Explosives Chemistry: from the Lab to Manufacturing

Total Page:16

File Type:pdf, Size:1020Kb

Explosives Chemistry: from the Lab to Manufacturing DevelopmentDevelopment ofof anan EfficientEfficient andand GreenGreen TNTTNT ManufacturingManufacturing ProcessProcess Prepared For 2004 IM/EM Technical Symposium November 15-17, 2004 San Francisco, CA Authors Paige Holt, Gene Johnston, Andrew J. Sanderson*, Pete Wesson and Jim Worthington Why investigate TNT manufacturing? • US Government issued an RFP for TNT supply and a flexible energetic materials manufacturing facility – 5-15 million pounds TNT • The legacy TNT manufacturing process is environmentally unacceptable – Waste from traditional TNT production has severe environmental consequences • K047 prohibited from land disposal 40 CHR Ch. 1 §286.33 • TNT production stopped in US 15 years ago – It has not been restarted in a large part because of the environmental cost Flexible Ingredient Facility Program Chemistry Research Program Objectives Notes z Design safe, efficient and “green” processes z The Flexible Ingredient Facility is a concept for for energetic ingredient manufacture making a variety energetic materials available at z Design processes that fit available production scale for propellants and explosives infrastructure z It is one of the most significant ingredient production facility changes in this country in over 30 years. z Add minimal infrastructure to maximize flexibility z The facility will be able to make both legacy energetics such as TNT and new ingredients such z Demonstrate practicality of new processes as NTO, Dinitroanisole, CL-20 and TEX z Provide data for full scale plant design z It is designed to be efficient and exceed environmental requirements for hazardous z Meet schedule and budget emissions Radford AAP Promontory M53 Laboratories TNT Chemistry – the problem • Nitration of toluene gives TNT AND OTHER STUFF – 95% crude yield of organics – 5-10% not 246TNT (mostly 3-isomer derivatives) – TNT purity of ca. 99.5% is required • Where has the 5% gone? • How do your remove the 5-10% from the crude product? – What do you do with 5-10%? • Approximately 1M lb year! • What do you do with nitration medium Traditional TNT Processes Needs oleum Make up Acids concentration Acid Yellow facilities acids purification water (inc. Oleum) Generates yellow water Toluene Nitration Sulphite wash Water wash Generates red water Traditional TNT process Red water Requires Flake TNT toluene Nitration Toluene Oxidation • Considerations for the Nitration synthetic route? NO 2 – Starting material ONT NO 2 NO 2 – By-products – Reagents NO 2 NO 2 –Catalysts? NO 2 O2N O2N NO 2 NO 2 – Materials handling NO 2 NO 2 NO 2 NO O2N 2 • Cost, toxicity, Oxidation compatibility, environmental, O2N NO 2 facilities impact NO 2 O2N NO 2 O N 2 NO 2 • What engineering NO 2 NO 2 NO 2 NO 2 O N NO TNT 2 2 O2N NO 2 NO process? NO 2 2 NO 2 – Batch, continuous, COOH single line, multiple CHO lines HO 3/(O 2N) 2 NO 2 3/(O 2N) 2 (NO 2)2/3 Purification • Tradition TNT purification – Basic wash with sodium sulphite (sellite) removes “off isomers”, benzoic acids, alcohols and tetranitromethane – Product is purer TNT and basic aqueous solution of TNT and sulphonated organics • Only current disposal option is incineration – Washing doesn’t remove DNT, bibenzyl and biphenyl impurities, and it leaves the TNT contaminated ppm with “red water” – Poor process upset recovery possibilities • Other option is recrystallization “Sellite” purification Na2SO3 O N NO 2 2 SO Na O2N 3 Na2SO3 C(NO2)4 C(NO2)3SO3Na + NaNO2 ........ O N NO 2 2 O2N NO2 Na SO slow2 3 NO 2 SO3Na New TNT Purification Technology Make Acids Acid clean- By-products: up concentration up Explosive or • Crystallization is key to avoiding acids fuel (oleum Red-Water free) • Traditionally, impurities reacted ONT Nitration Crystallization Wash with sodium sulphite to give water soluble products – K047 New TNT process – 10-15% of all starting material + Flake water TNT • Pure TNT can be crystallized by careful cooling and seeding of acid mixture. • Crystallization gives two acceptable streams – Pure TNT, wet with acid – Spent acid containing the impurities • TNT is washed with water • Water and acid combined for purification Other process streams • Spent acid – The sulfuric acid left after nitration, saturated with organics and containing nitrous and nitric acid – Needs to be reusable (organic free) or disposable (stable) CHEAPLY •Fumes – Acid vapor, NOx, SOx, VOC •Water – Washing the product and cleaning vessels Acid Purification treatment • Before concentration and reuse, spent acid must be free from organic materials • Options – Extract organics • Toluene/Butane • Super-critical carbon dioxide (SCCO2) – New approach for acid clean-up – Patented new technology – Very environmentally attractive – Developing with Chematur and INEEL – Treatment of extracted material »Incinerate » Isotrioil – Destroy organics • Pyrolysis • Oxidation/reduction • New approach gives optimal solution • Options give risk minimization Acid Treatment Nitration Organic saturated Nitric acid spent acid process recovery d Organic saturated aci ric dilute sulfuric acid nit Weak Pure dry acids Organic free acid NAC/SAC SCCO2 Extraction SCE uses low temperature and non-flammable solvent CO2 recycle - Existing equipment - New equipment Organics recovery • New Acid Treatment was essential for any restart of our TNT facilities • SCCO2 extraction fits well with existing process • Can be used for different processes with no modification • Demonstrated partition coefficient and obtained IP Support for scale-up of process • Precise nitration conditions – Yields, kinetics vs. conditions, process sensitivity to all variables • Waste stream management – Every single process stream MUST be accounted for • Precise crystallization conditions – Purity, morphology, washing • Acid purification – Waste stream management – Demonstrate CO2 technology TNT Nitration Kinetics TNTRatesTNTRates 11 0.90.9 0.80.8 0.7 0.7 1/2/4.7 DNT/NA/SA 1/2/4.7 DNT/NA/SA 0.6 1/2/03 DNT/NA/SA 0.6 1/2/03 DNT/NA/SA 0.5 1/2/06 DNT/NA/SA 0.5 1/2/06 DNT/NA/SA 1/2.5/5 DNT/NA/SA 0.4 1/2.5/5 DNT/NA/SA 0.4 ONT ONT 0.30.3 Pure TNT extent of reaction extent of reaction 0.20.2 0.10.1 00 00 100 100 200 200 300 300 time/mintime/min • Reaction rates are key for process control and obtaining pure TNT • Rates are dependant on: – TNT partition coefficient between acid and organic phases – Nitrating ability of acid • Partition coefficient is a function of acid composition, organic composition and temperature (all vary with extent of reaction) • Nitrating ability is a function of acid composition New TNT Process Oleum free Make up Acids Acid clean- By-products: acids concentration up Explosive or Acceptable acid clean up (oleum fuel No yellow or red water free) Minimal infrastructure changes Acid clean-up ONT Nitration Crystallization Wash Crystallization Additional process equipment readily Proposed new TNT available process Flake TNT New Dinitroanisole Process NaOMe Solvent Waste in recovery water MeOH treatment CDB Reaction Filter/wash Solids waste New DNANs process Calculated DNANs structure DNANs - Equipment in common with TNT • Increased