arXiv:1907.08616v1 [math.CO] 19 Jul 2019 ( aifigteBmir-agcnetr nteDiophantin the in conjecture int complete Bombieri-Lang well-kno of the forthc family the satisfying author’s certain the a to used of is non-singularity related it the that show are notice We which 5]. [4, matrices matrices square certain of arxwt entries with where hoe 1.1. Theorem opizsmtie 1 ,3.Frmr eal,seSection see matrix details, more For 3]. 2, [1, matrices Toeplitz’s nifiiesqec fdsic lmnsof elements distinct of sequence infinite an rank uhta for that such d rirr nees and integers, arbitrary mns o n aro nee ( indexes of pair any For ements. opizmatrices. Toeplitz n ℓ C NSEILMTIE EAE OCUH AND CAUCHY TO RELATED MATRICES SPECIAL ON h anrsl fti ae ocrswt acltn h r the calculating with concerns paper this of result main The nodrt rv h bv hoe,w ilcluaetedet the calculate will we theorem, above the prove to order In hogotti ae,w xafield a fix we paper, this Throughout 2010 e od n phrases. and words Key := − ( i − n r d ) r, I ( − ahmtc ujc Classification. Subject Mathematics C h ako pca o qaematrices. we square the non t to special results the of related use rank are will we the which Then, matrices, matrices. Toeplitz square and Cauchy of type certain a Abstract. ℓ 0) × +1 = r n r ( = ( D , ,ℓ n o integers for { ) r 1 hn ecnie h ( the consider we Then, . )bokdmti,where matrix, blocked 1) + − , j ( = · · · 1) 0 = Let r − r , nti ae,w r on ocluaetedtriatof the calculate to going are we paper, this In e<ℓ 1. , 1) Y · · · } D F r ∈ nrdcinadmi result main and Introduction r and e<ℓ I eafil fcaatrsi eoand zero characteristic of field a be pca aeof case special A . OPIZMATRICES TOEPLITZ r , 2 Y d { ( ≤ eemnn n ako arcs acy ibr,and Hilbert, Cauchy, Matrices; of Rank and Determinant ∈ a i,ℓ and I ℓ I ) } n < r j a d ℓ ∞ ℓ =1 := ( ( ℓ,e AA SALAMI SAJAD r a ℓ ) 1 + I ⊂ C , . − \{ a F j ≤ ( ,e ℓ, e i 1 } n − ( = ) ∗ rmr 50;Scnay1A5. 15A15 Secondary 15B05; Primary i r,j for − ,w define we ), nifiiesqec fdsic el- distinct of sequence infinite an ≤ F ) D r − n ( = C ) j fcaatrsi eo 2 zero, characteristic of F × sa( a is 1) r n ehave we ∈ hntematrix the Then . − ( r srltdt h ibr and Hilbert the to related is r I 1) e<ℓ Define . )matrix 1) + Y n r + ∈ − I j a a d r i ( ℓ ) ℓ,e d e<ℓ ( × Y ℓ,e ) mn ae 6 to [6] paper oming C reto varieties ersection determine o ∈ 2. emty[7]. geometry e ( { ) := I r n n j a ll-known 0 6= C a ℓ =[ := − } nCauchy’s wn ℓ a =[ := d ℓ ∞ r C , ℓ =1 ( n fthe of ank diagonal ) i,ℓ C − r n erminant C ) | ⊂ ≤ D d a full has a ( ( i e F n < r sa as ] ℓ,e − r,j ∗ and ) , ) be ], 2 SAJAD SALAMI

The organization of the present paper is as follows. In the section 2, we recall the definition and determinant of the square Cauchy’s and Hilbert’s matrix over a field of characteristic zero. In section 3, we calculate the determinant of a certain that are related to the Cauchy’s matrix. Finally, in Section 4, we use the result of Section 3 to prove Theorem 1.1.

