A Kernel Theory of Modern Data Augmentation

Total Page:16

File Type:pdf, Size:1020Kb

A Kernel Theory of Modern Data Augmentation A Kernel Theory of Modern Data Augmentation Tri Dao 1 Albert Gu 1 Alexander J. Ratner 1 Virginia Smith 2 Christopher De Sa 3 Christopher Re´ 1 Abstract as regularizer to make the resulting model more robust, and Data augmentation, a technique in which a train- provide resources to data-hungry deep learning models. As ing set is expanded with class-preserving transfor- a testament to its growing importance, the technique has mations, is ubiquitous in modern machine learn- been used to achieve nearly all state-of-the-art results in ing pipelines. In this paper, we seek to establish a image recognition (Cires¸an et al., 2010; Dosovitskiy et al., theoretical framework for understanding data aug- 2016; Graham, 2014; Sajjadi et al., 2016), and is becoming mentation. We approach this from two directions: a staple in many other areas as well (Uhlich et al., 2017; Lu First, we provide a general model of augmentation et al., 2006). Learning augmentation policies alone can also as a Markov process, and show that kernels appear boost the state-of-the-art performance in image classifica- naturally with respect to this model, even when tion tasks (Ratner et al., 2017; Cubuk et al., 2018). we do not employ kernel classification. Next, we analyze more directly the effect of augmentation Despite its ubiquity and importance to the learning process, on kernel classifiers, showing that data augmen- data augmentation is typically performed in an ad-hoc man- tation can be approximated by first-order feature ner with little understanding of the underlying theoretical averaging and second-order variance regulariza- principles. In the field of deep learning, for example, data tion components. These frameworks both serve augmentation is commonly understood to act as a regularizer to illustrate the ways in which data augmenta- by increasing the number of data points and constraining the tion affects the downstream learning model, and model (Goodfellow et al., 2016; Zhang et al., 2017). How- the resulting analyses provide novel connections ever, even for simpler models, it is not well-understood how between prior work in invariant kernels, tangent training on augmented data affects the learning process, the propagation, and robust optimization. Finally, parameters, and the decision surface of the resulting model. we provide several proof-of-concept applications This is exacerbated by the fact that data augmentation is showing that our theory can be useful for accel- performed in diverse ways in modern machine learning erating machine learning workflows, such as re- pipelines, for different tasks and domains, thus precluding ducing the amount of computation needed to train a general model of transformation. Our results show that using augmented data, and predicting the utility regularization is only part of the story. of a transformation prior to training. In this paper, we aim to develop a theoretical understand- ing of data augmentation. First, in Section3, we analyze 1. Introduction data augmentation as a Markov process, in which augmenta- The process of augmenting a training dataset with synthetic tion is performed via a random sequence of transformations. examples has become a critical step in modern machine This formulation closely matches how augmentation is often learning pipelines. The aim of data augmentation is to applied in practice. Surprisingly, we show that performing k- artificially create new training data by applying transfor- nearest neighbors with this model asymptotically results in mations, such as rotations or crops for images, to input a kernel classifier, where the kernel is a function of the base data while preserving the class labels. This practice has augmentations. These results demonstrate that kernels ap- many potential benefits: Data augmentation can encode pear naturally with respect to data augmentation, regardless prior knowledge about data or task-specific invariances, act of the base model, and illustrate the effect of augmentation on the learned representation of the original data. 1Department of Computer Science, Stanford University, Cali- fornia, USA 2Department of Electrical and Computer Engineering, Motivated by the connection between data augmentation Carnegie Mellon University, Pennsylvania, USA 3Department of and kernels, in Section4 we show that a kernel classifier on Computer Science, Cornell University, New York, USA. Corre- augmented data approximately decomposes into two com- spondence to: Tri Dao <[email protected]>. ponents: (i) an averaged version of the transformed features, Proceedings of the 36 th International Conference on Machine and (ii) a data-dependent variance regularization term. This Learning, Long Beach, California, PMLR 97, 2019. Copyright suggests a more nuanced explanation of data augmentation— 2019 by the author(s). namely, that it improves generalization both by inducing A Kernel Theory of Modern Data Augmentation invariance and by reducing model complexity. We vali- effectively applied for kernel methods and deep learning date the quality of our approximation empirically, and draw architectures (Section5), which we show can be used to connections to other generalization-improving techniques, reduce training computation and diagnose the effectiveness including recent work in invariant learning (Zhao et al., of various transformations. 