The Epigenetic Basis of Twin Discordance in Age-Related Diseases

Total Page:16

File Type:pdf, Size:1020Kb

The Epigenetic Basis of Twin Discordance in Age-Related Diseases 0031-3998/07/6105-0038R PEDIATRIC RESEARCH Vol. 61, No. 5, Pt 2, 2007 Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A. The Epigenetic Basis of Twin Discordance in Age-Related Diseases PERNILLE POULSEN, MANEL ESTELLER, ALLAN VAAG, AND MARIO F. FRAGA Steno Diabetes Center [P.P., A.V.], 2820 Gentofte, Denmark; Epigenetics Laboratory [M.E., M.F.F.], Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain ABSTRACT: Monozygotic twins share the same genotype because have reported significantly lower concordance rates, which is they are derived from the same zygote. However, monozygotic twin considered evidence of a genetic component in the etiology of siblings frequently present many phenotypic differences, such as their Type 2 diabetes. Despite the indication that there is some susceptibility to disease and a wide range of anthropomorphic fea- genetic control, no fully penetrant genes have been identified tures. Recent studies suggest that phenotypic discordance between that in itself fully explains the common form of type 2 diabetes. monozygotic twins is at least to some extent due to epigenetic factors However, some studies have demonstrated associations between that change over the lifetime of a multicellular organism. It has been proposed that epigenetic drift during development can be stochastic various metabolic defects underlying the development of type 2 or determined by environmental factors. In reality, a combination of diabetes and polymorphisms in several susceptibility genes, such the two causes prevails in most cases. Acute environmental factors as PPAR␥ (6), PGC-1 (7), and, most recently, TCF7L2 (8). A are directly associated with epigenetic-dependent disease pheno- fully penetrant dominant disorder would result in 100% and 50% types, as demonstrated by the increased CpG-island promoter hyper- concordance in MZ and DZ twins, respectively (9). Incomplete methylation of tumor suppressor genes in the normal oral mucosa of concordance (Ͻ100%) between MZ twins, even in studies of smokers. Since monozygotic twins are genetically identical they are highly selected subjects, indicates the additional influence of considered ideal experimental models for studying the role of envi- environmental factors. Accordingly, in our study, half of the ronmental factors as determinants of complex diseases and pheno- affected MZ twin pairs were discordant for type 2 diabetes, types. (Pediatr Res 61: 38R–42R, 2007) providing further evidence that the DNA sequence alone cannot explain susceptibility to the disease (1). MZ TWINS IN THE STUDY OF AGE-RELATED NON-MENDELIAN DISEASES ENVIRONMENTAL FACTORS UNDERLYING TWIN DISCORDANCE Twin studies have been used extensively in medical re- search and are instrumental in estimating the relative impor- The cause of phenotypic discordance in MZ twins has tance of genetic versus nongenetic components in the etiology traditionally been attributed to postnatal environmental factors of human disease. The rationale underlying classical twin unique to the individual siblings of the pair (i.e. nonshared studies is the assumption that MZ twins are genetically iden- environment). Nevertheless, there is increasing evidence that tical, whereas DZ twins on average share 50% of their segre- MZ co-twins may differ due to postzygotic genetic, epigenetic, gating genes, and are as genetically different or similar as are and prenatal environmental factors, hence challenging the ordinary siblings. Similarity in MZ and DZ twin pairs can be assumption of genetic or epigenetic similarity that underlies established by means of concordance rates (for dichotomous the classical twin model. Genetic differences between MZ variables) and interclass correlation coefficients (for continu- co-twins arising from point mutations and chromosomal ab- ous variables). Phenotypes exhibiting a greater degree of normalities are rare and have only been seldom reported. similarity in MZ than in DZ twin pairs (i.e. greater concor- Epigenetic differences include skewed X-chromosome inacti- dance or interclass correlation coefficients) are traditionally vation in female twin pairs and loss of imprinting (10–12). considered to have a genetic etiological component. More recently, research has revealed different epigenetic mod- Common