Whales of Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
42. Aboriginal Whaling and Identity in the Twenty-First Century
42. Aboriginal Whaling and Identity in the Twenty-First Century 16286 - The Visual narratives and the depiction of whaling in north European prehistory over the long dure Presentation type: Oral presentation Author(s): Janik, Liliana (Dept of Archaeology and Anthropology, University of Cambridge, Cambridge, United Arab / Ver.Arab.) The tradition of whaling can be traced far back into the ancient history of early societies in northern Europe, even though most of the communities involved in whaling are long disappeared. The heritage of these societies, however, is not forgotten and can be seen in the images carved into rock surfaces thousands of years ago. This presentation introduces some exceptional examples of this rock art featuring whaling from the estuary of the River Vig, which flows into the White Sea in northern Russia. These carvings were made between about 5,500 and 3,000 years ago. This rock art has been the focus of a major international research project over the past decade, lead by the University of Cambridge. Our research has examined how the visual narratives of whaling changed over time, and raises questions about techniques of whaling, who participated in the act of whale hunting, and the nature of the stories being told, pecked into the rock surfaces by prehistoric carvers. The paper presents an analysis of a series of individual compositions that demonstrate the form of communication between the carver and the viewer, a form of communication which we can understand as a series of as intentional acts that can still be deciphered today, and that give us a glimpse into the ancient past. -
Toothed Vs. Baleen Whales Monday
SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES MONDAY Their classifications help to give you the answer, so what do you think the most obvious difference is in a toothed whale versus a baleen whale? Your clues are in the close-up photos, below! PHOTO: TASLI SHAW PHOTO: CINDY HANSEN Answer: The most obvious difference between a toothed whale and a baleen whale is the way that they feed and what’s inside their mouth. Toothed whales (including all dolphins and porpoises) have teeth, like we do, and they actively hunt fish, squid, and other sea creatures. Their teeth help them capture, bite, and tear their food into smaller pieces before swallowing. Baleen whales have several hundred plates that hang from their upper jaw, instead of teeth. These plates are made of keratin, the same substance as our hair and fingernails, and are used to filter food from the water or the sediment. Once the food has been trapped in the baleen plates, the whales will use their massive tongues to scrape the food off and swallow it. SPOT THE DIFFERENCE: TOOTHED VS. BALEEN WHALES TUESDAY The photos provided show specific prey types for resident orcas and for the gray whales that stop to feed in Saratoga Passage in the spring. Besides being two different species, what is another difference between these prey types? Who eats what and what makes you think that? Answer: The photos show Chinook salmon and ghost shrimp. Other than being two different species, their main difference is size! A toothed whale, like a resident orca, uses their teeth to capture, bite, and tear Chinook salmon into smaller pieces to be shared with other orcas in their family. -
Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth. -
Fishery Oceanographic Study on the Baleen Whaling Grounds
FISHERY OCEANOGRAPHIC STUDY ON THE BALEEN WHALING GROUNDS KEIJI NASU INTRODUCTION A Fishery oceanographic study of the whaling grounds seeks to find the factors control ling the abundance of whales in the waters and in general has been a subject of interest to whalers. In the previous paper (Nasu 1963), the author discussed the oceanography and baleen whaling grounds in the subarctic Pacific Ocean. In this paper, the oceanographic environment of the baleen whaling grounds in the coastal region ofJapan, subarctic Pacific Ocean, and Antarctic Ocean are discussed. J apa nese oceanographic observations in the whaling grounds mainly have been carried on by the whaling factory ships and whale making research boats using bathyther mographs and reversing thermomenters. Most observations were made at surface. From the results of the biological studies on the whaling grounds by Marr ( 1956, 1962) and Nemoto (1959) the author presumed that the feeding depth is less than about 50 m. Therefore, this study was made mainly on the oceanographic environ ment of the surface layer of the whaling grounds. In the coastal region of Japan Uda (1953, 1954) plotted the maps of annual whaling grounds for each 10 days and analyzed the relation between the whaling grounds and the hydrographic condition based on data of the daily whaling reports during 1910-1951. A study of the subarctic Pacific Ocean whaling grounds in relation to meteorological and oceanographic conditions was made by U da and Nasu (1956) and Nasu (1957, 1960, 1963). Nemoto (1957, 1959) also had reported in detail on the subject from the point of the food of baleen whales and the ecology of plankton. -
