevo et al., 1999). For example, biological standpoint, life underground imposes particular challenges, oxygen carrying capacity is increased, facilitated by elevated he- which have driven subterranean rodents to develop convergent mor- moglobin concentrations, high intrinsic affinity for oxygen and more phological and physiological features (Nevo et al., 1999). An important red blood cells (reviewed by Buffenstein, 2000). constraint faced by subterranean mammals is the low availability of O2 There have been at least eight independent invasions of the sub- (hypoxia) and the excess of CO2 (hypercapnia) in the subterranean terranean niche by rodents. Among them, comparisons between the Abbreviations: O2, oxygen; CO2, carbon dioxide; Hb, hemoglobine; Cl, cloride; α-globine, alpha-globine subunit gene of hemoglobine; β-globine, beta-globine subunit gene of he- moglobine; PAML, phylogenetic analysis by maximum likelihood (software); TreeSAAP, selection on amino acid properties using phylogenetic trees (software); MEME, mixed effects model of evolution (software); REL, random effects branch-site model (software); Mya, millon years ago; M asl., metres above sea level; SDS, sodium dodecyl sulfate; NaCl, sodium chloride; DNA, deoxyribonucleic acid; dNTP, deoxyribonucleoside triphosphate; MgCl2, magnesium chloride; Ala, alanine; Gly, glycine; Asp, aspartic acid; Glu, glutamic acid; Asn, aspargine; Ser, serine; Thr, threonine; Leu, leucine ⁎ Corresponding author at: Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay. E-mail addresses: [email protected], [email protected] (I.H. Tomasco), [email protected] (N. Boullosa), federico.g.hoff[email protected] (F.G. Hoffmann), [email protected] (E.P. Lessa). http://dx.doi.org/10.1016/j.gene.2017.07.057 Received 16 May 2017; Received in revised form 21 June 2017; Accepted 19 July 2017 Available online 21 July 2017 0378-1119/ © 2017 Elsevier B.V. All rights reserved. I.H. Tomasco et al. Gene 628 (2017) 275–280 Changes in sites/branches positively selected by 12 Ctenomys rionegrensis PAML MEME TreeSAAP Ctenomys leucodon Ctenomys sociabilis Ctenomyidae Ctenomyidae 71 subterranean Spalacopus cyanus Aconaemys fuscus 57 71 1 Octodon degus 111 Tympanoctomys barrerae Octodontidae 130 12 71 Proechimys longicaudatus Cavia porcellus Cavia aperea Fig. 1. Phylogenetic relationship among caviomorph rodents included in this study. Numbers are amino acid sites of α-globin gene identified to be under natural selection by different methods. Red, blue and gray circles, show sites identified as positively selected by PAML, MEME and TreeSAAP, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) South American sibling families Octodontidae (degus, coruros and al- Specifically, the goal of this study is to look for convergent or parallel lies) and Ctenomyidae (tuco-tucos) provide a unique opportunity to changes in the α-globin genes of subterranean lineages relative to their trace the evolution of adaptations related to life underground because fossorial counterparts, and explore whether these changes were driven of their phylogenetic affinities and their relatively recent occupation of by natural selection. the subterranean niche (Lessa et al., 2008). Burrowing for shelter and rearing young (fossoriality) are shared characteristics among these two 2. Materials and methods families of rodents, but only two extant genera, Ctenomys (tuco-tucos) and Spalacopus (coruros) have acquired fully subterranean lifestyles and 2.1. Specimens examined their associated anatomical and physiological adaptations (Fig. 1). These two South American genera of subterranean rodents are analo- We selected 2 specimens from 10 caviomorph rodent species, in- gous to North American pocket gophers but have entered the sub- cluding representatives of two related but independent subterranean terranean niche more recently. Moreover, the sister groups of most lineages. Among these subterranean lineages were three species of tuco- other subterranean rodent lineages, if at all known, tend to be very tucos (Ctenomys) and the coruro (Spalacopus cyanus). Fossorial, but non- divergent from the subterranean groups, but this is not the case with subterranean relatives were three Octodontid rodents (Aconaemys Octodontidae and Ctenomyidae which have diverged between 14 and fuscus, Octodon degus and Tympanoctomys barrerae). We also add a non- 23 Mya (reviewed in Patton et al., 2015). Within Octodontidae, the fossorial spiny rat (Proechimys longicaudatus), and finally two species of coruro has evolved a fully subterranean life and acquired numerous Cavia (C. porcellus and C. aperea) which were used as outgroup. Because morphological changes within the last 2 to 3 Mya (Lessa et al., 2008; tuco-tucos comprise >63 species and were considered one of the most Opazo, 2005). The family Ctenomyidae accumulated changes asso- rapidly speciating mammalian lineages (Patton et al., 2015), we chose a ciated to subterranean life in a mosaic fashion along several lineages, in sample of 3 species from this group, in an attempt to capture the