reported synthesis reaction rate 100 fold – Very high potential production rate • Patented new chemistry • MAXIMUM USE OF CURRENT INFRASTRUCTURE TEX/NTO/CL-20 Processes TEX 50-gal synthesis run 1 TEX 50-gal synthesis run 1 • Processes were designed 140 140 120 120 based on previous lab and 100 100 80 Temp 80 Temp pilot-plant experience (F) 60 (F) 60 40 40 20 20 • New NTO chemistry was 0 06:300 07:42 08:54 10:06 11:18 12:30 13:42 14:54 16:06 17:18 18:30 06:30 07:42 08:54 10:06 11:18 12:30 13:42 14:54 16:06 17:18 18:30 Time devised specifically for Time RFAAP equipment •Thermal and analytical data was gathered for all processes 14.00 12.00 10.00 Percent per Channel 8.00 6.00 4.00 2.00 0.00 0.60.80.91.1 1.3 1.61.9 2.3 2.7 3.23.84.65.56.57.79.211.13.15.18.22.26.31.37.44.52.62.74.88.10 12 14 17 20 24 29 35 41 49 59 70 9 2 7 6 8 4 5 1 5 7 9 3 0 4 8 5 08 08 56 50 00 16 11 00 00 33 23 00 00 4.74.58.06.09.38.96.02.08.67.82.04.0 TEX Crystals 0 0 0 0 0 0 0 0 0 0 0 0 Diameter (microns) TNT Pilot plant runs Acid feed ProcessesProcesses ValidatedValidated •• Pure Pure TNTTNT fromfrom ONTONT (or(or DNT)DNT) •• Co-current Co-current nitrationnitration •• Oleum Oleum freefree nitrationnitration •• Continuous Continuous crystallizationcrystallization PUREPURE TNT TNT Filter ONT Feed Nitrators Crystallizers Pilot Plant Dinitroanisole • Quality material produced on first run • High production rate (5-10lb/hour) • Data recorded included: – Hard measurements - temp. – Practical observations – slurry behaviour DNANs reactors at equilibrium Overflow to quench Crude DNANs being quenched ConclusionsConclusions The 1970s TNT plant at Radford AAP is being made into a modern, flexible energetics facility, able to realize practical, green production of TNT and a range of new materials. You can teach an old dog new tricks if: You have a great team doing the training You can add an extra limb or two.
Recommended publications
  • SULFUR TRIOXIDE -- Chemical Fact Sheet
    OLEUM/SULFUR TRIOXIDE -- Chemical Fact Sheet 1 What is it? Oleum is a cloudy, gray, fuming, oily, corrosive liquid with a sharp, penetrating odor. When Oleum comes into contact with air following a spill, it releases Sulfur Trioxide. Sulfur Trioxide is a white gas having the appearance of fog. It also has a sharp, penetrating odor that is detectable at low concentrations. Because of the tendency to liberate Sulfur Trioxide on contact with air, Oleum is also known as “fuming Sulfuric Acid”. Where does it Oleum is made by dissolving Sulfur Trioxide into Sulfuric Acid. Sulfur come from? Trioxide is made from Sulfur Dioxide in the presence of a catalyst. What are the It is used in the oil refining process to make crude oil distillates into higher quality materials. common uses for it? Manufacture of soap Manufacture of high purity Sulfuric Acid for the electronic industry Manufacture of catalyst used in production of Sulfuric Acid. How is it Oleum is shipped by truck and pipeline. transported in CCC? How is it stored Oleum is stored in covered tanks. in CCC? Health Hazards from Exposure Exposure Route Symptoms First Aid Inhalation Irritates nose, throat and Remove to fresh air. Seek (low concentrations) lungs medical attention if Burning Sensation symptoms persist. Sneezing, coughing Inhalation Burning sensation Remove to fresh air, get (high concentrations & prolonged exposure) Coughing, gagging medical attention including Chest tightness and pain, oxygen administration. Fluid in lungs Initiate CPR if breathing has Suffocation, death stopped. Eyes Severely irritates eyes Rinse eyes with water for at Burning/discomfort least 5 minutes.