PDF of Manuscript and Figures
The triple origin of whales DAVID PETERS Independent Researcher 311 Collinsville Avenue, Collinsville, IL 62234, USA [email protected] 314-323-7776 July 13, 2018 RH: PETERS—TRIPLE ORIGIN OF WHALES Keywords: Cetacea, Mysticeti, Odontoceti, Phylogenetic analyis ABSTRACT—Workers presume the traditional whale clade, Cetacea, is monophyletic when they support a hypothesis of relationships for baleen whales (Mysticeti) rooted on stem members of the toothed whale clade (Odontoceti). Here a wider gamut phylogenetic analysis recovers Archaeoceti + Odontoceti far apart from Mysticeti and right whales apart from other mysticetes. The three whale clades had semi-aquatic ancestors with four limbs. The clade Odontoceti arises from a lineage that includes archaeocetids, pakicetids, tenrecs, elephant shrews and anagalids: all predators. The clade Mysticeti arises from a lineage that includes desmostylians, anthracobunids, cambaytheres, hippos and mesonychids: none predators. Right whales are derived from a sister to Desmostylus. Other mysticetes arise from a sister to the RBCM specimen attributed to Behemotops. Basal mysticetes include Caperea (for right whales) and Miocaperea (for all other mysticetes). Cetotheres are not related to aetiocetids. Whales and hippos are not related to artiodactyls. Rather the artiodactyl-type ankle found in basal archaeocetes is also found in the tenrec/odontocete clade. Former mesonychids, Sinonyx and Andrewsarchus, nest close to tenrecs. These are novel observations and hypotheses of mammal interrelationships based on morphology and a wide gamut taxon list that includes relevant taxa that prior studies ignored. Here some taxa are tested together for the first time, so they nest together for the first time. INTRODUCTION Marx and Fordyce (2015) reported the genesis of the baleen whale clade (Mysticeti) extended back to Zygorhiza, Physeter and other toothed whales (Archaeoceti + Odontoceti). -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
Whale Evolution Lab – Page 1
Whale Evolution Lab – Page 1 Whale Evolution Lab Adapted from http://www.indiana.edu/~ensiweb PRELAB (recommended)… FROM LAND TO WATER: A Whale Evolution Internet Activity http://www.indiana.edu/~ensiweb/lessons/whalekiosk.html Click on “SCREEN” to “Find Out More” A. Anatomy B. Fossil record C. Molecular evidence A. WHALE ANATOMY 1. What does the Latin word “cetus” mean? 2. What three groups of organisms are considered cetaceans? 3. What are the two subgroups of cetaceans? 4. What characterizes the subgroup Odontoceti? 5. What characterizes the subgroup Mysticeti? 6. Follow the instructions given to compare anatomical parts. Click on the labels to compare the whale’s anatomy with that of a fish and a cat. Fill out the chart below with your answers to each structure, by placing an “X” under the organism whose structure is more similar to the whale’s. Structure FISH CAT Structure FISH CAT Ears Forelimb Eyes Jaw Lungs Mammary gland 7. According to the anatomical evidence, which organism is more closely related to a whale…fish or cat? 8. Draw and label the cladogram that you created for the whale, fish, and cat below. 9. What is the relationship between whales and cats? B. FOSSIL RECORD 1. What is a fossil? 2. What are the most likely parts to become fossilized? 3. What are trace fossils? List some examples. 4. What is a coprolite? 5. What fossilized anatomical structure can be useful to anatomists? 6. Compare the fossil teeth of whales to the other organisms on the website. What sort of organism has fossil teeth most similar to whale teeth? 7. -
Contested Meanings and Narratives Surrounding Animal Advocacy
