WOODSTRANDCEMENTBOARD

MATTHEWARO UniversityofMinnesotaDuluthNaturalResourcesResearchInstitute 5013MillerTrunkHighway,Duluth,Minnesota,USA55811

ABSTRACT Theweight,strength,anddurabilitypropertiesofandorientedstrandboard(OSB)havemadethem the dominant products for residential sheathing applications in North America. However, there exist particulargeographicregionswhereprevailingconditionspromotesevereweathering,fungalgrowth,and insect attack – these areas, largely, have prolonged periods of high humidity, warm temperatures, and moderatetoheavyrainfall. StrandCementBoard(WSCB),aclassofrecentlydevelopedpanelscomposedoflongandthinwood strandsbondedwithPortlandcement,maybelesssusceptiblethanplywoodandOSBtosevereweathering, fungalgrowth,andinsectattack.WSCBpanelsexhibitgooddurability,structuralstrength,resistancetofire, andhighresistancetorot,fungaldecay,andattackbytermitesandothervermin.Further,theyareeasily nailable,exhibitexcellentscrewholdingcapacity,andcanbeeasilypaintedandstuccoed.Also,because WSCBpanelsadherestronglytofreshconcrete,theycanbeusedforpermanentshutteringofconcretewalls, pillars,andfloors,suchasthosefoundinbasements. This will briefly describe the history of woodcement products and explain the attributes of the recentlydeveloped WSCB panels and describe why this class of panels may be a viable substitute for plywoodandOSBinareasthatexhibitharshenduseconditions.

KEYWORDS WoodStrandCementBoard(WSCB);orientedstrandboard(OSB);WoodWoolCementBoard(WWCB); inorganicbondedpanels;cementbondedpanels

INTRODUCTION Solidsawnhaslongbeenusedasmaterialforroof,floor,andwallconstruction.Astheindustry’s product and process knowledge increased, more durable and effective panels were developed. In North America,veneerbasedplywoodiscommonlyusedassheathingmaterialforresidentialhomeconstruction because it exhibits good strength and durability properties, installation ease, and improved structural resistance to wind and earthquake loadings compared to solid wood boards (Forest Products Laboratory 1999).Intheearly1980s,anewclassofstructuralpanelscalledorientedstrandboard(OSB)wasdeveloped, partlyduetotheshortageofqualitytimbersuchaslargediametertreesaswellaseconomicincentivesfor usingsmalldiameter,fastgrowingspecies(usuallypoplarandsouthernyellow)(Chunget al. 1999).OSBismanufacturedbyconsolidatingorientedwoodstrandswithanexteriorgraderesinunderheat andpressuretomakeareconstitutedwoodproductwithengineeredproperties.OSBexhibitsevenbetter weightandstrengthpropertiesthanplywoodandhasbecomethedominantstructuralsheathingmaterialin NorthAmerica.Infact,theresidentialconstructionmarketaccountsfor65%ofallOSBusedinNorth America(Adair2004). Growthinsomestructuralapplicationsisstilllimited,however,becauseofadverseenvironmentalconditions prevalentintheregionsinwhichtheyareapplied.Theseparticularenvironmentscanputmanyengineered