2017; Mroueh et al., 2015; Raj et al., 2017) and robust optimization (Namkoong & Duchi, 2017). Prior theory also does not capture the complex process by which data augmentation is often applied. For example, Finally, in Section5, to illustrate the utility of our theoreti- previous work (Bishop, 1995; Chapelle et al., 2001) shows cal understanding of augmentation, we explore promising that adding noise to input data has the effect of regularizing practical applications, including: (i) developing a diagnos- the model, but these effects have yet to be explored for more tic to determine, prior to training, the importance of an commonly applied complex transformations, and it is not augmentation; (ii) reducing training costs for kernel meth- well-understood how the inductive bias embedded in com- ods by allowing for augmentations to be applied directly to plex transformations manifest themselves in the invariance features—rather than the raw data—via a random Fourier of the model (addressed here in Section4). A common features approach; and (iii) suggesting a heuristic for train- recipe in achieving state-of-the-art accuracy in image clas- ing neural networks to reduce computation while realizing sification is to apply a sequence of more complex transfor- most of the accuracy gain from augmentation. mations such as crops, flips, or local affine transformations to the training data, with parameters drawn randomly from hand-tuned ranges (Cires¸an et al., 2010; Dosovitskiy et al., 2. Related Work 2014). Similar strategies have also been employed in appli- Data augmentation has long played an important role in ma- cations of classification for audio (Uhlich et al., 2017) and chine learning. For many years it has been used, for example, text (Lu et al., 2006). In Section3, we analyze a motivating in the form of jittering and virtual examples in the neural model reaffirming the connection between augmentation network and kernel methods literatures (Sietsma & Dow, and kernel methods, even in the setting of complex and 1991; Scholkopf¨ et al., 1996; Decoste & Scholkopf¨ , 2002). composed transformations. These methods aim to augment or modify the raw training data so that the learned model will be invariant to known Finally, while data augmentation has been well-studied in transformations or perturbations. Given its importance, re- the kernels literature (Burges, 1999; Scholkopf¨ et al., 1996; cent efforts have been made to apply data augmentation Muandet et al., 2012), it is typically explored in the con- more efficiently, for example with subsampling (Kuchnik text of simple geometrical invariances with closed forms. & Smith, 2019). There has also been significant work in For example, van der Wilk et al.(2018) use Gaussian pro- incorporating invariance directly into the model or training cesses to learn these invariances from data by maximizing procedure, rather than by expanding the training set (van der the marginal likelihood. Further, the connection is often Wilk et al., 2018; Tai et al., 2019). One illustrative example approached in the opposite direction—by looking for ker- is that of tangent propagation for neural networks (Simard nels that satisfy certain invariance properties (Haasdonk & et al., 1992; 1998), which proposes a regularization penalty Burkhardt, 2007; Teo et al., 2008). We instead approach the to enforce local invariance, and has been extended in several connection directly via data augmentation, and show that recent works (Rifai et al., 2011; Demyanov et al., 2015; even complicated augmentation procedures akin to those Zhao et al., 2017). However, while efforts have been made used in practice can be represented as a kernel method. that loosely connect traditional data augmentation with these methods (Leen, 1995; Zhao et al., 2017), there has not been a rigorous study on how these sets of procedures relate in 3. Data Augmentation as a Kernel the context of modern models and transformations. To begin our study of data augmentation, we propose and in- vestigate a model of augmentation as a Markov process, In this work, we make explicit the connection between aug- inspired by the general manner in which the process is mentation and modifications to the model,
Recommended publications
  • Improving Sequence-To-Sequence Speech Recognition Training with On-The-Fly Data Augmentation
    IMPROVING SEQUENCE-TO-SEQUENCE SPEECH RECOGNITION TRAINING WITH ON-THE-FLY DATA AUGMENTATION Thai-Son Nguyen1, Sebastian Stuker¨ 1, Jan Niehues2, Alex Waibel1 1 Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology 2Department of Data Science and Knowledge Engineering (DKE), Maastricht University ABSTRACT tation method together with a long training schedule to reduce overfitting, they have achieved a large gain in performance su- Sequence-to-Sequence (S2S) models recently started to show perior to many modifications in network architecture. state-of-the-art performance for automatic speech recognition To date, there have been different sequence-to-sequence (ASR). With these large and deep models overfitting remains encoder-decoder models [12, 13] reporting superior perfor- the largest problem, outweighing performance improvements mance over the HMM hybrid models on standard ASR bench- that can be obtained from better architectures. One solution marks. While [12] uses Long Short-Term Memory (LSTM) to the overfitting problem is increasing the amount of avail- networks, for both encoder and decoder, [13] employs self- able training data and the variety exhibited by the training attention layers to construct the whole S2S network. data with the help of data augmentation. In this paper we ex- In this paper, we investigate three on-the-fly data aug- amine the influence of three data augmentation methods on mentation methods for S2S speech recognition, two of which the performance of two S2S model architectures. One of the are proposed in this work and the last was recently discov- data augmentation method comes from literature, while two ered [12]. We contrast and analyze both LSTM-based and other methods are our own development – a time perturbation self-attention S2S models that were trained with the proposed in the frequency domain and sub-sequence sampling.