    [Show full text]
  • Sulfur (IV) Isotopic Exchange Reaction in Aqueous and Concentrated Acid
    THE KINETICS OF THE SULFtJR(IV) - suLFuR(vI) ISOTOPIC EXCHANGE REACTION IN AQUEOUS AND CONCTRATED ACID )LUTIONS by RAY LOCKE McDONALD A THESIS submitted to OHEGON STATE COLLEGE In parti1 fulfillment of the requirements for the degree of DOCTOR 0F PHW)SOPHY June 196]. flIiY1i$IT Redacted for Privacy Professor of Chemistry In Charge of Major Red acted f or P rivacy Chairman of Department of Cnemistry Redacted for Privacy Chairman of School Graduate Committee Redacted for Privacy Dean of Graduate School nate thesis is presented Typed by LeAnna kiarris tffi*ffimffi Fcar rdsrmo ad mflss. dte rU egestr d lilt rretc Mlr1 tb lutEm'rprm [ilr;r* dffi tldr te EufUe ?. E. I*1ill. TABLE OF CONTENTS Page I. INTRODUCTION ...................... i II. E(PERIMENTAL ...................... 7 A. General Procedure ................. 7 B. Radioactivity Analysis ............... 9 C. Chemical Analysis ................ il D, Preparation of Materials and Reactant Solutions 13 1. General ................. 13 2. Sulfur Dioxide ................ 1.3 3. Labeled Aqueous Sulfuric Acid ......... i1 )4. Labeled Concentrated Sulfuric cid ....... 15 ;. Labeled 100% Sulfuric Acid ........... 16 6. Labeled Fuming Sulfuric Acid .......... 16 7. Labeled Aqueous Sodium Bisulfate ........ 16 8. Lat.ed Sodium Bisulfate in Aqueous Sulfuric Acid .................. 17 9. Labeled Sodium Bisulfate in Concentrated . Sulfuric Acid .................. 17 10. Labeled Sodium Sulfate ............. 17 li. Labeled Sodium Sulfate in Aqueous Sodium Bisulfate ................ 18 12. Labeled Elemental Sulfur ............ 18 III. RUN PROCEDURE AND DATA ................ 19 A. Sulfur(IV) - Sulfur(VI) Exchange in Basic Media . 19 B, - Sulfur(IV) Sulfur(VI) Exchange in Acidic Media . .23 1. Radiosulfur Ecchsuge Experiments Between Sulfur Dioxìe and Aqueous Sulfuric Acid of High Specific Activity ...........
    [Show full text]
  • Part 3 Explosives
    Utah Code Part 3 Explosives 76-10-302 Marking of containers of explosives before transportation or storage. Every person who knowingly leaves with or delivers to another, or to any express or railway company or other common carrier, or to any warehouse or storehouse, any package containing nitroglycerin, dynamite, guncotton, gunpowder, or other highly explosive compound, or any benzine, gasoline, phosphorus, or other highly inflammable substance, or any vitriol, sulphuric, nitric, carbolic, muriatic, or other dangerous acid, chemical or compound, to be handled, stored, shipped, or transported, without plainly marking and indicating on such package the name and nature of the contents thereof, is guilty of a class B misdemeanor. Enacted by Chapter 196, 1973 General Session 76-10-303 Powder houses. Every person who builds, constructs, or uses within 300 feet of any residence or traveled county road any powder house, magazine, or building in which powder, dynamite, or other explosive is kept in quantities exceeding 500 pounds is guilty of a class B misdemeanor; provided that this section shall not apply to any magazine maintained at any mine or stone quarry. Enacted by Chapter 196, 1973 General Session 76-10-304 Marking of containers of explosives held for sale or use. It shall be a class A misdemeanor to sell or offer for sale or take or solicit orders of sale, or purchase or use, or have on hand or in store for the purpose of sale or use, any giant, hercules, atlas, venture or any other high explosive containing nitroglycerin, unless on each box or package and wrapper containing any such high explosive there shall be plainly stamped or printed the name and place of business of the person, partnership, or corporation by whom or by which it was manufactured, and the exact and true date of its manufacture, and the percentage of nitroglycerin or other high explosive contained therein.
    [Show full text]
  • United States Patent Office Patented Jan
    3,297,748 United States Patent Office Patented Jan. 10, 1967 1. 2 was found to have superior odor qualities, based upon 3,297,748 ALKYLBENZENE SULFONATE COLOR AND odor ratings made by subjective panel testing. ODOR INHIBITION By sulfonation is meant the treatment of alkylbenzenes John B. Wilkes, Albany, Calif., assignor to Chevron Re with concentrated sulfuric acid, and particularly with search Company, a corporation of Delaware concentrated sulfuric acid-sulfur trioxide mixtures, there No Drawing. Filed June 13, 1963, Ser. No. 287,489 by to produce the corresponding alkylbenzene sulfonic 2 Claims. (CI. 260-505) acids. Preferably, the present process contemplates the use of oleum having from about 5 to 28 percent sulfur This invention relates to an improved method for the trioxide content, by weight. In general, sulfonation reac preparation of branched-chain alkylbenzene sulfonate de 0 tion temperatures useful in the process range from about tergents. More specifically, this invention relates to the 50 to 150 F.; and, as is known in the art, from about a preparation of branched side-chain alkylbenzene sulfo stoichiometric amount to about a 20 percent excess of nate detergent by the sulfonation of branched-chain alkyl the sulfonating agent, based upon the alkylbenzene, is benzenes with oleum in the presence of color and odor preferably used. Usually, the sulfur trioxide in the oleum inhibiting amounts of acetic acid and a lower alkylben mixture is the sulfonation agent consumed, although the ZCle. sulfuric acid may also be consumed to the point where The active ingredient in most detergents in household the residual sulfuric acid medium has been reduced use are alkylated aryl sulfonates.