169 woodmaterials,whicharealreadysusceptibletodecayandmoisture,intoconditionsabovetheiracceptable limits (Baileys et al. 2003). In particular, the fluctuation of hygrothermal loads could cause physical deteriorationinthewoodmaterialleadingtoattackbywooddecayingmicroorganismssuchasmold,white rot,andbrownrotfungi–particularlyinoutdoorapplications(Chungetal1999).Therefore,stepsmustbe takentoensuretheirprotectionfromdamagingenvironmentalconditionsduringstorageandconstruction. ThePartnershipforAdvancingTechnologyinHousing(PATH1999)hasidentifiedfourgeneralstrategiesto improveproductdurability: 1. Improvetheperformanceofexistingproductsandmaterials; 2. Stimulateselectionofmoredurableproductsandmaterials; 3. Minimizeprematurefailureduetomanufacturingandinstallationproblems;and 4. Encouragepreventativemaintenanceandearlydetection. Followingtheseguidelines,theindustryhasimprovedtheperformanceofOSB,plywood,andotherresin bondedwoodbasedpanelsviatheadditionofwaxforwaterrepellency,utilizationofdifferentwoodspecies forenhancedresistancetobiologicalattack,additionofbiocidalchemicals,andformulationofspecialized resins. FactorsInfluencingServiceLifeofWoodBasedPanels EnvironmentalFactors Generally,hightemperatureandhumiditylevelsareconducivetosustainingmold,decay,andstainfungi. Moisturecanenterbuildingenvelopeassembliesasliquidwaterthroughleaksandcapillaryaction,andas water vapor through infiltration of humid air and water vapor diffusion (Morse and Acker 2006). Furthermore,architecturaldesignchangesusingshorterroofoverhangsandcloserproximityoftothe groundlineincreasetheopportunitiesformoistureintrusion(BarnesandKirkpatrick2005).Furtherstill,in someareasoftheworld,theuseofbuildingvapormembranescandecreasetheabilityofmoisturetoescape thebuildingcavity(Morrell2001).Forprolongedexposuretoconditionsofover80%relativehumidity (RH), thereis potential for mold growth on OSB, plywood, and other resinbonded woodbased panels. Therefore,panelsshouldbeprotectedfromthistypeofexposure. Inaddition,cyclesofwettinganddryingcanhaveadeleteriouseffectonpaneldurability.Productswelling canoccur,whichmaymakethepanelsmoresusceptibletocracking,subsequentlyreducingtheintegrityof theentirestructure.Thecrackscanacceleratewettinganddryingratesofwoodproductsandalterabuilding envelope’slongtermperformance.ResearchshowsthatOSB’smoistureabsorptioncapacityandthickness increasesaftereachcycleofwettinganddrying,andthetimerequiredtoreachmaximummoisturecontentis greatlyreducedasthepanelsundergosubsequentwettinganddryingcycles(KumaranandNofal2000).As thepanelsabsorbmoremoisture,thereisincreasedsusceptibilitytomold,decay,andstainfungi. BiologicalFactors Wood decay is affected by wood moisture content and wood temperature. For the most part, decay is relativelyslowattemperaturesbelow10degreesCelsius(°C)andabove35°C(ForestProductsLaboratory 1999), but fungal growth can rapidly occur between 20°C and 35°C (Walchli 1977). As expected, comparisonsofdifferentsitesintermsoftheiraverageairtemperatureshowatendencyforshorterservice livesatwarmerlocations(Beesleyetal.1983;Augustaetal.2004;GrindaandCary2004). TheUnitedStatesForestProductsLaboratoryhasdevisedaclimateindexmap(Figure1)topredictrelative decayhazardregionsintheU.S.Themapisbasedonthemeanmonthlytemperatureandnumberofrainy days,andprimarilyestimatesthedecayhazardofwoodexposedaboveground.

170

Figure1–ClimateIndexMap(ForestProductsLaboratory) Merrilletal.(1965)reportedthatattackedbyseveralmoldfungilostabout1218%ofitsweight, resultinginalossofstrengthofapproximately50%.Anotherstudyreportedthatconditionsof90%RHand 1525°C produced remarkably rapid fungalgrowthoneightdifferenttypes of wood composite boards (Wang 1992). In a comparison study on plywood,OSB,particleboard,medium density fiberboard (MDF), and solid wood,bothplywoodandOSBshowed drastic weight loss when exposed to white rot and brown rot fungi. In particular, plywood exhibited the largest weight loss (36%) after eight weeks with OSB following a similar trend(resultssummarizedinFigure2) (Chungetal.1999).Thelossofmass that occurs when these decay fungi metabolize wood substances may provoke a substantial strength loss of woodencomponents(Bayerbachet al. Figure2–Weightlossofwoodcompositeboardsexposedtovarious 2006). fungi(Chungetal.1999) Inmanycountries,includingthosewith tropicalandsubtropicalclimates,Formosansubterraneantermites(Coptotermes formosanus)alsoposea seriousthreattowoodbasedmaterials,sincewoodcomprisesamajorityoftheirdiet.Thehazardoftermite infestation is greatest in an earth fill or any substructure wood component close to the ground (Forest ProductsLaboratory1999).IntheU.S.,thegreatestthreatoftermiteinfestationoccursinthesouthernstates (seeFigure3).

Figure3–RangeofFormosansubterraneantermite(LouisianaPacificCorp.)