di- a longer process that has taken at least 8 Mya; the extant diversity of versity of lifestyles and molecular differentiation and habitat features tuco-tucos includes >63 nominal species (Patton et al., 2015) that following Tomasco and Lessa (2011): C. sociabilis, C. rionegrensis and C. diversified in the last 3.5 Mya (Verzi et al., 2010). In addition, phylo- leucodon. First two species live on lowland, about 0 m asl, but C. leu- genetic relationships among the genera are well-established (e.g., codon occurs between 3800 and 4500 m asl. We also included se- Opazo, 2005; Upham and Patterson, 2012 and references therein), quences of O. degus and C. porcellus taken from GenBank (XM_ which facilitates the tracing of changes associated with the acquisition 003478407.2 and XM_004627947.1 respectively). Table 1 summarizes of subterranean adaptations onto an established phylogeny, enabling us information about specimen voucher numbers and sampling localities to identify and discriminate adaptations restricted to subterranean of samples. lineages from
Recommended publications
  • Auditory-Vocal Coupling in the Naked Mole-Rat, a Mammal with Poor Auditory Thresholds
    Journal of Comparative Physiology A https://doi.org/10.1007/s00359-018-1287-8 ORIGINAL PAPER Auditory-vocal coupling in the naked mole-rat, a mammal with poor auditory thresholds Kazuo Okanoya1,2 · Shigeto Yosida2 · Catherine M. Barone3 · Daniel T. Applegate3 · Elizabeth F. Brittan‑Powell4 · Robert J. Dooling4 · Thomas J. Park3 Received: 7 May 2018 / Revised: 4 September 2018 / Accepted: 7 September 2018 © The Author(s) 2018 Abstract Naked mole-rats are extremely social and extremely vocal rodents, displaying a wide range of functionally distinct call types and vocalizing almost continuously. Their vocalizations are low frequency, and a behavioral audiogram has shown that naked mole-rats, like other subterranean mammals, hear only low frequencies. Hence, the frequency range of their hearing and vocalizations appears to be well matched. However, even at low frequencies, naked mole-rats show very poor auditory thresholds, suggesting vocal communication may be effective only over short distances. However, in a tunnel environment where low frequency sounds propagate well and background noise is low, it may be that vocalizations travel considerable distances at suprathreshold intensities. Here, we confirmed hearing sensitivity using the auditory brainstem response; we characterized signature and alarm calls in intensity and frequency domains and we measured the effects of propagation through tubes with the diameter of naked mole-rat tunnels. Signature calls—used for intimate communication—could travel 3–8 m at suprathreshold intensities, and alarm calls (lower frequency and higher intensity), could travel up to 15 m. Despite this species’ poor hearing sensitivity, the naked mole-rat displays a functional, coupled auditory-vocal communication system—a hallmark principle of acoustic communication systems across taxa.
    [Show full text]
  • An Ecological Comparison of Small Mammal Communities in California
    An Ecological Comparison of Small Mammal Abstract: Our studies in similar scrub habitats Communities in California and Chile1 in California and Chile reveal some interesting differences between these two regions in the structure of their small mammal communities. The Chilean fauna is less diverse, with fewer species 2 William E. Glanz and Peter L. Meserve per site, and possibly more extreme density fluc- tuations. Chilean rodents are more strongly associated with areas of high shrub and rock cover, while California species show a greater variety of habitat preferences. Chile has more insectivorous species, and California has more seed-eating specialists. Some of these differ- ences may be related to biogeographic and climatic factors, while others may reflect a longer history of human disturbance in Chile. Similar climates often seem to favor the evo- FIELD SITES AND METHODS lution of similar organisms, and the Mediterranean -climate regions of the world have provided numer- We have ecological data from a variety of ous examples of such evolutionary convergence. communities in each region, but will restrict our Of the five regions with this climate, California discussion here to results from three vegetational and Chile have been compared very extensively types which we have studied intensively: dry (Mooney 1977), particularly in terms of the mor- coastal scrub, moist coastal scrub, and evergreen phological, physiological, and ecological attri- chaparral. For each of these, the vegetation butes of their dominant organisms. Striking structure and life forms at our sites were closely similarities between these two regions have been matched between continents. found in their vegetation structure and community patterns (Mooney and Dunn 1970; Parsons and The dry coastal scrub localities were studied Moldenke 1975; Parsons 1976), their birds (Cody by Meserve near Irvine, Orange County, California 1973 and 1974), and their lizards (Fuentes 1976).
