587 a NOTE on SPECIAL MATRICES Roselin Antony1 Habtu Alemayehu
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
18.06 Linear Algebra, Problem Set 2 Solutions
18.06 Problem Set 2 Solution Total: 100 points Section 2.5. Problem 24: Use Gauss-Jordan elimination on [U I] to find the upper triangular −1 U : 2 3 2 3 2 3 1 a b 1 0 0 −1 4 5 4 5 4 5 UU = I 0 1 c x1 x2 x3 = 0 1 0 : 0 0 1 0 0 1 −1 Solution (4 points): Row reduce [U I] to get [I U ] as follows (here Ri stands for the ith row): 2 3 2 3 1 a b 1 0 0 (R1 = R1 − aR2) 1 0 b − ac 1 −a 0 4 5 4 5 0 1 c 0 1 0 −! (R2 = R2 − cR2) 0 1 0 0 1 −c 0 0 1 0 0 1 0 0 1 0 0 1 ( ) 2 3 R1 = R1 − (b − ac)R3 1 0 0 1 −a ac − b −! 40 1 0 0 1 −c 5 : 0 0 1 0 0 1 Section 2.5. Problem 40: (Recommended) A is a 4 by 4 matrix with 1's on the diagonal and −1 −a; −b; −c on the diagonal above. Find A for this bidiagonal matrix. −1 Solution (12 points): Row reduce [A I] to get [I A ] as follows (here Ri stands for the ith row): 2 3 1 −a 0 0 1 0 0 0 6 7 60 1 −b 0 0 1 0 07 4 5 0 0 1 −c 0 0 1 0 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + aR2) 1 0 −ab 0 1 a 0 0 6 7 (R2 = R2 + bR2) 60 1 0 −bc 0 1 b 07 −! 4 5 (R3 = R3 + cR4) 0 0 1 0 0 0 1 c 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + abR3) 1 0 0 0 1 a ab abc (R = R + bcR ) 60 1 0 0 0 1 b bc 7 −! 2 2 4 6 7 : 40 0 1 0 0 0 1 c 5 0 0 0 1 0 0 0 1 Alternatively, write A = I − N. -
[Math.RA] 19 Jun 2003 Two Linear Transformations Each Tridiagonal with Respect to an Eigenbasis of the Ot
Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array∗ Paul Terwilliger Abstract Let K denote a field. Let d denote a nonnegative integer and consider a sequence ∗ K p = (θi,θi , i = 0...d; ϕj , φj, j = 1...d) consisting of scalars taken from . We call p ∗ ∗ a parameter array whenever: (PA1) θi 6= θj, θi 6= θj if i 6= j, (0 ≤ i, j ≤ d); (PA2) i−1 θh−θd−h ∗ ∗ ϕi 6= 0, φi 6= 0 (1 ≤ i ≤ d); (PA3) ϕi = φ1 + (θ − θ )(θi−1 − θ ) h=0 θ0−θd i 0 d i−1 θh−θd−h ∗ ∗ (1 ≤ i ≤ d); (PA4) φi = ϕ1 + (Pθ − θ )(θd−i+1 − θ0) (1 ≤ i ≤ d); h=0 θ0−θd i 0 −1 ∗ ∗ ∗ ∗ −1 (PA5) (θi−2 − θi+1)(θi−1 − θi) P, (θi−2 − θi+1)(θi−1 − θi ) are equal and independent of i for 2 ≤ i ≤ d − 1. In [13] we showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1, PA2. Let ∗ ∗ A, B, A ,B denote the matrices in Matd+1(K) which have entries Aii = θi, Bii = θd−i, ∗ ∗ ∗ ∗ ∗ ∗ Aii = θi , Bii = θi (0 ≤ i ≤ d), Ai,i−1 = 1, Bi,i−1 = 1, Ai−1,i = ϕi, Bi−1,i = φi (1 ≤ i ≤ d), and all other entries 0. We show the following are equivalent: (i) p satisfies −1 PA3–PA5; (ii) there exists an invertible G ∈ Matd+1(K) such that G AG = B and G−1A∗G = B∗; (iii) for 0 ≤ i ≤ d the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θ0)(λ − θ1) · · · (λ − θn−1)(θi − θ0)(θi − θ1) · · · (θi − θn−1) ϕ1ϕ2 · · · ϕ nX=0 n is a scalar multiple of the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θd)(λ − θd−1) · · · (λ − θd−n+1)(θ − θ )(θ − θ ) · · · (θ − θ ) i 0 i 1 i n−1 . -
Periodic Staircase Matrices and Generalized Cluster Structures
PERIODIC STAIRCASE MATRICES AND GENERALIZED CLUSTER STRUCTURES MISHA GEKHTMAN, MICHAEL SHAPIRO, AND ALEK VAINSHTEIN Abstract. As is well-known, cluster transformations in cluster structures of geometric type are often modeled on determinant identities, such as short Pl¨ucker relations, Desnanot–Jacobi identities and their generalizations. We present a construction that plays a similar role in a description of general- ized cluster transformations and discuss its applications to generalized clus- ter structures in GLn compatible with a certain subclass of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GLn, and in spaces of periodic difference operators. 