age-related complex non-Mendelian diseases ifications in autosomal genes in MZ twins (13–15). Our recent such as type 2 diabetes (1), Alzheimer’s disease (2), and investigation of global and locus-specific differences in DNA various cancers, including that of the breast (3) and prostate methylation and histone acetylation in young and elderly MZ (4), are all significantly heritable. For example, we, and others, twins showed that young MZ twin pairs are essentially indis- have previously reported concordance rates of type 2 diabetes tinguishable in their epigenetic markings, whereas elderly MZ of 50–92% among MZ twins (1,5). Most studies of DZ twins twin pairs have substantial variations in several tissues (16). The degree of discordance in epigenetic pattern was related to Received November 1, 2006; accepted November 11, 2006. environmental differences (i.e. arising from lifestyle and time Correspondence: Mario F. Fraga, Ph.D., Epigenetics Laboratory, Spanish National spent together) between twins. Moreover, differences in gene Cancer Centre (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain; E-mail: [email protected] DOI: 10.1203/pdr.0b013e31803c7b98 Abbreviations: DZ, dizygotic; MZ, monozygotic 38R EPIGENETICS IN AGE-RELATED DISEASES 39R expression in the elder twin pairs were four times greater than sequence, and, unlike the static DNA sequence, display consid- those observed in the younger twin pairs (16). These findings erably plasticity. are of major importance for understanding the results of There is increasing evidence of epigenetic modulation oc- classical twin heritability and concordance analyses and high- curring early in life in response to environmental factors (26). light a potential mechanism by which environmental factors Studies of intrauterine-growth-retarded rats have demon- can regulate gene expression. Although the study design could strated that an adverse intrauterine environment is associated not distinguish whether differences in epigenetic modifications with an epigenetically induced down-regulation of key genes within twin pairs are related to disease discordance, the notion regulating ␤-cell development, differentiation and function of age-accumulating epigenetic modifications offers an attrac- (27). In addition, an adverse uterine environment induced by tive explanation for disease discordance, difference in age of maternal dietary protein restriction (28) or uteroplacental in- onset, and severity of disease between pairs of twins. sufficiency (29) has demonstrated gene-specific changes in Numerous epidemiologic and metabolic studies of various methylation state and hence gene expression levels in the liver populations throughout the world have yielded compelling and kidney in the offspring. Interestingly, maternal behavior evidence for an association between an adverse fetal environ- can change the epigenomic state of a gene in the offspring. ment and the development of glucose intolerance and associ- Weaver et al. (30) demonstrated that increased pup-licking, ated defects of glucose metabolism in adulthood (17–19). It grooming, and arched-back nursing changed the epigenome at has been hypothesized that a common genotype may result in the glucocorticoid receptor gene in the hippocampus, resulting low birth weight as well as disease in later life (20), and in greater expression of the glucocorticoid receptor and an several studies investigating the impact of birth weight on improved response to stress in adult offspring. Furthermore, adult disease were unable to adjust for genetic factors. MZ these molecular and phenotypic changes were shown to be twins who are discordant for disease are an excellent example reversible upon central infusion of the histone deacetylase of how genetically identical individuals can exhibit differences inhibitor trichostatin A. Hence, epigenetic modifications are and represent a unique model for studying the contribution believed to occur during prenatal and postnatal life, either due and role of environmental factors in disease development. to stochastic events or external environmental factors, and Using this design, we have demonstrated significantly lower thus to be obvious candidate molecular mechanisms for phe- birth weights in twins with type 2 diabetes compared with notypic variation. It is not currently known whether epigenetic their nondiabetic, genetically identical co-twins. Accordingly, modifications