    [Show full text]
  • Determination of Sulfuric Acid and Oleum Concentration Relevant For: Chemical Industry / Sulfuric Acid Production
    Determination of Sulfuric Acid and Oleum Concentration Relevant for: Chemical industry / Sulfuric acid production Sulfuric acid is widely used in the chemical industry, plastics industry and petrochemistry, for the production of phosphoric acid as a starting material for fertilizers, in the metal industry (e.g. in etching baths), and in accumulators. Dissolving sulfur trioxide, SO3, in concentrated sulfuric acid results in a fuming solution called oleum (or "fuming sulfuric acid"). Oleum is used in the chemical industry, for example for the production of intermediate materials or chemical fibers. 2.2. Conventional: Titration - a tedious method The conventional method for determination of sulfuric acid concentration is titration. However, titration is not only time-consuming and hazardous, but also includes a range of error prone operation steps even for skilled 1. Quality control in sulfuric acid production laboratory staff. The titration of sulfuric acid or oleum is carried out Sulfuric acid (H2SO4) is a high production volume with a base, commonly sodium hydroxide, NaOH. The chemical and plays an important role in various acid sample has to be diluted prior to titration - a time- industries. Sulfuric acid is a colorless and odorless consuming and hazardous operation. The accuracy of oily liquid which is highly hygroscopic. Depending on the results is influenced by several factors such as the its concentration the acid is used for different skill of the operator, the quality of the standard base purposes. solution, the precision of the burettes, the quality of The production of sulfuric acid proceeds in several the indicator used, etc. In routine analysis accuracies of 0.1 % w/w to 0.5 % w/w H SO can be attained.
    [Show full text]
  • 2,4,6-Trinitrotoluene (Tnt)
    2,4,6-TRINITROTOLUENE (TNT) What is 2,4,6-TRINITROTOLUENE? 2,4,6-trinitrotoluene, also called TNT, is a man-made compound. The odorless, yellow solid is used in explosives. In the United States, TNT is primarily made at military sites. Where can TNT be found and how is it used? TNT is an explosive used by the military in artillery shells, grenades and airborne bombs. TNT may be found in old artillery shells that wash up or are dredged up on beaches. Industries use TNT to make dye and photography chemicals. How can people be exposed to TNT? You could be exposed to TNT through: Breathing vapor or dust containing TNT. This might happen if your work involves TNT. Drinking water polluted with TNT. This could happen if you drink water polluted by a waste site containing TNT. Eating fruits and vegetables grown in soil containing TNT. Touching soil that contacted TNT. You can also touch it if you work with TNT. Eye Contact by touching the eyes with hands contaminated with TNT, or getting TNT-contaminated dust in them. How does TNT work? When you breathe in air or drink water with TNT in it, the chemical enters your body quickly and completely. If TNT touches the skin, the body absorbs it more slowly. Regardless of the type of exposure, TNT is absorbed by the bloodstream and travels to the organs. When it reaches the liver, it breaks down and changes into several different substances. Not all of these substances have been identified, so it is not known if they are harmful.
    [Show full text]
  • Nitration of Toluene (Electrophilic Aromatic Substitution)
    Nitration of Toluene (Electrophilic Aromatic Substitution) Electrophilic aromatic substitution represents an important class of reactions in organic synthesis. In "aromatic nitration," aromatic organic compounds are nitrated via an electrophilic aromatic substitution mechanism involving the attack of the electron-rich benzene ring on the nitronium ion. The formation of a nitronium ion (the electrophile) from nitric acid and sulfuric acid is shown below. The sulfuric acid is regenerated and hence acts as a catalyst. It also absorbs water to drive the reaction forward. Figure 1: The mechanism for the formation of a nitronium ion. The methyl group of toluene makes it around 25 times more reactive than benzene in electrophilic aromatic substitution reactions. Toluene undergoes nitration to give ortho and para nitrotoluene isomers, but if heated it can give dinitrotoluene and ultimately the explosive trinitrotoluene (TNT). Figure 2: Reaction of nitric acid and sulfuric acid with toluene. Procedure: 1. Place a 5 mL conical vial, equipped with a spin vane, in a crystallizing dish filled with ice-water placed on a stirrer. 2. Pour 1.0 mL of concentrated nitric acid into the vial. While stirring, slowly add 1.0 mL of concentrated sulfuric acid. 3. After the addition of sulfuric acid is complete, add 1.0 mL of toluene dropwise and slowly over a period of 5 minutes (slow down if you see boiling. Reaction produces a lot of heat). 4. While Stirring, allow the contents of the flask to reach the room temperature. Stir at room temperature for another 5 minutes. 5. Add 10 mL of water into a small separatory funnel.