    [Show full text]
  • A Group-Theoretic Framework for Data Augmentation
    A Group-Theoretic Framework for Data Augmentation Shuxiao Chen Edgar Dobriban Department of Statistics Department of Statistics University of Pennsylvania University of Pennsylvania [email protected] [email protected] Jane H. Lee Department of Computer Science University of Pennsylvania [email protected] Abstract Data augmentation has become an important part of modern deep learning pipelines and is typically needed to achieve state of the art performance for many learning tasks. It utilizes invariant transformations of the data, such as rotation, scale, and color shift, and the transformed images are added to the training set. However, these transformations are often chosen heuristically and a clear theoretical framework to explain the performance benefits of data augmentation is not available. In this paper, we develop such a framework to explain data augmentation as averaging over the orbits of the group that keeps the data distribution approximately invariant, and show that it leads to variance reduction. We study finite-sample and asymptotic empirical risk minimization and work out as examples the variance reduction in certain two-layer neural networks. We further propose a strategy to exploit the benefits of data augmentation for general learning tasks. 1 Introduction Many deep learning models succeed by exploiting symmetry in data. Convolutional neural networks (CNNs) use that image identity is roughly invariant to translations: a translated cat is still a cat. Such invariances are present in many domains, including image and language data. Standard architectures are invariant to some, but not all transforms. CNNs induce an approximate equivariance to translations, but not to rotations. This is an inductive bias of CNNs, and the idea dates back at least to the neocognitron [30].
    [Show full text]
  • Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
    sensors Article Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism Kyutae Kim and Jongpil Jeong * Department of Smart Factory Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: By monitoring a hydraulic system using artificial intelligence, we can detect anomalous data in a manufacturing workshop. In addition, by analyzing the anomalous data, we can diagnose faults and prevent failures. However, artificial intelligence, especially deep learning, needs to learn much data, and it is often difficult to get enough data at the real manufacturing site. In this paper, we apply augmentation to increase the amount of data. In addition, we propose real-time monitoring based on a deep-learning model that uses convergence of a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), and an attention mechanism. CNN extracts features from input data, and BiLSTM learns feature information. The learned information is then fed to the sigmoid classifier to find out if it is normal or abnormal. Experimental results show that the proposed model works better than other deep-learning models, such as CNN or long short-term memory (LSTM). Keywords: hydraulic system; CNN; bidirectional LSTM; attention mechanism; classification; data augmentation 1. Introduction Mechanical fault diagnosis and condition monitoring using artificial intelligence technology are an significant part of the smart factory and fourth industrial revolution [1]. In recent decades, condition monitoring of hydraulic systems has become increasingly important in industry, energy and mobile hydraulic applications as a significant part of the condition-based maintenance strategy, which can reduce machine downtime and maintenance costs and significantly improve planning for the security of the production process.