171

OVERVIEWOFMINERALBONDEDWOODCOMPOSITES Aspreviouslystated,thereismuchongoingresearchtoimprovethedurabilityandextendtheservicelifeof woodbasedpanelsusedforresidentialhomeconstruction.Anoutcomeofsuchresearchisthedevelopment ofnewclassesofmineralbondedwoodcomposites.Theseproductsvarygreatlybythegeometryofthe woodparticles,fibers,orstrandsused;processingsteps;andenduseapplications.

BriefHistoryofMineralBondedWoodComposites ThefirstmineralbondedwoodcompositepanelsutilizedamagnesitebinderandweredevelopedinAustria in the early 1900s. These products still exist today mainly for interior applications, and are currently manufacturedinEuropeandtheU.S.byHeraklith(nowKnaufInsulation)andTectum,respectively.In EuropeandtheU.S.,theselowdensitypanels(approximately400kg/m³)areoftenusedasinsulationboards because of their excellentthermal and acoustic properties. Soon after, cementbonded wood composites became popular with the development of WoodWool Cement Board (WWCB). WWCBs are used for internal applications and for exposed decorative ceilings and roof decks, and because Portland cement bonded WWCBs are fully moistureresistant, they are also used successfully for permanent shuttering of concretefloorsandwalls,andmostrecentlyforthickandveryLargeWallElementsinScandinaviaand Russia.TheworldwidedemandfortheseLargeWallElementsisexpectedtoincreasebecauseofincreasing heatingandcoolingcostsandgreaterdemandforpersonalcomfort.Sophisticatedandautomatedturnkey plantsthatarecapableofproducingseveraltypes of WWCB, Wood Strand Cement Board (WSCB), and LargeWallElementsononecombinedmanufacturinglinearenowavailable. CementBondedParticleBoard(CBPB)isahighdensityproductthatwasdevelopedinthe1970storeplace asbestoscement board for structural applications. Common uses of CBPB in Europe are facades, electricallyheated and raised floors, permanent shuttering of concrete floors and walls, and fire and moistureresistant furniture. The applications of CBPB have been restricted by its high density (approximately1,2501,400kg/m3),reducedflexibilityandstrength,relativelyhighexpansionandshrinkage when exposed to moisture, and the need to predrill pilot holes when attaching screws. Therefore, manufacturers, builders, and architects were interested in developing a product that could better meet structuralrequirementsandovercomethesehurdles–thiswasattainedwiththedevelopmentofthenew WoodStrandCementBoard(WSCB),whichacceptsscrewswithoutpredrilling,andexhibitslighterweight, greaterbendingstrength,moreflexibility,andlessexpansionandshrinkageduetomoisturethanCBPB. Foramoredetaileddescriptionofthehistoryofmineralbonded wood composites,the author refers the readertoGerryvanElten’spaper“History,Present,andFutureofWoodCementProducts”presentedatthe 9thInternationalInorganicBondedCompositeMaterialsConferenceinVancouver,BC,Canada.Thispaper canbeviewedatwww.eltomation.comunder“Publications.”

Advantages&AttributesofMineralBondedWoodComposites Auniquefeatureofmineralbondedwoodcompositesisthattheirmanufactureisadaptabletoeitherendof thecostandtechnologyspectrum.Thismeansthatmanufacturingplantswithvaryinglevelsofautomation areavailable–fromfullautomationtolowlevelsofautomation(whichrelymoreonmanuallaborandhand operatedequipment).ThisisespeciallytruewithPortlandcementbondedcompositesbecausenoheatis requiredtocurethecementbinder.Thesecompositesalsoexhibitmanufacturingversatility;withasmall investment,theproductscanalreadybemanufacturedonasmallscaleusingsimpletools,andasthemarket has grown, automated equipment for their manufacture has been developed and is readily available for implementation. Incontrasttoconventionalureaandphenolformaldehyderesinbondedwoodcompositepanels,cement bonded wood composites possess much higher fire, insect, and fungal resistance, in addition to good weatherabilityandacousticabsorption.Also,theincreasingcostofresinsandmachinerynecessaryforthe production of resinbonded boards is another point in favor of mineralbonded composites (Ahn and Moslemi1980;SimatupangandGeimer1990;Simatupang et al.1991;Oyagade1994;Badejo1999;and Ajayi2000).