    [Show full text]
  • Wild Patagonia & Central Chile
    WILD PATAGONIA & CENTRAL CHILE: PUMAS, PENGUINS, CONDORS & MORE! NOVEMBER 1–18, 2019 Pumas simply rock! This year we enjoyed 9 different cats! Observing the antics of lovely Amber here and her impressive family of four cubs was certainly the highlight in Torres del Paine National Park — Photo: Andrew Whittaker LEADERS: ANDREW WHITTAKER & FERNANDO DIAZ LIST COMPILED BY: ANDREW WHITTAKER VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM Sensational, phenomenal, outstanding Chile—no superlatives can ever adequately describe the amazing wildlife spectacles we enjoyed on this year’s tour to this breathtaking and friendly country! Stupendous world-class scenery abounded with a non-stop array of exciting and easy birding, fantastic endemics, and super mega Patagonian specialties. Also, as I promised from day one, everyone fell in love with Chile’s incredible array of large and colorful tapaculos; we enjoyed stellar views of all of the country’s 8 known species. Always enigmatic and confiding, the cute Chucao Tapaculo is in the Top 5 — Photo: Andrew Whittaker However, the icing on the cake of our tour was not birds but our simply amazing Puma encounters. Yet again we had another series of truly fabulous moments, even beating our previous record of 8 Pumas on the last day when I encountered a further 2 young Pumas on our way out of the park, making it an incredible 9 different Pumas! Our Puma sightings take some beating, as they have stood for the last three years at 6, 7, and 8. For sure none of us will ever forget the magical 45 minutes spent observing Amber meeting up with her four 1- year-old cubs as they joyfully greeted her return.
    [Show full text]
  • RELEVANCE of KIN SELECTION on the EVOLUTION of COOPERATION in HYSTRICOGNATH RODENTS, Octodon Degus (Molina, 1782) AS a STUDY CASE
    1 RELEVANCE OF KIN SELECTION ON THE EVOLUTION OF COOPERATION IN HYSTRICOGNATH RODENTS, Octodon degus (Molina, 1782) AS A STUDY CASE. IMPORTANCIA DE LA SELECCIÓN DE PARENTESCO EN LA EVOLUCIÓN DE LA COOPERACIÓN EN ROEDORES HISTRICOGNATOS Y EN Octodon degus (Molina, 1782) COMO CASO DE ESTUDIO. Tesis entregada a la Pontificia Universidad Católica de Chile en cumplimiento parcial de los requisitos para optar al Grado de Doctor en Ciencias con mención en Ecología por ÁLVARO LY PRIETO Director de Tesis: Luis A. Ebensperger Pesce Diciembre 2020 2 A la memoria de mi padre. 3 AGRADECIMIENTOS Quiero agradecer, en primer lugar, a Luis Ebensperger, por ser un excelente director de tesis y un verdadero tutor, siempre generoso a la hora de compartir sus conocimientos, y por su infinita paciencia y buena disposición para revisar, corregir y dar consejos. A los miembros de la comisión de tesis, por sus consejos. A Cristian Hernández y su equipo por abrirme las puertas de su laboratorio en la UdeC para aprender nuevas metodologías. También agradecer a todos los amigos, familia y a mi pareja, que han sido un soporte fundamental en este largo camino, y a todos quienes contribuyeron de alguna u otra forma en la concepción de esta tesis doctoral y en su proceso. Especialmente agradecer a quienes fueron importantes en la obtención y procesamiento de mis datos, y en los debates de ideas: a mis compañeros y amigos Raúl Sobrero, Loreto Correa, Daniela Rivera, Cecilia León, Juan C. Ramírez, Gioconda Peralta y Loreto Carrasco. Agradecer al Departamento de Ecología de la Pontificia Universidad Católica y su staff, por tener siempre buena disposición para solucionar requerimientos y vicisitudes.