Wars of Images and Representations 211 WARS OF IMAGES AND REPRESENTATIONS: CONTESTED MEANINGS AND NARRATIVES SURROUNDING ANIMAL ADVOCACY Brian M. Lowe Introduction: Advocacy and Conflict The Sea Shepherd Conservation Society (SSCS), created in 1977 by Paul Watson (a co-founder of the environmental group Greenpeace), has pur- sued a strategy of direct action—non-violent engagements including phys- ical interference and obstruction—in a variety of campaigns on behalf of oceanic nonhuman animals, especially marine mammals such as whales and seals. The recent campaigns of the Sea Shepherd Conservation Society in the waters surrounding Antarctica (what Hiroshi Hatanaka, the director general of Japan’s Institute of Cetacean Research termed “the Southern Ocean”)1 (have gained public attention in the United States primarily through information (on websites and press releases) circulated through the Sea Shepherd Conservation Society and through the Animal Planet television series Whale Wars (which completed broadcasting its fifth season in August 2012). This television series features the SSCS deploying ocean-going vessels, (named after publicly recognized animal advocates including Farley Mowat, Steve Irwin, and Cleveland Armory, in order to challenge commercial whaling. As noted by Heller in his 2007 account of being aboard the Farley Mowat, Watson succinctly summarizes the Sea Shepherd strategy as “sink ships, but don’t break laws.” The Sea Shepherd Conservation Society legitimizes its actions through appeals to international law and the scientific community in order to convince broad audiences that their actions are defending both marine life and the legal statutes against callous disregard and indifference towards law. Watson justifies the Sea Shepherd’s actions: that commercial whal- ing—especially in international oceanic sanctuaries—is illegal, and there- fore actions undertaken to disrupt such hunts are legally sanctioned. -
NORTH ATLANTIC RIGHT WHALE Scientific Name: Eubalaena
Common Name: NORTH ATLANTIC RIGHT WHALE Scientific Name: Eubalaena glacialis Müeller Other Commonly Used Names: Northern right whale, right whale Previously Used Names: Balaena glacialis Family: Balaenidae Rarity Ranks: G1/S1 State Legal Status: Endangered Federal Legal Status: Endangered Description: North Atlantic right whales are robust baleen whales weighing as much as 63 metric tons (70 U.S. tons) and growing upwards of 15 meters (50 feet) in length. Newborn calves are approximately 4 meters (13 feet) long at birth. Distinctive characteristics include a strongly arched lower jaw, no dorsal fin, a V-shaped blow when the whale surfaces to breathe, large white patches on the head (callosities), paddle-shaped flippers, and a large head that may exceed one fourth of total body length. Most right whales are uniformly black, but some individuals have areas of white pigmentation on the belly. Two rows of black baleen plates up to 2.5 meters (8 feet) in length grow from the roof of the mouth . Each baleen plate is fringed with fine hair-like structures that enable the whales to filter plankton from the surrounding water. Right whale callosities are areas of raised, jagged skin located near the whale’s blowhole, eyes, rostrum, lip- line, and chin. The callosities are black in color but appear white because they are colonized by populations of white amphipod crustaceans called cyamids or “whale lice.” Each right whale has a unique callosity pattern, enabling scientists to distinguish individuals. Similar Species: Three species of right whales inhabit the world’s temperate oceans: the North Atlantic right whale, the North Pacific right whale (Eubalaena japonica), and the southern right whale (E. -
Thomas Jefferson Meg Tooth
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 30 Number 3 September 2015 Thomas Jefferson Meg Tooth Features Thomas Jefferson Meg The catalogue number Review; Walking is: ANSP 959 Whales Inside The tooth came from Ricehope Estate, Snaggletooth Shark Cooper River, Exhibit South Carolina. Tiktaalik Clavatulidae In 1806, it was Juvenile Bald Eagle originally collected or Sculpting Whale Shark owned by Dr. William Moroccan Fossils Reid. Prints in the Sahara Volunteer Outing to Miocene-Pliocene National Geographic coastal plain sediments. Dolphins in the Chesapeake Sloth Tooth Found SharkFest Shark Iconography in Pre-Columbian Panama Hippo Skulls CT- Scanned Squalus sp. Teeth Sperm Whale Teeth On a recent trip to the Academy of Natural Sciences of Drexel University (Philadelphia), Collections Manager Ned Gilmore gave John Nance and me a behind -the-scenes highlights tour. Among the fossils that belonged to Thomas☼ Jefferson (left; American Founding Father, principal author