172

Insummary,thegeneralattributesofmineralbondedwoodcompositesare: • Highfireresistance • Wetanddryrotresistance • Freezethawresistance • Termiteandverminresistance • Excellentworkability • Exceptionalinsulationandacousticperformance(WWCB) • Lowcostandeaseofmanufacture

WOODSTRANDCEMENTBOARD(WSCB) Aspreviouslystated,manufacturers,builders,andarchitectsbecameinterestedindevelopingaproductthat bettermetstructuralrequirements,hadlessofaweightpenalty(suchaswithCBPB),moreelasticity,and possessedtheattributesofmineralbondedwoodcomposites.Now,researchbyEltomationBVhasledto the development of WSCBEltoBoard – a commerciallyavailable WSCB that has structural strength, mediumdensity,adequateelasticity(seeFigure4),andhighresistancetofire,rot,termites,andfreezethaw damage.AfurtheradvantageofWSCBEltoBoardoverCBPBisitsreducedexpansionandshrinkagedueto moisture.

Figure4–WSCBEltoBoardelasticity WoodStrandCementBoardProduction WSCBrequiresonlyafewcommonwidelyavailablerawmaterialsandminimalprocessingsteps,andits manufactureisnotenergyintensive.Fullyautomatedplantsareabletoproduceupto10,600m2of60cm wideboardsperday.AsimplifiedWSCBEltoBoardproductionflowchartisshowninFigure5.

173

Strand Production

Material PortlandRaw Materials Cement Preparation Salt Solution

Strand Distribution

Mould Stacking, 2nd Setting Board Pressing, & Initial Setting

Mould Stripping, Drying, Board Trimming, & Machining, & Stacking Packaging Figure5–SimplifiedWSCBEltoBoardproductionflowchart RawMaterials The selection of cementcompatible wood species is critical for successful production ofWSCB. Some speciessuchasalder(Alnusglutinosa)andlarch(Larixdecidua),forexample,havedemonstratedlimited compatibilitywithcementbecausetheycontainexcessiveamountsofand/orsugarsthatretardthe settingofcement.Therefore,itiscriticaltoselectproperspeciesortoremovethetanninsandsugars(as discussed below) before proceeding with board manufacture. Available scientific literature written by ProfessorW.Sandermannintheearly1960sidentifiesthecompatibilityofPortlandcementwithavarietyof woodspecies.Alternately,asdescribedbyEliasetal.(2004)andFerreiraetal.(2004),onecanconduct cementhydrationstudiestounderstandspecifichydrationcharacteristicssuchashydrationcurves,maximum hydrationtemperatures,timeto maximumhydrationtemperature,anddecreaseofheatreleaseduringthe exothermicprocessofcementhydration;allofwhichgiveanindicationofthecompatibilityofcementwith thesuspectwoodspecies. Generally, pine, , and several hardwoods, when cut in the autumn and winter when the sap has retreatedintotherootsystem,workverywellforWSCBproduction.ZhouandKamdem(2002)reported thattheadditionoflowdensitywoodappearstobeanimportantfactorthatmayinfluencethedevelopment ofwoodcementcompositepanelsbyreducingtheiroveralldensity.Further,itisknownfrompracticethat lowerdensitywoodcutseasierandproducesstrongerandmoreflexiblestrands,whichallowsforproduction ofWSCBwithsuperiormechanicalandphysicalproperties. Usually,logswithdiametersofapproximately70270mmarecutfromtheforest,debarked,andseasoned outsideforuptooneyeartoremoveremainingsugarsandextractivesthatmayinhibitthesettingofthe cement.Watersoakingofcutstrandsisanotheroptionforremovalofsugarsandextractivesfromcertain tropicalhardwoods.Inthismethod,strandscutfromgreenlogscanbesoakedinwarmwaterforuptoafew hourstoremovethewatersolublecementsettinginhibitors.