    [Show full text]
  • Micheal L. Dent Richard R. Fay Arthur N. Popper Editors Rodent Bioacoustics Springer Handbook of Auditory Research
    Springer Handbook of Auditory Research Micheal L. Dent Richard R. Fay Arthur N. Popper Editors Rodent Bioacoustics Springer Handbook of Auditory Research Volume 67 Series Editor Richard R. Fay, Ph.D., Loyola University Chicago, Chicago, IL, USA Arthur N. Popper, Ph.D., University of Maryland, College Park, MD, USA Editorial Board Karen Avraham, Ph.D., Tel Aviv University, Israel Andrew Bass, Ph.D., Cornell University Lisa Cunningham, Ph.D., National Institutes of Health Bernd Fritzsch, Ph.D., University of Iowa Andrew Groves, Ph.D., Baylor University Ronna Hertzano, M.D., Ph.D., School of Medicine, University of Maryland Colleen Le Prell, Ph.D., University of Texas, Dallas Ruth Litovsky, Ph.D., University of Wisconsin Paul Manis, Ph.D., University of North Carolina Geoffrey Manley, Ph.D., University of Oldenburg, Germany Brian Moore, Ph.D., Cambridge University, UK Andrea Simmons, Ph.D., Brown University William Yost, Ph.D., Arizona State University More information about this series at http://www.springer.com/series/2506 The ASA Press The ASA Press imprint represents a collaboration between the Acoustical Society of America and Springer dedicated to encouraging the publication of important new books in acoustics. Published titles are intended to reflect the full range of research in acoustics. ASA Press books can include all types of books published by Springer and may appear in any appropriate Springer book series. Editorial Board Mark F. Hamilton (Chair), University of Texas at Austin James Cottingham, Coe College Diana Deutsch, University of California, San Diego Timothy F. Duda, Woods Hole Oceanographic Institution Robin Glosemeyer Petrone, Threshold Acoustics William M.
    [Show full text]
  • 45763089029.Pdf
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Frugone, María José; Correa, Loreto A; Sobrero, Raúl ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri Mastozoología Neotropical, vol. 26, núm. 2, 2019, Julio-, pp. 487-492 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=45763089029 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Mastozoología Neotropical, 26(2):487-492 Mendoza, 2019 Copyright © SAREM, 2019 Versión on-line ISSN 1666-0536 hp://www.sarem.org.ar hps://doi.org/10.31687/saremMN.19.26.2.0.05 hp://www.sbmz.org Nota ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri María José Frugone1, Loreto A. Correa2,3 and Raúl Sobrero4 1Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 2Escuela de Medicina Veterinaria, Facultad de Ciencias. Universidad Mayor, Santiago, Chile. 3Departamento de Ecología, Facultad de Ciencias, Ponticia Universidad Católica de Chile. 4Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Cientícas y Técnicas (CONICET), Esperanza, Argentina. [Correspondence: Raúl Sobrero <[email protected]>] ABSTRACT. We provide the rst systematic data on behavior and ecology of Aconaemys porteri.
    [Show full text]
  • Dromiciops Gliroides MICROBIOTHERIA: MICROBIOTHERIIDAE) in ITS SOUTHERNMOST POPULATION of ARGENTINA Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Sanchez, Juliana P.; Gurovich, Yamila FLEAS (INSECTA: SIPHONAPTERA) ASSOCIATED TO THE ENDANGERED NEOTROPICAL MARSUPIAL MONITO DEL MONTE (Dromiciops gliroides MICROBIOTHERIA: MICROBIOTHERIIDAE) IN ITS SOUTHERNMOST POPULATION OF ARGENTINA Mastozoología Neotropical, vol. 25, no. 1, 2018, January-June, pp. 257-262 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45758865023 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 25(1):257-262, Mendoza, 2018 Copyright ©SAREM, 2018 http://www.sarem.org.ar Versión on-line ISSN 1666-0536 http://www.sbmz.com.br Nota FLEAS (INSECTA: SIPHONAPTERA) ASSOCIATED TO THE ENDANGERED NEOTROPICAL MARSUPIAL MONITO DEL MONTE (Dromiciops gliroides MICROBIOTHERIA: MICROBIOTHERIIDAE) IN ITS SOUTHERNMOST POPULATION OF ARGENTINA Juliana P. Sanchez1 and Yamila Gurovich2, 3 1 Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (CONICET- UNNOBA) Pergamino, Buenos Aires, Argentina. [Correspondence: <[email protected]>] 2 CIEMEP, CONICET-UNPSJB, Esquel, Chubut, Argentina. 3 Department of Anatomy, School of Medical Sciences, The University of New South Wales, 2052 New South Wales, Australia ABSTRACT. Dromiciops gliroides is a nocturnal marsupial endemic to the temperate forests of southern South America and the only living representative of the Order Microbiotheria. Here we study the Siphonapteran fauna of the “monito del monte” from Los Alerces National Park, Chubut Province.