2. Cauchy’s and Toeplitz matrices In 1841, Augustin Louis Cauchy introduced a certain type of matrices with certain properties, see [4, 5]. We are going to recall the definition and determinant of these matrices in this section. An n × n square Cauchy’s matrix defined by disjoint subsets of distinct nonzero elements {x1, · · · ,xn} and {y1, · · · ,yn} in a field of characteristic zero F , is the square matrix Xn := [xij] with 1 xij = , 1 ≤ i, j ≤ n. xi − yj Note that any submatrix of a Cauchy’s matrix is itself a Cauchy’s matrix. The determinant of a Cauchy’s matrix is known as Cauchy’s determinant in the literature, which is always nonzero because xi 6= yj. Following proposi- tion shows that how one can calculate the determinant of Cauchy’s matrices.

Proposition 2.1. Let n ≥ 1 be an integer and Xn a n × n Cauchy’s matrix defined as above over a field F of characteristic zero. Then

(xi − xj)(yi − yj) |X | = i

′ ′ (x1 − xi) 1 xi1 = 0, xij = · 2 ≤ i, j ≤ n. (x1 − yj) (xi − yj) ON SPECIAL MATRICES RELATED TO CAUCHY AND TOEPLITZ MATRICES 3

Extracting the factor (x1 − xi) from each rows, and 1/(x1 − yj) from each column, for 2 ≤ i, j ≤ n, gives that 1 1 · · · 1 (x2−y2) (x2−y3) (x2−yn) n 1 1 · · · 1 1 (y1 − yj)(x1 − xi) (x3−y2) (x3−y3) (x3−yn) |X | = . n (x − y ) (x − y )(x − y ) . . . 1 1 i,jY=2 i 1 1 i . · · · . . 1 1 1 · · · (xn−y2) (xn−y3) (xn−yn)

Repeating this procedure, we obtain that

1 (yi − yj)(xj − xi) (xi − xj)(yi − yj) |X | = · i

In [1], Hilbert introduced a certain square matrix which is a special case of the Cauchy square matrix. The Hilbert’s matrix is an n×n matrix Hn = [hij] with entries hij = 1/(i + j − 1), where 1 ≤ i, j ≤ n. Using the proposition 2.1, one can calculate the determinant of a Hilbert’s matrix as n−1 c4 |H | = n , c = i!. n c n 2n Yi=1

He also mentioned that the determinant of Hn is the reciprocal of a well known integer which follows from the following identity 2n−1 1 c i = 2n = n! · . |H | c4 [i/2] n n Yi For more information see the sequence A005249 in OEIS [8]. For a recent work related to the Cauchy’s and Hilbert’s matrices one can see [10]. The other type of matrices, which we are going to recall here, are the Toeplitz matrices. An n × n with entries in a field F is the square matrix

v0 v1 v2 · · · vn−1  v−1 v0 v1 · · · vn−2 v v v · · · v Vn :=  −2 −1 0 n−3 .  . . . .   . . . · · · .    v1−n v2−n v3−n · · · v0    These are one of the most well studied and understood classes of ma- trices that arise in most areas of the mathematics: algebra [11], algebraic geometry [12], and [13]. In [3], the author obtained a unique LU factorizations and an explicit formula for the determinant and also the inversion of Toeplitz matrices. And, the inverse, , eigenvalues, and eigenvectors of symmetric Toeplitz matrices over real number field with linearly increasing entries have been studied in [14]. In [15], the author 4 SAJAD SALAMI showed that every n × n square matrix is generically a product of ⌊n/2⌋ + 1 and always a product of at most 2n + 5 Toeplitz matrices.

3. Determinant of certain square matrix In this section, we calculate the determinant of certain square matrices with entries in a field F of characteristic zero, which are related to the determinant of Cauchy’s matrix. In special case, the determinant of our matrix is related to the determinant of a certain Toeplitz matrix. First, let us to give the following elementary result for a given infinite sequence ∞ {aℓ}ℓ=1 of distinct nonzero elements in a field F of characteristic zero.