PhysicalandMechanicalPropertiesofWSCBEltoBoard Tests completed by Moscow State University (MSFU) (2005) showed that WSCBEltoBoard exhibits3.94%thicknessswell,2.24%widthswell,andonly1.22%lengthswellaftera24hourwatersoak. MSFUalsoreportsthatWSCBEltoBoardexhibits0.5%and0.4%thicknessswellwhengoingfrom30% RHto65%RHand65%RHto85%RH,respectively.Other tests conducted on WSCBEltoBoard by MSFU are presented in Table 1. Similar testing completed by the Institute for Tests and Research of BuildingMaterials(IKOB)(2002)shows0.35%ofswellingwhenWSCBEltoBoardissubmersedinwater for66hours;only0.12%shrinkagewhenboardsgofromfullysaturatedconditiontoreconditionedinairat

174

20°Cand65%RH;and0.20%shrinkagewhentheboardsgofromconditionedat20°Cand65%RHtooven dry.NotethatthetestresultspresentedbyIKOBshowWSCBEltoBoardperformsmuchbetterthanCBPB; however,theyalsoshowmuchbetter(anddifferent)valuesthanthosepresentedbyMSFU.Becauseofthe variedresults,theauthorrecommendsthatmoretestingbedonetofurtherdefinetheswellingandshrinkage propertiesofWSCBEltoBoard. WhencomparedtoCBPB,WSCBEltoBoardexhibitslessexpansionandshrinkageduetomoisture.Thisis becausealargeportionofthestrandsareorientedinthelongitudinaldirection;theyaremuchbetteraligned andsituatedfullyparalleltotheplaneoftheboard.Becausewoodexpandsandshrinkslesslengthwiseas opposedtoacrossthefibers,WSCBEltoBoardperformsmuchbetterthanCBPB(wherethewoodparticles are mainly situated at random positions in the boards), especially in the longitudinal direction. This differencecanbeincreasedifthewoodstrandsareorientedevenmoreinthelongitudinaldirectionofthe board during distribution,which will accordingly increase bending strength, flexibility, and swelling and shrinkagepropertiesinthelongitudinalplane.Thus,lengthswellismuchlowerthanthicknessandwidth swell–thisisespeciallyadvantageouswhenWSCBEltoBoardismanufacturedinlongplanksforexterior cladding. AccordingtoGermanDIN4102,WSCBEltoBoardisnoncombustible(ClassB1). Parameter GOSTNorm* AverageValues Density GOST2681686 1,130kg/m3 Moisturecontent GOST2681686 610% Modulusofrupture(MOR) GOST2681686 20.3N/mm2 (10mmthickness) Hardness GOST1184376 42.6N/mm2 Impactstrength GOST1184276 1720Dzh/m2 Screwpullingforce GOST1063778 76.8N/mm Thermalconductivity 0.21W/(m*K) Frostresistance GOST874788 <1.7%decreaseinstrength Table1–PropertiesofWSCBEltoBoard(*GOSTNormisagovernmentalRussianStatequalitynormsimilar toDINorISO)(MoscowStateForestryUniversity)

DecayResistanceofWSCB WSCB is especially desirable for use in warm and humid climates where termite and fungal decay are problematic.BoththealkalinepHofthecement/woodmatrixandthephysicalencapsulationofwoodfibers bythecementmatrixpreventbiologicalattack.Becauseofthisquality,woodcementcompositeshaveeven beenputintoserviceinbelowgroundapplications(suchaspermanentshutteringofconcretefoundations, basements,andwalls)wheredecayhazardsareexpectedtobesevere(Hodgson1985andInoue1987). Woodcement compositeshave high resistanceto biodegradation, especially againstfungi (Ferreira et al. 2004),andshouldcontinuetoperformwellinmanyexteriorenvironments.Itappearsthatfungicontrolthe pHoftheirenvironmentintheprocessofdecayingwood,andbrownrotfungiinparticular,canlowerthepH ofthemicroenvironmentto2.0orlower(Greenetal.1991andJellisonetal.1992).Itisthoughtthatthis acidicenvironmentisnecessarytocausecertainmetabolicandextracellularchemicalmechanismsassociated withthebreakdownofwoodbythefungi(Goodelletal.1997;HydeandWood1995;andShimadaetal. 1994).AsdescribedbyGoodelletal.(1997),theproductionofoxalatecrystalsbythefungiandpackedinto thewoodcelllumenssuggeststhatthefungiaretryingtoneutralizethehighpHassociatedwiththecement matrix,buttheyareunsuccessfulindoingso. TheresistancetobiologicalattackhasbeentestedextensivelyinWWCBandCBPBbut,onlyuntilrecently, hasitbeenexaminedinWSCB.Papadopoulos(2006)comparedtheresistanceofWSCBandcommercial