    [Show full text]
  • The Relationship of Foraging Habitat to the Diet of Barn Owls &Lpar;<I
    MARCH 2005 SHORT COMMUNICATIONS 97 E. van der Vorst Roncero translated the abstract into rique occidentale: adaptations6cologiques aux fluc- Spanish. tuations de production des 6cosystames.Terre Vie 32 89-133. LITERATURE CITED Voous, K.H. 1957. The birds of Aruba, Curagao, and Bo- BOSQUE,C. ANDM. LENTINO.1987. The passageof North naire. Stud. Fauna Curafao other Caribb. Isl. 29:1-260 American migratory land birds through xerophitic 1982. Straggling to islands--South American habitatson the westerncoast of Venezuela.Biotrop. 19: birds in the islands of Aruba, Cnracao, and Bonaire, 267-273. South Caribbean.J. YamashinaLnst. Ornithol. 14:171- FE}•C.USON-LEEs, J. XrqDD.A. CHInSTIn.2001. Raptors of 178. the world. Christopher Helm, London, U.K. --. 1983. Birds of the Netherlands Antilles. De Wal- FFRENCH,R. 1973. A guide to the birds of Trinidad and burg Press, Utrecht, Netherlands. Tobago. Livingstone Publishing Company, Wynne- ß 1985. Additions to the avifauna of Aruba, Cura- wood, OK U.S.A. qao and Bonaire, South Caribbeanß Ornithol.Monogr MLODINOW, S.G. 2004. First records of Little Egret, 36:247-254. Green-winged Teal, Swallow-tailedKite, Tennessee Z>a•I•ES,J.I. AND K.L. BraDSTEIN(EDS.). 2000. Raptor Warbler, and Red-breasted Blackbird from Aruba. N. watch: a global directory of raptor migration sites Am. Birds 57:559-561. BirdLife Conservation Series 9. BirdLife Internation- NIJMaN,V. 2001. Spatial and temporal variation in mi- al, Cambridge, U.K. and Hawk Mountain Sanctuary, grant raptorson Java,Indonesia. Emu 101:259-263. Kempton, PA UßS.A. PRINS, T.G. AND A.O. DEBROT.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Tympanoctomys: 75 Años De Historia. Estado Actual Del Conoci- Miento Del Género
    Rev. Mus. Argentino Cienc. Nat., n.s. 20(1): 109-122, 2018 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Tympanoctomys: 75 años de historia. Estado actual del conoci- miento del género Agustina A. OJEDA, Andrea del Pilar TARQUINO-CARBONELL, Leandro M. VÉLEZ & Ricardo A. OJEDA Grupo de Investigaciones de la Biodiversidad, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CCT Mendoza. CONICET. Av. Ruiz Leal s/n Parque General San Martín, Mendoza, CP 5500 Argentina, e-mail: [email protected] Abstract: This contribution is a tribute to José Yepes on the 75th anniversary of his description of the ge- nus Tympanoctomys, and the 90th anniversary of his admission to the Argentine Museum of Natural Sciences “Bernardino Rivadavia”. Viscacha rats are the epitome of South American rodents adapted to desert habitats, and are a true model, not only to present different specialized attributes for life in xeric environments, but also as one of the mammals with the highest chromosomal number. In this chapter, we present an overview of the state of knowledge of the genus and related species, regarding aspects such as distribution, ecology, genetic and conserva- tion. Perspectives focus on gaps and unresolved issues that are fascinating and promising research lines. Key words: José Yepes, Octodontids, Rodents, Viscacha Rats Resumen: Esta contribución es un homenaje a José Yepes por los 75 años transcurridos desde que describiera el género Tympanoctomys, y por los 90 años de su ingreso al Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Las ratas vizcacha son el epítome de roedores sudamericanos adaptados al desierto, y han constituido un verdadero modelo, no solo por presentar distintos atributos especializados para la vida en ambientes xéricos, sino también como uno de los mamíferos con mayor número cromosómico.