may regulate gene expression in humans who we have verified that the influence of birth weight is indepen- have been exposed to an adverse environment, whether such dent of genotype and other confounding variables, such as changes may be present throughout the entire life span or gestational age, maternal age, nutrition and height, sex, and whether prenatal operating factors may influence the rate of birth order in relation to other siblings (21). In addition, we the age related changes. have recently demonstrated a nongenetic association between birth weight and several pathophysiological mechanisms (e.g. MOLECULAR BASIS OF TWIN DISCORDANCE impaired insulin secretion and action) underlying the devel- opment of type 2 diabetes in elderly MZ twins (22,23). The interaction between environmental factors and pheno- The influence
Recommended publications
  • The Mysteries of Metastasis Researchers Investigate the Epigenetics Behind Cancer Metastasis Using the Humanmethylation450 Beadchip and the Hiseq® System
    October 2015 The Mysteries of Metastasis Researchers investigate the epigenetics behind cancer metastasis using the HumanMethylation450 BeadChip and the HiSeq® System. Introduction Q: What types of questions is your lab trying to answer? ME: The aim of our laboratory is to map the main epigenetic There is a mystery to the process of metastasis, the insidious spread differences between normal cells and disease-associated cells. We of cancer cells from a primary tumor to other parts of the body. Why focus on cancer, neurogenetic, and cardiovascular disorders. With do some cancers travel, while others remain contained to the original cancer, we are interested in DNA methylation. We have focused on tumor? Take melanoma for example. Although it is the least common identifying all the genes that are methylated in cancer cells and have type of skin cancer, it is one of the most feared because of its ability to learned that they can behave like tumor suppressors. metastasize quickly and easily throughout the body. The mystery of metastasis is an important one to solve. Metastatic Q: What do we know about the role of methylation in cancer can change a patient’s treatment plan and prognosis radically. cancer development? Individuals with metastases undergo treatments that are longer, more ME: It’s clear that the genome is important in cancer, however we now invasive, and more expensive, and are much less likely to survive realize that there aren’t as many cancer mutations as we once thought their disease. there would be. In fact, there are many tumors with a very low number of mutational events.
    [Show full text]
  • Genetic Specificity of Linguistic Heritability
    Genetic Specificity of Linguistic Heritability Karin Stromswold Rutgers University – New Brunswick TWIN STUDIES OF LANGUAGE* The logic of twin studies The most common method used to study the role of genetic factors in development is to determine whether monozygotic (MZ) cotwins are linguistically more similar to one another than dizygotic (DZ) cotwins. Because MZ and DZ cotwins share essentially the same pre- and postnatal environment, whereas MZ cotwins share 100% of their DNA and DZ cotwins share only 50% of their DNA, if MZ cotwins are linguistically more similar than DZ cotwins, this suggests that genetic factors play a role in language. If, on the other hand, MZ cotwins are no more similar to one another than DZ cotwins, this suggests that genetic factors play a negligible role for language. Putting aside the possibility of interactions and correlations between genetic and environmental factors, the variation in linguistic abilities in a population (the phenotypic variance) is due to genetic variance plus environmental variance. Heritability is a measure of the proportion of the phenotypic variance that is due to genetic variance. In twin studies, environmental factors that * Portions of this work were supported by grants from the Bamford-Lahey Children’s Foundation, the Busch Biomedical Research Foundation, the National Science Foundation (BCS-9875168, BCS-0042561, BCS-0124095), and an unrestricted research grant from Rutgers University. I thank participants at the Max Planck Institute in Nijmegen’s Four Corners Psycholinguistic Workshop for their helpful comments and suggestions. 2 KARIN STROMSWOLD may contribute to phenotypic variance are divided into those environmental factors that co-twins do and do not share.