    [Show full text]
  • Data Augmentation and Feature Selection for Automatic Model Recommendation in Computational Physics
    Mathematical and Computational Applications Article Data Augmentation and Feature Selection for Automatic Model Recommendation in Computational Physics Thomas Daniel 1,2,* , Fabien Casenave 1 , Nissrine Akkari 1 and David Ryckelynck 2 1 SafranTech, Rue des Jeunes Bois, Châteaufort, 78114 Magny-les-Hameaux, France; [email protected] (F.C.); [email protected] (N.A.) 2 Centre des matériaux (CMAT), MINES ParisTech, PSL University, CNRS UMR 7633, BP 87, 91003 Evry, France; [email protected] * Correspondence: [email protected] Abstract: Classification algorithms have recently found applications in computational physics for the selection of numerical methods or models adapted to the environment and the state of the physical system. For such classification tasks, labeled training data come from numerical simulations and generally correspond to physical fields discretized on a mesh. Three challenging difficulties arise: the lack of training data, their high dimensionality, and the non-applicability of common data augmentation techniques to physics data. This article introduces two algorithms to address these issues: one for dimensionality reduction via feature selection, and one for data augmentation. These algorithms are combined with a wide variety of classifiers for their evaluation. When combined with a stacking ensemble made of six multilayer perceptrons and a ridge logistic regression, they enable reaching an accuracy of 90% on our classification problem for nonlinear structural mechanics. Keywords: machine learning; classification; automatic model recommendation; feature selection; data augmentation; numerical simulations Citation: Daniel, T.; Casenave, F.; Akkari, N.; Ryckelynck, D. Data Augmentation and Feature Selection 1. Introduction for Automatic Model Classification problems can be encountered in various disciplines such as handwritten Recommendation in Computational text recognition [1], document classification [2], and computer-aided diagnosis in the Physics.
    [Show full text]
  • Generative Adversarial Networks to Improve the Robustness of Visual Defect Segmentation by Semantic Networks in Manufacturing Components
    applied sciences Article Generative Adversarial Networks to Improve the Robustness of Visual Defect Segmentation by Semantic Networks in Manufacturing Components Fátima A. Saiz 1,2,* , Garazi Alfaro 1, Iñigo Barandiaran 1 and Manuel Graña 2 1 Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia, 20009 San Sebastián, Spain; [email protected] (G.A.); [email protected] (I.B.) 2 Computational Intelligence Group, Computer Science Faculty, University of the Basque Country, UPV/EHU, 20018 San Sebastián, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 Citation: Saiz, F.A.; Alfaro, G.; with the DiffAugment method, followed by a conventional data augmentation over the entire Barandiaran, I.; Graña, M. Generative enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Adversarial Networks to Improve the Network.
    [Show full text]
  • Posture Recognition Using Ensemble Deep Models Under Various Home Environments
    applied sciences Article Posture Recognition Using Ensemble Deep Models under Various Home Environments Yeong-Hyeon Byeon 1, Jae-Yeon Lee 2, Do-Hyung Kim 2 and Keun-Chang Kwak 1,* 1 Department of Control and Instrumentation Engineering, Chosun University, Gwangju 61452, Korea; [email protected] 2 Intelligent Robotics Research Division, Electronics Telecommunications Research Institute, Daejeon 61452, Korea; [email protected] (J.-Y.L.); [email protected] (D.-H.K.) * Correspondence: [email protected]; Tel.: +82-062-230-6086 Received: 26 December 2019; Accepted: 11 February 2020; Published: 14 February 2020 Abstract: This paper is concerned with posture recognition using ensemble convolutional neural networks (CNNs) in home environments. With the increasing number of elderly people living alone at home, posture recognition is very important for helping elderly people cope with sudden danger. Traditionally, to recognize posture, it was necessary to obtain the coordinates of the body points, depth, frame information of video, and so on. In conventional machine learning, there is a limitation in recognizing posture directly using only an image. However, with advancements in the latest deep learning, it is possible to achieve good performance in posture recognition using only an image. Thus, we performed experiments based on VGGNet, ResNet, DenseNet, InceptionResNet, and Xception as pre-trained CNNs using five types of preprocessing. On the basis of these deep learning methods, we finally present the ensemble deep model combined by majority and average methods. The experiments were performed by a posture database constructed at the Electronics and Telecommunications Research Institute (ETRI), Korea. This database consists of 51,000 images with 10 postures from 51 home environments.