    [Show full text]
  • Discovery of Tetraploidy in a Mammal the Red Viscacha Rat Is Unaffected by Having Double the Usual Number of Chromosomes
    brief communications Discovery of tetraploidy in a mammal The red viscacha rat is unaffected by having double the usual number of chromosomes. olyploidy, or having more than a pair of each type of chromosome, is con- abcedfg Psidered to be unlikely in mammals 1 9 because it would disrupt the mechanism of dosage compensation that normally inacti- vates one X chromosome in females1. Also, 10 18 any imbalance in chromosome number should affect the normal developmental 19 27 processes and therefore constitute an evolu- tionary end, as in triploid humans2. Nevertheless, genetic evidence indicates 28 36 that the red viscacha rat, Tympanoctomys 3 barrerae (Octodontidae) , is tetraploid. T. 37 SC 45 barrerae, which is a highly specialized desert rodent4, has the largest chromosome com- plement in mammals5 with a single XY sex- 46 50 10µm XY 10 µm chromosome system (Fig. 1). Although little is known about meiotic chromosome Figure 1 C-banded karyotype of a male Tympanoctomys barrerae Figure 2 Bright-field photomicrograph of sperm cells from differ- pairing in T. barrerae, the constant diploid from Mendoza, Argentina (4N4102; fundamental number of ent genera in the families Octodontidae and Abrocomidae. a, Tym- number found in 13 specimens examined at autosomal arms is 200). The karyotype includes 36 pairs of meta- panoctomys barrerae; b, Aconaemys fuscus; c, Octodon degus; three localities in Argentina indicates that centric to submetacentric chromosomes and 14 pairs of subtelo- d, Spalacopus cyanus; e, Octomys mimax; f, Octodontomys segregation occurs normally. centric autosomes. The X chromosome is the largest element, gliroides; g, Abrocoma bennetti. In mammals without excessive consti- present in two copies in females.
    [Show full text]
  • Hystricomorpha, Octodontidae) En Chile
    Boletín del Museo Nacional de Historia Natural, Chile, 69(2): 19-27 (2020) 19 EXTENSIÓN SEPTENTRIONAL DE LA DISTRIBUCIÓN CONOCIDA DE ACONAEMYS (HYSTRICOMORPHA, OCTODONTIDAE) EN CHILE. Diego Ramírez-Álvarez1 y Guillermo D’Elía2* 1Unidad de Vida Silvestre, Servicio Agrícola y Ganadero de Chile, Región de O’Higgins. E-mail: [email protected] 2Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile E-mail: [email protected] * [email protected] RESUMEN Se reporta el primer registro basado en especímenes de poblaciones actuales de Aconaemys para la Región de O’Higgins; extendiéndose así la distribución conocida del género hacia el norte en aproximadamente 130 km. Con la evidencia disponible no es posible determinar a la especie a la que pertenecen dichas poblaciones; por lo tanto, se refiere a las mismas comoAconaemys sp. Estos nuevos registros muestran que la distribución del género no se redujo durante el Holoceno en la magnitud que ha sido sugerido. Al mismo tiempo, estos registros muestran la necesidad de continuar con la colecta de especímenes de mamíferos en Chile como forma de lograr una adecuada caracterización de la mastofauna del país. Palabras clave: Caviomorpha; Región de O’Higgins, Rodentia; tunduco ABSTRACT Northern extension of the known distribution of Aconaemys (Hystricomorpha, Octodontidae) in Chile. The first records of living populations of Aconaemys for the O’Higgins Region are reported; these records extend the known distribution of the genus to the north by approximately 130 km. With the available evidence it is not possible to determine the species to which these populations belong; therefore, they are referred to as Aconaemys sp.
    [Show full text]