    [Show full text]
  • Distribution and Concordance of N-Acetyltransferase Genotype and Phenotype in an American Population1
    Vol. 8, 683–692, August 1999 Cancer Epidemiology, Biomarkers & Prevention 683 Distribution and Concordance of N-Acetyltransferase Genotype and Phenotype in an American Population1 Myron Gross,2 Teresa Kruisselbrink, Kristin Anderson, genotype and allele distribution but exhibited overall Nicholas Lang, Paul McGovern, Robert Delongchamp, similarity with other Caucasian-American populations. and Fred Kadlubar School of Public Health, Division of Epidemiology, University of Minnesota, Minneapolis, Minnesota 55454 [M. G., K. A., P. M.]; Mayo Clinic, Rochester, Introduction Minnesota 55905 [T. K.]; Department of Surgery, University of Arkansas Several well-known drug-metabolizing enzymes catalyze the Medical Sciences, Little Rock, Arkansas 72205 [N. L.]; Department of activation and detoxification of xenobiotics (1) and are classi- Surgery, John L. McClellan Veterans Affairs Hospital, Little Rock, Arkansas 72205 [N. L.]; and Division of Molecular Epidemiology, National Center for fied as phase I or II enzymes, respectively. Members of the Toxicological Research, Jefferson, Arkansas 72079 [R. D., F. K.] phase I category include cytochrome P450-related enzymes and epoxide hydrolases. Phase II enzymes are N-acetyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases, and sulfotransferases. The absolute and relative amounts of phase I Abstract and II enzyme activities differ between individuals and affect Polymorphic arylamine N-acetyltransferase 2 (NAT2) biological responses to xenobiotic exposure (2). Several ad- status varies
    [Show full text]
  • Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information Towards Precision Medicine
    cancers Review Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine Maria Panagopoulou 1,*, Manel Esteller 2,3,4,5 and Ekaterini Chatzaki 1,6 1 Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace (DUTH), 68100 Alexandroupolis, Greece; [email protected] 2 Josep Carreras Leukemia Research Institute (IJC), Badalona, 08016 Barcelona, Spain; [email protected] 3 Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain 4 Institucio Catalana de Recerca I Estudis Avancats (ICREA), 08016 Barcelona, Spain 5 Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08016 Barcelona, Spain 6 Institute of Agri-Food and Life Sciences Agro-Health, Hellenic Mediterranean University, 71003 Crete, Greece * Correspondence: [email protected]; Tel.: +30-694-248-5045 Simple Summary: Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Citation: Panagopoulou, M.; Esteller, M.; Chatzaki, E. Circulating Cell-Free Abstract: Breast cancer (BC) is a leading cause of death between women. Mortality is significantly DNA in Breast Cancer: Searching for raised due to drug resistance and metastasis, while personalized treatment options are obstructed Hidden Information towards by the limitations of conventional biopsy follow-up.
    [Show full text]
  • Download File
    INSTITUTE FOR SOCIAL AND ECONOMIC RESEARCH AND POLICY COLUMBIA UNIVERSITY WORKING PAPERS OPPOSITE-SEX TWINS AND ADOLESCENT SAME-SEX ATTRACTION Peter S. Bearman Institute for Social and Economic Research and Policy Columbia University and Hannah Brückner Department of Sociology Yale University October 2001 ISERP WORKING PAPER 01-04 ISERP Institute for Social and Economic Research and Policy Data for this paper are drawn from the National Longitudinal Study of Adolescent Health (Add Health), a program project designed by J. Richard Udry and Peter Bearman, and funded by a grant HD31921 from the National Institute of Child Health and Human Development to the Carolina Population Center, University of North Carolina at Chapel Hill, with cooperative funding participation by the following agencies: The National Cancer Institute; The National Institute of Alcohol Abuse and Alcoholism; the National Institute on Deafness and other Communication Disorders; the National Institute on Drug Abuse; the National Institute of General Medical Sciences; the National Institute of Mental health; the Office of AIDS Research, NIH; the Office of Director, NIH; The National Center for Health Statistics, Centers for Disease Control and Prevention, HHS; Office of Minority Health, Centers for Disease Control and prevention, HHS, Office of the Assistant Secretary for Planning and Evaluation, HHS; and the National Science Foundation. We thank Ivan Chase, Roger Gould, Michael Sobel, J. Richard Udry, Duncan Watts, and Harrison White for their helpful comments. Authorship order is alphabetical. Address all correspondence to Peter Bearman, Institute for Social and Economic Research and Policy, 814 IAB. 420 W 118th Street, Columbia University, NY, NY. [email protected].