    [Show full text]
  • Automatic Relational Data Augmentation for Machine Learning
    ARDA: Automatic Relational Data Augmentation for Machine Learning Nadiia Chepurko1, Ryan Marcus1, Emanuel Zgraggen1, Raul Castro Fernandez2, Tim Kraska1, David Karger1 1MIT CSAIL 2University of Chicago fnadiia, ryanmarcus, emzg, kraska, [email protected] [email protected] ABSTRACT try to find the best model and tune hyper-parameters, but Automatic machine learning (AML) is a family of techniques also perform automatic feature engineering. In their current to automate the process of training predictive models, aim- form, AML tools can outperform experts [36] and can help to ing to both improve performance and make machine learn- make ML more accessible to a broader range of users [28,41]. ing more accessible. While many recent works have focused However, what if the original dataset provided by the user on aspects of the machine learning pipeline like model se- does not contain enough signal (predictive features) to cre- lection, hyperparameter tuning, and feature selection, rela- ate an accurate model? For instance, consider a user who tively few works have focused on automatic data augmen- wants to use the publicly-available NYC taxi dataset [24] to tation. Automatic data augmentation involves finding new build a forecasting model for taxi ride durations. Suppose features relevant to the user's predictive task with minimal the dataset contains trip information over the last five years, \human-in-the-loop" involvement. including license plate numbers, pickup locations, destina- We present ARDA, an end-to-end system that takes as tions, and pickup times. A model built only on this data input a dataset and a data repository, and outputs an aug- may not be very accurate because there are other major ex- mented data set such that training a predictive model on this ternal factors that impact the duration of a taxi ride.
    [Show full text]
  • Data Augmentation Schemes for Deep Learning in an Indoor Positioning Application
    electronics Article Data Augmentation Schemes for Deep Learning in an Indoor Positioning Application Rashmi Sharan Sinha 1, Sang-Moon Lee 2, Minjoong Rim 1 and Seung-Hoon Hwang 1,* 1 Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; [email protected] (R.S.S.); [email protected] (M.R.) 2 JMP Systems Co., Ltd, Gyeonggi-do 12930, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2260-3994 Received: 25 April 2019; Accepted: 13 May 2019; Published: 17 May 2019 Abstract: In this paper, we propose two data augmentation schemes for deep learning architecture that can be used to directly estimate user location in an indoor environment using mobile phone tracking and electronic fingerprints based on reference points and access points. Using a pretrained model, the deep learning approach can significantly reduce data collection time, while the runtime is also significantly reduced. Numerical results indicate that an augmented training database containing seven days’ worth of measurements is sufficient to generate acceptable performance using a pretrained model. Experimental results find that the proposed augmentation schemes can achieve a test accuracy of 89.73% and an average location error that is as low as 2.54 m. Therefore, the proposed schemes demonstrate the feasibility of data augmentation using a deep neural network (DNN)-based indoor localization system that lowers the complexity required for use on mobile devices. Keywords: augmentation; deep learning; CNN; indoor positioning; fingerprint 1. Introduction Identifying the location of a mobile user is an important challenge in pervasive computing because their location provides a lot of information about the user with which adaptive computer systems can be created.
    [Show full text]
  • Augmenting Image Classifiers Using Data Augmentation Generative
    Augmenting Image Classifiers using Data Augmentation Generative Adversarial Networks Antreas Antoniou1, Amos Storkey1, and Harrison Edwards1;2 1 University of Edinburgh, Edinburgh, UK {a.antoniou,a.storkey,h.l.edwards}@sms.ed.ac.uk https://www.ed.ac.uk/ 2 Open AI https://openai.com/ Abstract. Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt net- works generalise poorly. Data Augmentation alleviates this by using ex- isting data more effectively, but standard data augmentation produces only limited plausible alternative data. Given the potential to generate a much broader set of augmentations, we design and train a generative model to do data augmentation. The model, based on image conditional Generative Adversarial Networks, uses data from a source domain and learns to take a data item and augment it by generating other within- class data items. As this generative process does not depend on the classes themselves, it can be applied to novel unseen classes. We demon- strate that a Data Augmentation Generative Adversarial Network (DA- GAN) augments classifiers well on Omniglot, EMNIST and VGG-Face. 1 Introduction Over the last decade Deep Neural Networks have enabled unprecedented perfor- mance on a number of tasks. They have been demonstrated in many domains [12] including image classification [25, 17, 16, 18, 21], machine translation [44], natu- ral language processing [12], speech recognition [19], and synthesis [42], learning from human play [6] and reinforcement learning [27, 35, 10, 40, 13] among others. In all cases, very large datasets have been utilized, or in the case of reinforce- ment learning, extensive play.