    [Show full text]
  • Hazardous Substance Fact Sheet
    Right to Know Hazardous Substance Fact Sheet Common Name: 2,4,6-TRINITROTOLUENE Synonyms: 1-Methyl-2,4,6-Trinitrobenzene; TNT CAS Number: 118-96-7 Chemical Name: Benzene, 2-Methyl-1,3,5-Trinitro- RTK Substance Number: 1948 Date: May 2000 Revision: September 2010 DOT Number: UN 0209 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE 2,4,6-Trinitrotoluene is an odorless, colorless to pale yellow, Hazard Summary crystalline (sand-like) solid that is often transported in a slurry. Hazard Rating NJDOH NFPA It is used primarily as an explosive and is also used in making HEALTH 2 - dye stuffs and photographic chemicals. FLAMMABILITY 4 - REACTIVITY 4 - CARCINOGEN EXPLOSIVE - KEEP WET FLAMMABLE AND REACTIVE Reasons for Citation POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE f 2,4,6-Trinitrotoluene is on the Right to Know Hazardous Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Substance List because it is cited by OSHA, ACGIH, DOT, 4=severe NIOSH, IARC and IRIS. f This chemical is on the Special Health Hazard Substance f 2,4,6-Trinitrotoluene can affect you when inhaled and may List. be absorbed through the skin. f 2,4,6-Trinitrotoluene should be handled as a CARCINOGEN--WITH EXTREME CAUTION. f 2,4,6-Trinitrotoluene may cause reproductive damage. HANDLE WITH EXTREME CAUTION. f Contact can irritate the skin and eyes and may cause a skin allergy. f Inhaling 2,4,6-Trinitrotoluene can irritate the nose and throat. SEE GLOSSARY ON PAGE 5. f High levels of this substance can reduce the blood’s ability to transport Oxygen causing headache, fatigue, dizziness, and a blue color to the skin and lips (methemoglobinemia).
    [Show full text]
  • Toxic Fume Comparison of a Few Explosives Used in Trench Blasting
    Toxic Fume Comparison of a Few Explosives Used in Trench Blasting By Marcia L. Harris, Michael J. Sapko, and Richard J. Mainiero National Institute for Occupational Safety and Health Pittsburgh Research Laboratory ABSTRACT Since 1988, there have been 17 documented incidents in the United States and Canada in which carbon monoxide (CO) is suspected to have migrated through ground strata into occupied enclosed spaces as a result of proximate trench blasting or surface mine blasting. These incidents resulted in 39 suspected or medically verified carbon monoxide poisonings and one fatality. To better understand the factors contributing to this hazard, the National Institute for Occupational Safety and Health (NIOSH) carried out studies in a 12-foot diameter sphere to identify key factors that may enhance the levels of CO associated with the detonation of several commercial trenching explosives. The gaseous detonation products from emulsions, a watergel, and ANFO blasting agents as well as gelatin dynamite, TNT, and Pentolite boosters were measured in an argon atmosphere and compared with those for the same explosives detonated in air. Test variables included explosive formulation, wrapper, aluminum addition, oxygen balance, and density. Major contributing factors to CO production, under these laboratory test conditions, are presented. The main finding is the high CO production associated with the lack of afterburning in an oxygen poor atmosphere. Fumes measurements are compared with the manufacturer’s reported IME fume class and with the Federal Relative Toxicity Standard 30 CFR Part 15 in order to gain an understanding of the relative toxicity of some explosives used in trench blasting. INTRODUCTION Toxic gases such as CO and NO are produced by the detonation of explosives.