    [Show full text]
  • Polycystic Ovary Syndrome
    Jon Havelock, MD, FRCSC Polycystic ovary syndrome Therapy for this reproductive and metabolic disorder remains focused on managing symptoms, including infertility caused by anovulation, and reducing long-term health risks such as endometrial cancer and type 2 diabetes. ABSTRACT: The clinical presenta- olycystic ovary syndrome drome was the term used for more tion of polycystic ovary syndrome is (PCOS) is a prevalent repro­ than 50 years for the heterogeneous widely variable, with complaints en- P ductive and metabolic disorder clinical features of the disorder now compassing oligomenorrhea, infer- with variable phenotypes and an under­ known as polycystic ovary syndrome. tility, obesity, hirsutism, endometrial lying pathophysiology that is still not In 1990 the first international defini­ cancer, and diabetes. Community completely understood. While the tion of PCOS was developed, which physicians caring for reproductive- earliest description of the polycystic has since been revised by various age women will invariably encounter ovary dates back to the 17th century,1 professional bodies. The lack of con­ this reproductive and metabolic dis- the characterization of the present­ sensus in the definition of PCOS fur­ order resulting from ovarian hyper- day disorder known as PCOS was first ther highlights the uncertainty about androgenism and insulin resistance. detailed by Irving Stein and Michael the pathophysiology of the disorder. While community physicians should Leventhal in 1935.2 In a seminal pa­ However, for the practising physician be aware of the diagnostic criteria per, the two prominent gynecologists a thorough understanding of symptom for polycystic ovary syndrome, it is described a case series of seven wom­ management and prevention of long­ more important to have a thorough en with enlarged ovaries associated term complications is more important understanding of symptom manage- with oligomenorrhea or amenorrhea, than an understanding of the different ment and prevention of long-term sterility, and clinical hyperandrogen­ diagnostic criteria for PCOS.
    [Show full text]
  • Journal of Personality and Social Psychology Copyright 2000 by the American Psychological Association, Inc
    Ovid: Bailey: J Pers Soc Psychol, Volume 78(3).March 2000.524–536 8/12/02 9:51 AM Journal of Personality and Social Psychology Copyright 2000 by the American Psychological Association, Inc. Volume 78(3) March 2000 p 524–536 Genetic and Environmental Influences on Sexual Orientation and Its Correlates in an Australian Twin Sample [Personality Processes and Individual Differences] Bailey, J. Michael1,5; Dunne, Michael P.2; Martin, Nicholas G.3,4 1Department of Psychology, Northwestern University 2School of Public Health, Queensland University of Technology, Brisbane, Queensland, Australia 3Epidemiology Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia 4Joint Genetics Program, University of Queensland, Brisbane, Queensland, Australia. 5Correspondence concerning this article should be addressed to J. Michael Bailey, Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, Illinois 60208-2710. Electronic mail may be sent to [email protected]. We thank Joan Linsenmeier for her comments on a previous version of this article. Received Date: January 7, 1998; Revised Date: July 22, 1999; Accepted Date: July 30, 1999 Outline Abstract Distribution of Sexual Orientation Familiality and Genetics of Sexual Orientation Correlates of Sexual Orientation The Present Study Method Participants Measures Zygosity. Sexual orientation. Childhood gender nonconformity. Continuous Gender Identity. Data Analysis: Genetic and Environmental Model Fitting Univariate analyses. Multivariate analyses. Testing the equal
    [Show full text]
  • Significant Concordance of Genetic Variation That Increases Both the Risk