1. Introduction Since the discovery of cluster algebras in [4], many important algebraic varieties were shown to support a cluster structure in a sense that the coordinate rings of such variety is isomorphic to a cluster algebra or an upper cluster algebra. Lie theory and representation theory turned out to be a particularly rich source of varieties of this sort including but in no way limited to such examples as Grassmannians [5, 18], double Bruhat cells [1] and strata in flag varieties [15]. In all these examples, cluster transformations that connect distinguished coordinate charts within a ring of regular functions are modeled on three-term relations such as short Pl¨ucker relations, Desnanot–Jacobi identities and their Lie-theoretic generalizations of the kind considered in [3]. This remains true even in the case of exotic cluster structures on GLn considered in [8, 10] where cluster transformations can be obtained by applying Desnanot–Jacobi type identities to certain structured matrices of a size far exceeding n. -
Arxiv:Math/0010243V1
FOUR SHORT STORIES ABOUT TOEPLITZ MATRIX CALCULATIONS THOMAS STROHMER∗ Abstract. The stories told in this paper are dealing with the solution of finite, infinite, and biinfinite Toeplitz-type systems. A crucial role plays the off-diagonal decay behavior of Toeplitz matrices and their inverses. Classical results of Gelfand et al. on commutative Banach algebras yield a general characterization of this decay behavior. We then derive estimates for the approximate solution of (bi)infinite Toeplitz systems by the finite section method, showing that the approximation rate depends only on the decay of the entries of the Toeplitz matrix and its condition number. Furthermore, we give error estimates for the solution of doubly infinite convolution systems by finite circulant systems. Finally, some quantitative results on the construction of preconditioners via circulant embedding are derived, which allow to provide a theoretical explanation for numerical observations made by some researchers in connection with deconvolution problems. Key words. Toeplitz matrix, Laurent operator, decay of inverse matrix, preconditioner, circu- lant matrix, finite section method. AMS subject classifications. 65T10, 42A10, 65D10, 65F10 0. Introduction. Toeplitz-type equations arise in many applications in mathe- matics, signal processing, communications engineering, and statistics. The excellent surveys [4, 17] describe a number of applications and contain a vast list of references. The stories told in this paper are dealing with the (approximate) solution of biinfinite, infinite, and finite hermitian positive definite Toeplitz-type systems. We pay special attention to Toeplitz-type systems with certain decay properties in the sense that the entries of the matrix enjoy a certain decay rate off the diagonal. -
Some Aspects of the Optimization Over the Copositive and the Completely Positive Cone
Some aspects of the optimization over the copositive and the completely positive cone Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Dem Fachbereich IV der Universit¨at Trier vorgelegt von Julia Witzel Trier, 2013 Eingereicht am 17.07.2013 Gutachter: Prof. Dr. Mirjam Dur¨ Prof. Dr. Gabriele Eichfelder Tag der mundlichen¨ Prufung:¨ 25.09.2013 Die Autorin hat im Laufe des Promotionsverfahrens geheiratet und hieß zu dessen Beginn Julia Sponsel. Zusammenfassung Optimierungsprobleme tauchen in vielen praktischen Anwendungsbereichen auf. Zu den einfachsten Problemen geh¨oren lineare Optimierungsprobleme. Oft reichen lineare Probleme allerdings zur Modellierung praktischer Anwendun- gen nicht aus, sondern es muss die Ganzzahligkeit von Variablen gefordert werden oder es tauchen nichtlineare Nebenbedingungen oder eine nichtlineare Zielfunktion auf. Eine wichtige Problemklasse stellen hierbei quadratische Pro- bleme dar, welche im Allgemeinen aber schwer zu l¨osen sind. Ein Ansatz, der sich in den letzten Jahren entwickelt und verbreitet hat, besteht in der Umfor- mulierung quadratischer Probleme in sogenannte kopositive Programme. Ko- positive Programme sind lineare Optimierungsprobleme uber¨ dem Kegel der kopositiven Matrizen n×n T T n Cn = fA 2 R : A = A ; x Ax ≥ 0 fur¨ alle x 2 R ; x ≥ 0g; oder dem Dualkegel, dem Kegel der vollst¨andig positiven Matrizen m ∗ n X T n o Cn = xixi : xi 2 R ; xi ≥ 0 fur¨ alle i = 1; : : : ; m : i=1 Die Schwierigkeit dieser Probleme liegt in der Kegelbedingung. Aber nicht nur das Optimieren uber¨ diesen Kegeln ist schwierig. Wie von Murty und Kabadi (1987) und Dickinson und Gijben (2013) gezeigt ist es NP-schwer zu testen, ob eine gegebene Matrix kopositiv oder vollst¨andig positiv ist. -