    [Show full text]
  • GAN-Based Image Data Augmentation
    GAN-Based Image Data Augmentation Stanford CS229 Final Project: Computer Vision David Liu Nathan Hu Department of Mathematics Department of Computer Science Stanford University Stanford University [email protected] [email protected] Abstract Generative adversarial networks (GANs) are powerful generative models that have lead to break- throughs in image generation. In this project, we investigate the use of GANs in generating synthetic data from the MNIST dataset to either augment or replace the original data when training classifiers. We demonstrate that training classifiers on purely synthetic data achieves comparable results to those trained solely on pure data and show that for small sets of training data, augmenting the dataset by first training GANs on the data can lead to dramatic improvement in classifier performance. We also begin to explore using GAN-generated data to recursively train other GANs. 1 Introduction and Related Work Decribed by Yann LeCun, Director of AI Research at Facebook AI, as "the most interesting idea in the last 10 years in Machine Learning", Generative Adversarial Networks (GANs) are powerful generative models which reformulate the task of learning a data distribution as an adversarial game. A fundamental bottleneck in machine learning is data availability, and a variety of techniques are used to augment datasets to create more training data. As powerful gen- erative models, GANs are good candidates for data augmentation. In recent years, there has been some development in exploring the use of GANs in generating synthetic data for data augmentation given limited or imbalanced datasets [1]. Aside from augmenting real data, there are scenarios in which one may wish to directly substitute real data with synthetic data ––for example, when people provide images in a medical context, having a GAN as the "middle man" would grant confidentiality to parties providing the original data.
    [Show full text]
  • Image-Based Perceptual Learning Algorithm for Autonomous Driving
    Image-based Perceptual Learning Algorithm for Autonomous Driving DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yunming Shao, M.S. Graduate Program in Geodetic Science The Ohio State University 2017 Dissertation Committee: Dr. Dorota A. Grejner-Brzezinska, Advisor Dr. Charles Toth, Co-advisor Dr. Alper Yilmaz Dr. Rongjun Qin Copyrighted by Yunming Shao 2017 Abstract Autonomous driving is widely acknowledged as a promising solution to modern traffic problems such as congestions and accidents. It is a complicated system including sub-modules such as perception, path planning and control etc. During the last few years, the research and experiment have transferred from the academic to the industrial sector. Different sensor configurations exist depending on the manufactories, but an imaging components is exclusively used by every company. In this dissertation, we mainly focus on innovating and improving the camera perception algorithms using the deep learning algorithms. In addition, we propose an end-to-end control approach which can map the image pixels directly to control commands. This dissertation contributes in the development of autonomous driving in the three following aspects: Firstly, a novel dynamic objects detection architecture using still images is proposed. Our dynamic detection architecture utilizes the Convolution Neural Network (CNN) with end-to-end training approach. In our model, we consider multiple requirements for dynamic object detection in autonomous driving in addition to accuracy, such as inference speed, model size, and energy consumption. These are crucial to the deployment of a detector in a real autonomous vehicle.
    [Show full text]
  • Empirical Evaluation of Variational Autoencoders for Data Augmentation
    Empirical Evaluation of Variational Autoencoders for Data Augmentation Javier Jorge, Jesus´ Vieco, Roberto Paredes, Joan Andreu Sanchez and Jose´ Miguel Bened´ı Departamento de Sistemas Informaticos´ y Computacion,´ Universitat Politecnica` de Valencia,` Valencia, Spain Keywords: Generative Models, Data Augmentation, Variational Autoencoder. Abstract: Since the beginning of Neural Networks, different mechanisms have been required to provide a sufficient number of examples to avoid overfitting. Data augmentation, the most common one, is focused on the gen- eration of new instances performing different distortions in the real samples. Usually, these transformations are problem-dependent, and they result in a synthetic set of, likely, unseen examples. In this work, we have studied a generative model, based on the paradigm of encoder-decoder, that works directly in the data space, that is, with images. This model encodes the input in a latent space where different transformations will be applied. After completing this, we can reconstruct the latent vectors to get new samples. We have analysed various procedures according to the distortions that we could carry out, as well as the effectiveness of this process to improve the accuracy of different classification systems. To do this, we could use both the latent space and the original space after reconstructing the altered version of these vectors. Our results have shown that using this pipeline (encoding-altering-decoding) helps the generalisation of the classifiers that have been selected. 1 INTRODUCTION which others could harm the model’s generalisation. Currently, one of the most critical issues is finding a Several of the successful applications of machine way of making the most of the tons of instances that learning techniques are based on the amount of data are unlabeled and, using just a few labelled examples, available nowadays, such as millions of images, days being able to obtain useful classifiers.
    [Show full text]