of the Declaration of Independence, and third President of the United States) was this Carcharocles megalodon tooth. Jefferson’s interests and knowledge were encyclopedic; a delight to know that they included paleontology. Hand by J. Nance. Photo by S. Godfrey. Jefferson portrait from: http://www.biography.com/people/thomas-jefferson-9353715 ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora September 2015 Book Review: The Walking 41 million years ago and has worldwide distribution. It was fully aquatic, although it did have residual Whales hind limbs. In later chapters, Professor Thewissen George F. Klein discusses limb development and various genetic factors that make whales, whales. This is a The full title of this book is The Walking complicated topic, but I found these chapters very Whales — From Land to Water in Eight Million clear and readable. -
Chlorinated Organic Contaminants in Blubber Biopsies from Northwestern Atlantic Balaenopterid Whales Summering in the Gulf of St Lawrence
Marine Environmental Research, Vol. 44, No. 2, pp. 201-223, 1997 0 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain PII: SOl41-1136(97)00004-4 0141-1136/97 $17.00+0.00 Chlorinated Organic Contaminants in Blubber Biopsies from Northwestern Atlantic Balaenopterid Whales Summering in the Gulf of St Lawrence J. M. Gauthier,a* C. D. Metcalfe” & R. Sear@ “Environmental and Resources Studies, Trent University, Peterborough, Ontario, Canada K9J 7B8 bMingan Island Cetacean Study (MICS), 285 Green, St. Lambert, Quebec, Canada J4P IT3 (Received 16 May 1996; revised version received 16 December 1996; accepted 29 December 1996. Published June 1997) ABSTRACT Concentrations and patterns of chlorinated biphenyls (CBS) and other persistent organochlorine compounds (OCs) were determined from small blubber biopsy samples collected from northwestern Atlantic minke (Balaenoptera acuros- trata) , fin (Balaenoptera physalus), blue (Balaenoptera musculus) , and humpback (Megaptera novaeangliae) whales summering in the Gurf of St. Lawrence, Quebec. Concentrations of CPCB (sum of 19 congeners) in biopsy samples ranged from 0.2-10 pg g-’ lipid, and congeners 52, 101, 118, 153, 138 and 180 accounted for 79% of CPCB. Mean concentration of the sum of non- ortho CB congeners in selected biopsy samples was 2 ng g-t lipid, and relative concentrations of these analytes were: 77 > 126 > 81> 169. Concentrations of XDDT ranged from 0.613 pg g-t lipid, and the average proportion of DDE to CDDT was 72%. All other organochlorine analytes were present at concentra- tions below 2 pg g-t lipid. On average, cis-nonachlor, trans-nonachlor and oxy- chlordane accounted for 27, 26 and 23%, respectively, of the chlordane-related analytes, and cl-hexachlorocyclohexane (HCH) comprised 67% of XHCH. -
First Report of Gray Whale (Eschrichtius Robustus , Lilljeborg
Turkish Journal of Zoology Turk J Zool (2017) 41: 951-954 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1609-50 First report of gray whale (Eschrichtius robustus, Lilljeborg, 1861) conjoined twin calves in the Eastern Pacific Ocean 1 1,2 3 1, Elena TAMBURIN , Erica CARONE , Irma GONZALEZ-LOPEZ , Felipe GALVAN-MAGAÑA * 1 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico 2 Shoreline Soc. Coop. AREA Science Park, Trieste, Italy 3 Comisión Nacional de Áreas Naturales Protegidas, La Paz, Baja California Sur, Mexico Received: 26.09.2016 Accepted/Published Online: 04.05.2017 Final Version: 28.09.2017 Abstract: In January 2014, gray whale (Eschrichtius robustus) conjoined twin calves were found dead in Laguna Ojo de Liebre (Scammon’s Lagoon), Baja California Sur, Mexico. The thoracopagus (united ventrally at the chest) individuals were conjoined in the thorax region, sharing the navel and genital area, but with two distinct heads and flukes. Although observed in humans and domestic animals, this case is rare among cetaceans. Some conjoined twin cetacean fetuses have previously been reported; however, this is the first report of the congenital anomaly in Eschrichtius robustus. Key words: Gray whale, twin calves, malformation, Baja California Sur, Mexico Twins become conjoined during the earliest stages Cases of conjoined twin cetaceans are very rare. The of development when the embryo is in the morula or earliest report dates to 1917, when parapagus newborn blastocyst stage (Kaufman, 2004). The etiology of conjoined female bottlenose dolphins (Tursiops truncatus) were twins remains enigmatic; however, three hypotheses reported in the Netherlands (Kompanje, 2005).