Lecture 13: Simple Linear Regression in Matrix Format
11:55 Wednesday 14th October, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 13: Simple Linear Regression in Matrix Format 36-401, Section B, Fall 2015 13 October 2015 Contents 1 Least Squares in Matrix Form 2 1.1 The Basic Matrices . .2 1.2 Mean Squared Error . .3 1.3 Minimizing the MSE . .4 2 Fitted Values and Residuals 5 2.1 Residuals . .7 2.2 Expectations and Covariances . .7 3 Sampling Distribution of Estimators 8 4 Derivatives with Respect to Vectors 9 4.1 Second Derivatives . 11 4.2 Maxima and Minima . 11 5 Expectations and Variances with Vectors and Matrices 12 6 Further Reading 13 1 2 So far, we have not used any notions, or notation, that goes beyond basic algebra and calculus (and probability). This has forced us to do a fair amount of book-keeping, as it were by hand. This is just about tolerable for the simple linear model, with one predictor variable. It will get intolerable if we have multiple predictor variables. Fortunately, a little application of linear algebra will let us abstract away from a lot of the book-keeping details, and make multiple linear regression hardly more complicated than the simple version1. These notes will not remind you of how matrix algebra works. However, they will review some results about calculus with matrices, and about expectations and variances with vectors and matrices. Throughout, bold-faced letters will denote matrices, as a as opposed to a scalar a. 1 Least Squares in Matrix Form Our data consists of n paired observations of the predictor variable X and the response variable Y , i.e., (x1; y1);::: (xn; yn). -
Introducing the Game Design Matrix: a Step-By-Step Process for Creating Serious Games
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games Aaron J. Pendleton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Game Design Commons, and the Instructional Media Design Commons Recommended Citation Pendleton, Aaron J., "Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games" (2020). Theses and Dissertations. 4347. https://scholar.afit.edu/etd/4347 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING SERIOUS GAMES THESIS Aaron J. Pendleton, Captain, USAF AFIT-ENG-MS-20-M-054 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-20-M-054 INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING LEARNING OBJECTIVE BASED SERIOUS GAMES THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Cyberspace Operations Aaron J. -
Chapter Four Determinants
Chapter Four Determinants In the first chapter of this book we considered linear systems and we picked out the special case of systems with the same number of equations as unknowns, those of the form T~x = ~b where T is a square matrix. We noted a distinction between two classes of T ’s. While such systems may have a unique solution or no solutions or infinitely many solutions, if a particular T is associated with a unique solution in any system, such as the homogeneous system ~b = ~0, then T is associated with a unique solution for every ~b. We call such a matrix of coefficients ‘nonsingular’. The other kind of T , where every linear system for which it is the matrix of coefficients has either no solution or infinitely many solutions, we call ‘singular’. Through the second and third chapters the value of this distinction has been a theme. For instance, we now know that