Lemma 3.1. For indexes e, ℓ, s, and t, we have

d(t,e) d(s,e) d(t,s)d(ℓ,e) asd(ℓ,e) − aℓd(s,e) = −aed(s,ℓ), − = . d(t,ℓ) d(s,ℓ) d(t,ℓ)d(s,ℓ)

Proof. For indexes e, ℓ, and s, by definition d(s,e) = d(s,ℓ) + d(ℓ,e), so

asd(ℓ,e) − aℓd(s,e) = asd(ℓ,e) − aℓ(d(s,ℓ) + d(ℓ,e))

= (as − aℓ)d(ℓ,e) − aℓd(s,ℓ)

= d(s,ℓ)(d(ℓ,e) − aℓ)= −aed(s,ℓ)

For indexes e, ℓ, s, and t, one has

d(t,e) d(s,e) d(t,e)d(s,ℓ) − d(s,e)d(t,ℓ) − = d(t,ℓ) d(s,ℓ) d(t,ℓ)d(s,ℓ) 1 d d = · (t,t) (t,ℓ) d d d d (t,ℓ) (s,ℓ) (s,e) (s,ℓ) 1 d − d d − d = · (t,e) (s,e) (t,ℓ) (s,ℓ) d d d d (t,ℓ) (s,ℓ) (s,e) (s,ℓ) 1 d d = · (t,s) (t,s) d d d d (t,ℓ) (s,ℓ) (s,e) (s,ℓ)

d(t,s) 1 1 = · d d d d (t,ℓ) (s,ℓ) (s,e) (s,ℓ)

d(t,s)(d(s,ℓ) − d(s,e)) d( t,s)d(ℓ,e) = = . d(t,ℓ)d(s,ℓ) d(t,ℓ)d(s,ℓ)

 ON SPECIAL MATRICES RELATED TO CAUCHY AND TOEPLITZ MATRICES 5

For any integer n ≥ 1, define (n + 1) × (n + 1) matrix An as: a a a 1 i1 i1 · · · i1 d(i ,e ) d(i ,e ) d(i ,en) a1 1 a1 2 a1 1 i2 i2 · · · i2  d(i2,e1) d(i2,e2) d(i2,en) . . . .  An := . . · · · . .  ,  ain ain ain  1 · · ·  d(in,e ) d(in,e ) d(in,en)  a 1 a 2 a   in+1 in+1 in+1  1 d d · · · d   (in+1,e1) (in+1,e2) (in+1,en)  where {ai1 , · · · , ain+1 } and {ae1 , · · · , aen } are disjoint subsets of the infinite ∞ sequence {aℓ}ℓ=1. The following proposition gives the determinant of An. We will use Lemma 3.1 in its proof. Proposition 3.2. Let I = {1, 2, · · · ,n} and J = {1, 2, · · · ,n + 1}. Then, one has Dr · ′ d(i ,i ′ ) |A | = s

By extracting the factor −aej /d(i1,ej ) from each columns (1 ≤ j ≤ n) and d(is,i1) from each rows (2 ≤ s ≤ n + 1), one gets that n n+1 ae |A | = (−1)n j · d · |B | n d (is,i1) n jY=1 (i1,ej ) sY=2 where 1 1 · · · 1 d(i2,e1) d(i2,e2) d(i2,en) 1 1 1  d d · · · d  B := (i3,e1) (i3,e2) (i3,en) n  . . .   . · · · . .   1 1 1   d d · · · d .  (in+1,e1) (in+1,e2) (in+1,en)  Since the matrix Bn is a Cauchy’s matrix defined by

x1 = ai2 , · · · ,xn = ain+1 , y1 = ae1 , · · · ,yn = aen , 6 SAJAD SALAMI so using Proposition 2.1 we have