    [Show full text]
  • Chapter 2 EXPLOSIVES
    Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy.
    [Show full text]
  • MATERIAL SAFETY DATA SHEET 2,4,6-Trinitrotoluene / BOOSTERS
    MATERIAL SAFETY DATA SHEET 2,4,6-Trinitrotoluene / BOOSTERS SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Trade name Pressed TNT Boosters: TNT-44; TNT-45; TNT-75; TNT-160; TNT-200; TNT-250; TNT-300; TNT-500; TNT-1000; TNT-1500; TM275; TM450; TM650; TM800; TM1000 (975 g TNT) International Chemical Identification 2,4,6–trinitrotoluene; TNT Index Number 609-008-00-4 Number EC 204-289-6 Number CAS 118-96-7 Number ONZ 0209 Another name Trotyl, TNT, 2,4,6-trinitrotoluene, 2-methyl-1,3,5-trinitrobenzene Chemical name C7H5N3O6 Registration number 01-2119860061-49-0000 1.2. Relevant identified uses of the substance or mixture and uses advised against Bursting explosive 1.3. Details of the supplier of the safety data sheet Zakłady Chemiczne „NITRO-CHEM” S.A. 85-825 Bydgoszcz, ul. Wojska Polskiego 65a, Poland tel. +48 (52) 374 76 60, fax. +48 (52) 361 11 24 Person responsible for the Material Safety Data Sheet: Beata Wasilewska, e-mail : [email protected] Teresa Soczka, e-mail: [email protected] 1.4. Emergency telephone number tel. +48 (52) 374 76 60 (weekday during office hours 7.00 a.m. – 3.00 p.m.) SECTION 2: Hazard Identification 2.1. Classification of the substance or mixture According to Regulation (EC) No 1272/2008 (CLP) Hazard Class and Category Code(s) Hazard statement Code(s) (read in section 16) (read in section 16) Expl. 1.1 H201 Acute Tox. 3 H331 Acute Tox. 3 H311 Acute Tox.
    [Show full text]
  • 2,4,6-Trinitrotoluene Inciude Entsufon, Gradetol, Nitropel, Tolit
    2,4,6- TRINITROTOLUENE 1. Exposure Data 1.1 Chernical and physical data 1. 1. 1 Nomenclature Chem. Abstr. Serv. Reg. No.: 118-96-7 Chem. Abstr. Name: 2-Methyl-l ,3,5-trinitrobenzene IUPAC Systematic Nanie: 2,4,6- Trinitrotoluene Synonyms: Methyltrinitrobenzene; 1 -methyl-2,4,6-trinitrobenzene; TNT; a-TNT; tri- nitrotoluene; a-trinitrotoluol; s-trinitrotoluene; s-trinitrotoluol; sym-trinitrotoluene; sym-trinitrotoluol 1.1.2 Structural and molecular formulae and relative molecular mass CH3 02NAN02 yN02 C7H)N,0(, Relative molecular mass: 227.13 1.1.3 Chemical and physical properties of the pure substance (a) Description: YelIow monoc1inic needles or orthorhombic crystals from alcohol (Lewis, 1993; Lide, 1993) (b) Roiling-point: 240°C (explodes) (Lide, 1993) (c) Melting-point: 82°C (Lide, 1993) (e) Spectroscopy data: Infrared (prism (21886), grating (32803)), nuclear magnetic resonance (C-13 (18215, V 486)) and mass spectral data have been reported (Sadtler Research Laboratories, 1980) (e) Solubility: Slightly soluble in water (0.01% (0.10 g/L) at 25°C); soluble in acetone, benzene, oils and greases, and diethyl ether (McConnelI & FIinn, 1946; Budavari, 1989; Lide, 1993) (f Volatility: Vapour pressure, 0.0002 mm Hg (0.027 Pa) at 20°C; relative vapour density (air = 1), 7.85 (Verschueren, 1983; Boublík et aL., 1984) -449- 450 IARC MONOGRAPHS VOLUME 65 (g) Stability: Moderate explosion risk; the pure chemical will detonate only if vigo- rously shocked or heated to ? 200°C (Lewis, 1993). Reacts with nltric acid and metals (e.g. lead or iron) to form explosive products more sensitive to shock or friction.
    [Show full text]