175

OSBtodecaybybrownandwhiterotfungiafter16weeksofexposure.Theresultsofhisresearchare presentedinTable2.Tosummarize,hefoundthatbothfungifailedtoattacktheWSCB,andthathigher cement:woodratiosprovidedgreaterresistancetofungaldecay. (Greatcaremustbetaken,however,to ensurethatthecement:woodratioiswithintheproperrange.Researchsuggeststhatacement:woodratio ofapproximately2.0yieldsWSCBwithoptimalphysicalandmechanicalproperties). BrownRotFungi WhiteRotFungi Cement:WoodRatio WeightLoss(%) WeightLoss(%) 1.5 5.25 7.33 2.0 0.72(0.06) 3.24(0.55) 3.0 3.21(0.59) 2.22(0.7) CommercialOSB 11.22(2.11) 28.25(3.21)

Table2–WeightlossofexperimentalWSCBpanels after16weekexposureto decayfungi.(Thestandard deviationsareinparentheses“().”Eachvalueisthemeanofeightsamples)(Papadopoulos2006)

ApplicationsofWSCBEltoBoard WSCBEltoBoard offers durability, structural strength,andresistanceagainstfire,moisture,termites, and fungi;thus,itissuitableforawiderangeofinternalandexternalapplications.InEuropeandAsia,WSCB EltoBoardisusedinthegeneralconstructionindustryaswellasforrefurbishmentofresidential,industrial, commercial,andagriculturalbuildings.Itcanbenailed,screwed,andstapledusingstandardtools,andcan acceptawiderangeoffinishessuchasmortar,plaster,andpaint.Itcanalsobeembossedwithafullyclosed andtexturedsurfacetoimitatewoodgrain,brick,ornaturalstonepatterns. Someapplicationsforindustrialanddevelopedcountriesare: • Flooringandunderlayment • Externalsiding • Permanentshutteringforconcreteformingsystems • Prefabricatedhouses • Soundbarrierwalls Somespecialapplicationsfordevelopingcountriesare: • Mediumandlowcosthousing • Corrugatedroofingboards • Roofingshingles HandmadeWSCBofrelativelylowdensity(900kg/m3)hasbeenusedsuccessfullyformediumandlow costhousingandotherapplicationsinthePhilippinesasillustratedinFigures69.Pleaseseetheauthor’s accompanyingPowerPointpresentation“WoodStrandCementBoard”formorepicturesofWSCButilized inmediumandlowcosthousingapplicationsinthePhilippines.

176

Figure6–WSCBEltoBoardsidingandshingles Figure7–Allexteriorandinteriorwalls,floors,and facadecladdedwithWSCBEltoBoard(painted)

Figure8–Twostoryhouseentirelyconstructedwith Figure9–InteriorofhouseshowninFigure8with WSCBEltoBoard.Theexteriorgroundfloorwalls WSCBEltoBoardfloor,ceiling,andwalls(painted) havebeenstuccoed CONCLUSION WSCBEltoBoard has the potential to substitute for plywoodandOSBsheathingintheconstructionand refurbishmentofresidential,industrial,commercial,andagriculturalbuildings–especiallyinenvironments withconsistentlywarmtemperatures,highhumidity,andmoderatetoheavyrainfall.Itisaversatilematerial thatissuitableforbothinteriorandexteriorapplications.Itisdurable;highlyresistanttofire,water,rot, freeze/thawdamage,andbiologicaldecay;easilyworkablewithstandardwoodprocessingtools;andcanbe manufacturedtomeetstructuralstrengthrequirements.However,furtherresearchandtestingisneededto ensurethatWSCBEltoBoardpanelsmeetproperenduserequirementsandanyapplicablebuildingcodes. REFERENCES Adair,C.2004.Regionalproductionandmarketoutlook:Structuralpanelsandengineeredwoodproducts, 20042009.APA–TheEngineeredWoodAssociation,Tacoma,WA. Ahn,W.Y.andMoslemi,A.A.1980.SEMexaminationofwoodportlandcementboards.WoodScience 13(2):7782.