    The British Journal of Psychiatry (2018) 213, 430–436. doi: 10.1192/bjp.2018.62 Significant concordance of genetic variation that increases both the risk for obsessive–compulsive disorder and the volumes of the nucleus accumbens and putamen Derrek P. Hibar, Joshua W. Cheung, Sarah E. Medland, Mary S. Mufford, Neda Jahanshad, Shareefa Dalvie, Raj Ramesar, Evelyn Stewart, Odile A. van den Heuvel, David L. Pauls, James A. Knowles, Dan J. Stein, Paul M. Thompson, Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Consortium and International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC)* Background accumbens and putamen volumes. When conditioning OCD risk Many studies have identified changes in the brain associated variants on brain volume, variants influencing putamen, amyg- with obsessive–compulsive disorder (OCD), but few have dala and thalamus volumes were associated with risk for OCD. examined the relationship between genetic determinants of OCD and brain variation. Conclusions Aims These results are consistent with current OCD neurocircuitry models. Further evidence will clarify the relationship between We present the first genome-wide investigation of overlapping putamen volume and OCD risk, and the roles of the detected genetic risk for OCD and genetic influences on subcortical brain variants in this disorder. structures. Method Declaration of interest Using single nucleotide polymorphism effect concordance ana- The authors have declared that no competing interests exist. lysis, we measured genetic overlap between the first genome- wide association study (GWAS) of OCD (1465 participants with OCD, 5557 controls) and recent GWASs of eight subcortical brain Keywords volumes (13 171 participants). Genetic overlap; neuroimaging; obsessive–compulsive disorder.
    [Show full text]
  • Epigenetics: Concepts and Mechanisms
    Epigenetics: concepts and mechanisms Frances Williams Phd FRCP(E) Professor of Genomic Epidemiology Consultant Rheumatologist King’s College London Begining of modern EPI-genetics • Conrad Weddington – “cells can start so simply, and then develop specialised functions, yet they have the same genetic material” • diversity of phenotypes of differentiated cells • how can specific cell programming be achieved and maintained during adult life? • 1949 EPIGENETIC CONCEPT “SWITCH ON-SWITCH OFF” Epigenetics is associated with developmental biology but it’s own specific pattern of gene expression Each cell has identical DNA Homo sapiens Transcription factors EPIGENETIC INFORMATION DIFFERENTIATION ZYGOTE ADULT ORGANISM DEVELOPMENT EPIGENETICS: a link between environment and genes Early life environmental stimuli behaviour, neurotransmitters social factors and stress nutrition hormones toxins metabolites Adult life environment Gene-environment interactions through epigenetic mechanisms constitute a dynamic and reversible process during adult life EPIGENETICS ON THE SCENE • Sequencing of the human genome and genomes of model organisms – genes will tell us everything! • Only 5% of the human diseases are due to genetic mutations • Majority of human population has genetic setup to live long healthy lives • Much more than 5% of the human population die prematurely which can not be explained with “bad genes” • Man – 19,000 genes (> 2% of the genome) distributed on 23 chromosome pairs: biblioteca of different set of books which gives different recipes •
    [Show full text]
  • Short CV Dr Esteller
    MANEL ESTELLER, M.D., Ph.D. Manel Esteller (Sant Boi de Llobregat, Barcelona, Catalonia, Spain, 1968) graduated in Medicine from the Universidad de Barcelona in 1992, where he also obtained his Ph.D. degree specialising in molecular genetics of endometrial carcinoma, in 1996. He was an Invited Researcher at the School of Biological and Medical Sciences at the University of St. Andrews, (Scotland, UK) during which time his research interests focused on the molecular genetics of inherited breast cancer. From 1997 to 2001, Esteller was a Postdoctoral Fellow and a Research Associate at the Johns Hopkins University and School of Medicine, (Baltimore, USA) where he studied DNA methylation and human cancer. His work was decisive in establishing promoter hypermethylation of tumour suppressor genes as a common hallmark of all human tumours. From October 2001 to September 2008 Manel Esteller was the Leader of the CNIO Cancer Epigenetics Laboratory, where his principal area of research were the alterations in DNA methylation, histone modifications and chromatin in human cancer. Since October 2008 untill May 2019, Dr Esteller has been the Director of the Cancer Epigenetics and Biology Program (PEBC) of the Bellvitge Institute for Biomedical Research (IDIBELL) in Barcelona. He is currently Director of the Josep Carreras Leukaemia Research Institute (IJC), Chairman of Genetics in the School of Medicine of the University of Barcelona, and an ICREA Research Professor. His current research is devoted to the establishment of the epigenome and epitranscriptome maps of normal and transformed cells, the study of the interactions between epigenetic modifications and non-coding RNAs, and the development of new epigenetic drugs for cancer therapy.