′ s

n n aej (−1) · ′ d(i ,i ′ ) j=1 d(i ,e ) s

We note that the matrix Bn in the proof of the above proposition is related to a certain n × n Toeplitz matrix. Indeed, if we consider the sequence aℓ = 1/ℓ for ℓ = 1, 2, · · · and indexes ej = j and is = n+s−1 for j = 1, · · · ,n and n s = 1, · · · ,n + 1, then a simple calculation shows that Bn = (−1) (2n)!Vn, where Vn is the following n × n Toeplitz matrix 1 1 1 1 n n−1 n−2 · · · 2 1 1 1 1 1 1  n+1 n n−1 · · · 3 2  1 1 1 · · · 1 1  n+2 n+1 n 4 3  k Vn =  . . . . .  = (−1) Hn,  . . . · · · . .     1 1 1 · · · 1 1   2n−2 2n−3 2n−4 n n−1   1 1 1 · · · 1 1   2n−1 2n−2 2n−3 n+1 n  where k = n/2 if n is even and k = (n − 1)/2 if n is odd; and the last equality comes by changing j-th column with (n − j + 1)-th column of Vn.

4. Proof of theorem 1.1 In order to prove Theorem 1.1, we need the following result. Proposition 4.1. Given integers 2 ≤ r

2 |C′| = (−1)r +3rDr+1 d . r (is,is′ ) s′

′ 3r(r+1)/2 ′′ |C | = (−1) d(ℓ,e) aℓd(ℓ,e) aℓd(ℓ,e) · |C | e<ℓY∈I e<ℓY∈I1 e<ℓY∈Ir r(r+3)/2 r ′′ = (−1) Dr · |C |, ON SPECIAL MATRICES RELATED TO CAUCHY AND TOEPLITZ MATRICES 7 where C′′ is the following (r + 1) × (r + 1) matrix d a d · · · a d ℓ∈I (i1,ℓ) i1 ℓ∈I1 (i1,ℓ) i1 ℓ∈Ir (i1,ℓ) d a d · · · a d ′′  Qℓ∈I (i2,ℓ) i2 Qℓ∈I1 (i2,ℓ) i2 Qℓ∈Ir (i2,ℓ)  C := Q . Q . Q . .  . · · · . .     d ai d · · · ai d   ℓ∈I (ir+1,ℓ) r+1 ℓ∈I1 (ir+1,ℓ) r+1 ℓ∈Ir (ir+1,ℓ) Q Q Q By extracting the factor ℓ∈I d(is,ℓ) from s-th row 1 ≤ s ≤ r + 1, we obtain Q ai ai 1 1 · · · 1 d(i1,1) d(i1,r) ai2 ai2 1 d · · · d |C′′| = d · (i2,1) (i2,r) (is,j) . . . sY∈J Yj∈I . . · · · . a a 1 ir+1 · · · ir+1 d(i ,1) d(i ,r) r+1 r+1

Considering t = r and ej = j for j = 1, · · · , r, and using Proposition 3.2 for calculating the last determinant, one can conclude that

Dr · ′ d(i ,i ′ ) |C′| = (−1)r(r+3)/2Dr−1 d · s

We notice that above proposition is a special case of the next general one. Proposition 4.2. Given integers 2 ≤ r

C(i1−r,0) C(i1−r,j2) · · · C(i1−r,jm)

 C(i2−r,0) C(i2−r,j2) · · · C(i2−r,jm)  Cm = . . . ,  . . · · · .    C C · · · C .  (im−r,0) (im−r,j2) (im−r,jm)  such that r C(is−r,0) = (−1) d(is,ℓ)d(ℓ,e), e<ℓY∈I C = (−1)r+js′ a a d d , (is−r,js′ ) is ℓ (is,ℓ) (ℓ,e) e<ℓY∈Ij s′ 8 SAJAD SALAMI