nonsingularity of an n£n matrix T is equivalent to each of these: ² a system T~x = ~b has a solution, and that solution is unique; ² Gauss-Jordan reduction of T yields an identity matrix; ² the rows of T form a linearly independent set; ² the columns of T form a basis for Rn; ² any map that T represents is an isomorphism; ² an inverse matrix T ¡1 exists. So when we look at a particular square matrix, the question of whether it is nonsingular is one of the first things that we ask. This chapter develops a formula to determine this. (Since we will restrict the discussion to square matrices, in this chapter we will usually simply say ‘matrix’ in place of ‘square matrix’.) More precisely, we will develop infinitely many formulas, one for 1£1 ma- trices, one for 2£2 matrices, etc. -
A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices
Appl. Math. Inf. Sci. 9, No. 2L, 319-324 (2015) 319 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/092L06 A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices Waldemar Hołubowski1, Dariusz Kurzyk1,∗ and Tomasz Trawi´nski2 1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, Gliwice 44–100, Poland 2 Mechatronics Division, Silesian University of Technology, Akademicka 10a, Gliwice 44–100, Poland Received: 6 Jul. 2014, Revised: 7 Oct. 2014, Accepted: 8 Oct. 2014 Published online: 1 Apr. 2015 Abstract: We propose an effective method to find the inverse of symmetric block arrowhead matrices which often appear in areas of applied science and engineering such as head-positioning systems of hard disk drives or kinematic chains of industrial robots. Block arrowhead matrices can be considered as generalisation of arrowhead matrices occurring in physical problems and engineering. The proposed method is based on LDLT decomposition and we show that the inversion of the large block arrowhead matrices can be more effective when one uses our method. Numerical results are presented in the examples. Keywords: matrix inversion, block arrowhead matrices, LDLT decomposition, mechatronic systems 1 Introduction thermal and many others. Considered subsystems are highly differentiated, hence formulation of uniform and simple mathematical model describing their static and A square matrix which has entries equal zero except for dynamic states becomes problematic. The process of its main diagonal, a one row and a column, is called the preparing a proper mathematical model is often based on arrowhead matrix. Wide area of applications causes that the formulation of the equations associated with this type of matrices is popular subject of research related Lagrangian formalism [9], which is a convenient way to with mathematics, physics or engineering, such as describe the equations of mechanical, electromechanical computing spectral decomposition [1], solving inverse and other components. -
2014 CBK Linear Algebra Honors.Pdf
PETERS TOWNSHIP SCHOOL DISTRICT CORE BODY OF KNOWLEDGE LINEAR ALGEBRA HONORS GRADE 12 For each of the sections that follow, students may be required to analyze, recall, explain, interpret, apply, or evaluate the particular concept being taught. Course Description This college level mathematics course will cover linear algebra and matrix theory emphasizing topics useful in other disciplines such as physics and engineering. Key topics include solving systems of equations, evaluating vector spaces, performing linear transformations and matrix representations. Linear Algebra Honors is designed for the extremely capable student who has completed one year of calculus. Systems of Linear Equations Categorize a linear equation in n variables Formulate a parametric representation of solution set Assess a system of linear equations to determine if it is consistent or inconsistent Apply concepts to use back-substitution and Guassian elimination to solve a system of linear equations Investigate the size of a matrix and write an augmented or coefficient matrix from a system of linear equations Apply concepts to use matrices and Guass-Jordan elimination to solve a system of linear equations Solve a homogenous system of linear equations Design, setup and solve a system of equations to fit a polynomial function to a set of data points Design, set up and solve a system of equations to represent a network Matrices Categorize matrices as equal Construct a sum matrix Construct a product matrix Assess two matrices as compatible Apply matrix multiplication -