    [Show full text]
  • Epigenetic Inactivation of the Splicing RNA-Binding Protein CELF2 in Human Breast Cancer
    Oncogene (2019) 38:7106–7112 https://doi.org/10.1038/s41388-019-0936-x BRIEF COMMUNICATION Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer 1 1 1 1 1 Laia Piqué ● Alexia Martinez de Paz ● David Piñeyro ● Anna Martínez-Cardús ● Manuel Castro de Moura ● 1 1 1 1 2 Pere Llinàs-Arias ● Fernando Setien ● Jorge Gomez-Miragaya ● Eva Gonzalez-Suarez ● Stefan Sigurdsson ● 3,4 5 6 1 1,7,8,9,10 Jon G. Jonasson ● Alberto Villanueva ● August Vidal ● Veronica Davalos ● Manel Esteller Received: 27 December 2018 / Revised: 19 May 2019 / Accepted: 10 June 2019 / Published online: 13 August 2019 © The Author(s) 2019. This article is published with open access Abstract Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, 1234567890();,: 1234567890();,: we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion.
    [Show full text]
  • Polycystic Ovary Syndrome in Monozygotic Twins Concordant for Lipid Profiles in Iranian Reproductive Women
    http://www.ijwhr.net doi 10.15296/ijwhr.2014.34 Open Access Original Article International Journal of Women’s Health and Reproduction Sciences Vol. 2, No. 4, Summer 2014, 236–239 ISSN 2330- 4456 PolyCystic Ovary Syndrome in Monozygotic Twins Concordant for Lipid Profiles in Iranian Reproductive Women Leila Amini1, Fatemeh Oskouie2, Babak Behnam3*, Mohammad Reza Sadeghi4* Abstract Objective: There is evidence for genetics components in PCOS based on familial clustering of cases. We examined the contribution of genetics impact and some lipid/serum profiles to PCOS in a cohort study of Iranian twins. Materials and Methods: As a prominent predisposing risk factor for PCOS, serum lipid profiles (Triglyceride, Total cholesterol, HDL, LDL, Apo lipoprotein A–I, Apo lipoprotein B and lipoprotein A), were analyzed in 154 subjects of PCOS. The diagnosis of PCOS has been based on the Rotterdam consensus criteria in this study. We also studied 16 identical twin pairs discordant for PCOS to evaluate the effects of environmental risk factors (including lipid indices profiles) for PCOS. Furthermore, we compared these 16 twin pairs with PCOS, in which just 15 (93.75%) of them was concordant for abnormal lipid profiles. Also the impact of lipid profile in patients with PCOS was confirmed by comparing total 22 identical and non-identical twin pairs, in which 21 out of them (95.45%) showed abnormal lipid profiles. Result: PCOS and increased cholesterol level were higher in identical versus non-identical twins with concordance rates of 1.5 and 1.65 (based on the Rotterdam consensus criteria), respectively. Analysis of identical pairs showed weak association between impact of lipid profile and PCOS while in non-identical pairs, the PCOS was associated with an increased environmental risk (lipid profile).
    [Show full text]