′ r where I = {1, 2, · · · , r} and Ijs′ = I\{js l}. Extracting (−1) e<ℓ∈I d(ℓ,e) r+js′ ′ and (−1) e<ℓ∈Ij aℓd(ℓ,e) from first and s -th columns,Q respectively, s′ Q ′ and then ℓ∈I d(is,ℓ) from s-th row for 1 ≤ s

e<ℓY∈I Yt=2 e<ℓY∈Ijt sY=1 Yℓ∈I a a 1 i1 · · · i1 d(i ,j ) d(i ,jm) a1 2 a1 1 i2 · · · i2 d(i ,j ) d(i ,j ) × 2 2 2 m , . . . . . · · · . aim aim 1 d · · · d (im,j2) (im,jm) ′ where r = mr + j2 + · · · + jm and the above is nonzer by Propositions 3.2. Otherwise, if suppose that 1 ≤ j1 < j2 < · · · < jm, then extracting the r+js′ ′ factor (−1) ais e<ℓ∈I aℓd(ℓ,e) from s -th column, and then ℓ∈I d(is,ℓ) js′ Q ′ Q from s-th row of the matrix Cm = [Cis−r,js′ ], where 1 ≤ s,s ≤ m, gives that m r′′ |Cm| = (−1) aℓd(ℓ,e)d(is,ℓ)

s,tY=1 e<ℓY∈Ijt 1 1 · · · 1 d(i1,j1) d(i1,j2) d(i1,jm) 1 1 · · · 1 d(i ,j ) d(i ,j ) d(i ,jm) × 2 1 2 2 2 , . . . . · · · . . 1 1 1 d d · · · d (im,j1) (im,j2) (im,jm) ′′ where r = mr + j1 + · · · + jm and the last determinant is nonzero by Propositions 2.1. This completes the proof of the proposition.  Now we are ready to prove the main theorem 1.1, using the above results. n Proof. For integers 2 ≤ r

References [1] Hilbert D. Ein betrag zur theoreie des Legendre’schen polynoms. Acta Mathematica, Vol. 18, 155-159, (1894). ON SPECIAL MATRICES RELATED TO CAUCHY AND TOEPLITZ MATRICES 9

[2] Choi M-D. Tricks or Treats with the Hilbert Matrix. Amer. Math. Month., Vol. 90, No. 5, 301-312, 1983. [3] Li HSUAN-CHU On Calculating the Determinants of Toeplitz Matrices. Journal of Applied Mathematics and Bioinformatics, Vol. 1, No. 1, 55-64 (2011). [4] Cauchy AL. M´emorie sur les fonctions altern´ees et sur les somme altern´ees. Exercises d Analyse et de Phys. Math., Vol. II, 151-159, (1841). [5] P´olya G, Szego G. Zweiter Band. Springer, Berlin, Vol., (1925). [6] Salami S. Rational points on a certain family of complete intersection varieties. Under Preparation (2019). [7] Lang S. Number Theory III: Survey of Diophantine Geometry. Encyclopaedia of Mathematical Sciences, Springer, Berlin, Vol. 60, (1991). [8] Sloane N.J.A. The On-Line Encyclopedia of Integer Sequences. http://oeis.org. Se- quence A005249. [9] Davis PH.J. Interpolation and approximation. Dover Publication Inc., New-Yourk (NY) (1975). [10] Fiedle M. Notes on Hilbert and Cauchy matrices, and its Applications, Vol. 432, 351-356, (2010). [11] Rietsch K. Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Amer. Math. Soc., Vol. 16, no. 2. 2003. p. 363-392. [12] Englis M. Toeplitz operators and group representations. J. Fourier Anal. Appl., Vol. 13, no. 3, 243-265, (2007). [13] Euler R. Characterizing bipartite Toeplitz graphs. Theoret. Comput. Sci., Vol. 263, no. 1-2, 47-58, (2001). [14] Bunger F. Inverse, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entrie. Linear Algebra and its Applications, Vol. 459, 595-619, (2014). [15] Ye KE, Lim LH. Every Matrix is a Product of Toeplitz Matrices. Found. Comput. Math., Vol. 16, no. 1-2, 577-598, (2016).

(Sajad Salami) Inst´ıtuto da Matematica´ e Estat´ıstica, Universidade Estadual do Rio do Janeiro, Brazil E-mail address, Sajad Salami: [email protected] URL: https://sites.google.com/a/ime.uerj.br/sajadsalami/