MATRIX OPERATORS and the KLEIN FOUR GROUP Ginés R Pérez Teruel
Palestine Journal of Mathematics Vol. 9(1)(2020) , 402–410 © Palestine Polytechnic University-PPU 2020 MATRIX OPERATORS AND THE KLEIN FOUR GROUP Ginés R Pérez Teruel Communicated by José Luis López Bonilla MSC 2010 Classifications: Primary 15B99,15A24; Secondary 20K99. Keywords and phrases: Klein Four Group; Per-symmetric Matrices; Matrix Algebra. I am in debt to C. Caravello for useful comments and suggestions. Abstract. In this note we show that the set of operators, S = fI; T; P; T ◦ P g that consists of the identity I, the usual transpose T , the per-transpose P and their product T ◦ P , forms a Klein Four-Group with the composition. With the introduced framework, we study in detail the properties of bisymmetric, centrosymmetric matrices and other algebraic structures, and we provide new definitions and results concerning these structures. In particular, we show that the per-tansposition allows to define a degenerate inner product of vectors, a cross product and a dyadic product of vectors with some interesting properties. In the last part of the work, we provide another realization of the Klein Group involving the tensorial product of some 2 × 2 matrices. 1 Introduction and background n×m Definition 1.1. Let A 2 R . If A = [aij] for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, then P (A) is the per-transpose of A, and operation defined by P [aij] = [am−j+1;n−i+1] (1.1) Consequently, P (A) 2 Rm×n. Here, we list some properties: (i) P ◦ P (A) = A (ii) P (A ± B) = P (A) ± P (B) if A, B 2 Rn×m (iii) P (αA) = αP (A) if α 2 R (iv) P (AB) = P (B)P (A) if A 2 Rm×n, B 2 Rn×p (v) P ◦ T (A) = T ◦ P (A) where T (A) is the transpose of A (vi) det(P (A)) = det(A) (vii) P (A)−1 = P (A−1) if det(A) =6 0 The proofs of these properties follow directly from the definition. -
Codes and Modules Associated with Designs and T-Uniform Hypergraphs Richard M
Codes and modules associated with designs and t-uniform hypergraphs Richard M. Wilson California Institute of Technology (1) Smith and diagonal form (2) Solutions of linear equations in integers (3) Square incidence matrices (4) A chain of codes (5) Self-dual codes; Witt’s theorem (6) Symmetric and quasi-symmetric designs (7) The matrices of t-subsets versus k-subsets, or t-uniform hy- pergaphs (8) Null designs (trades) (9) A diagonal form for Nt (10) A zero-sum Ramsey-type problem (11) Diagonal forms for matrices arising from simple graphs 1. Smith and diagonal form Given an r by m integer matrix A, there exist unimodular matrices E and F ,ofordersr and m,sothatEAF = D where D is an r by m diagonal matrix. Here ‘diagonal’ means that the (i, j)-entry of D is 0 unless i = j; but D is not necessarily square. We call any matrix D that arises in this way a diagonal form for A. As a simple example, ⎛ ⎞ 0 −13 10 314⎜ ⎟ 100 ⎝1 −1 −1⎠ = . 21 4 −27 050 01−2 The matrix on the right is a diagonal form for the middle matrix on the left. Let the diagonal entries of D be d1,d2,d3,.... ⎛ ⎞ 20 0 ··· ⎜ ⎟ ⎜0240 ···⎟ ⎜ ⎟ ⎝0 0 120 ···⎠ . ... If all diagonal entries di are nonnegative and di divides di+1 for i =1, 2,...,thenD is called the integer Smith normal form of A, or simply the Smith form of A, and the integers di are called the invariant factors,ortheelementary divisors of A.TheSmith form is unique; the unimodular matrices E and F are not.