177

Ajayi,B.2000.StrengthanddimensionalstabilityofcementbondedflakeboardproducedfromGmelina arboreaandLeucaenaleucocephala.Ph.D.thesis,FederalUniversityofTechnology,Akure. Augusta,U.,Rapp,A.O.,andEckstein,D.2004.DauerhaftigkeitderwichtigstenheimischenHolzerbei realitatsnaherPrufungunterbautypischenBedingungen.AbschlussberichtzumForschungsprojektG99/14 derDeutschenGesellschaftfurHolzforschung. Badejo,S.O.O.1999.Influenceofprocessvariablesonpropertiesofcementbondedparticleboardsfrom mixedtropicalhardwoods.Ph.D.thesis,FederalUniversityofTechnology,Akure. Baileys, J. K., Marks, B., Ross, A., Crawford, D., Krzysik, A., Muehl, J., and Youngquist, J. 2003. Providingmoistureandfungalprotectiontowoodbasedcomposites.ForestProd.J.53(1):7681. Barnes,H.M.andKirkpatrick,J.W.2005.Biocidetreatmentsforcompositepanels.In:Proc.ofthe39th InternationalWoodCompositesSymposium.WashingtonStateUniversity,Pullman,WA.pp.225231. Bayerbach,R.,Brischke,C.,andRapp,A.O.2006.Decayinfluencingfactors:Abasisforservicelife predictionofwoodandwoodbasedproducts.WoodMat.Sci.andEng.1:91107. Beesley,J.,Creffield,J.W.,andSaunders,I.W.1983.AnAustraliantestfordecayinpaintedtimbers exposedtotheweather.ForestProdJ.33(5):5763. Chung,W.,Wi,S.,andBae,H.1999.Microscopic observation of woodbased composites exposed to fungaldeterioration.J.WoodSci.45(1):6468. Elias, R., Goroyias, G., and Fan, M. 2004. Research into using recycled waste paper residues in constructionproducts.TheWaste&ResourcesActionProgramme,WRAPProjectcode:PAP009011. Ferreira,J.M.F.,Jorge,F.C.,andPereira,C. 2004.Woodcementcomposites:areview.HolzRoh Werkst.62:370377. ForestProductsLaboratory.1999.WoodHandbook–Woodasanengineeringmaterial.Chapter10.Gen. Tec.Rep.FPLGTR113.Madison,WI:U.S.DepartmentofAgriculture,ForestService,ForestProducts Laboratory,463pp. Goodell,B.,Jellison,J.,Liu,J.,Daniel,G.,Paszczynski,A.,Fekete,F.,Krishnamurthy,S.,Jun,L.,andXu, G.1997.Lowmolecularweightchelatorsandphenoliccompoundsisolatedfromwooddecayfungiand theirroleinthefungalbiodegradationofwood.J.ofBiotechnology.53(2/3):133162. Green.F.,Larsen,M.J.,Winandy,J.E.,andHighley,T.L.1991.Roleofoxalicacidinincipientbrownrot decay.Mater.Org.26:191213. Grinda,M.andCarey,J.2004.TheCOSTEuroIndexforfungaldecay–Fiveyearsresults.In:Proc.of COSTE22FinalWorkshop,Estoril,Portugal,2223,March. Hodgson,A.A.1985.Alternativestoasbestosandasbestosproducts.AnjalenPubs.London,United Kingdom.230pp. Hyde,S.M.andWood,P.M.1995.Amodelforattackatadistancefromthehyphaebasedonstudieswith thebrownrotConiophoraputeana.IRG/WP9510104.Inter.Res.GrouponWoodPreservationSeries. IRGSecretariat,Stockholm,Sweden. Inoue,S.1987.DurabilityofboardsandpanelsforwallfinishforoneortwostoryhousesinHokkaido.4th Inter.Conf.onDurabilityofBuildingMats.AndComponents,Singapore.pp.136147. Institute for Tests and Research of Building Materials. 2002. Tests on Wood Strand Cement Board – EltoBoard.TestingreportprovidedbyEltomationBV. Jellison,J.,Smith,K.,andShortle,W.1992.Cationanalysisofwooddegradedbywhiteandbrownrot fungi. IRG/WP 1552. Inter. Res. Group on Wood Preservation Series. IRG Secretariat, Stockholm, Sweden. Kumaran,K.andNofal,M.2000.Moisture’seffectsonOSB.ProfessionalRoofing,30(4):2830.

178

Merrill,W.,French,D.W.,andHossfeld,R.L.1965.Effectsofcommonmoldsonphysicalandchemical propertiesofwoodfiberboard.TAPPI48:470474. Morrell,J.J.2001.Biodeteriorationofwoodbasedcompositesanditsprevention.In:Proc.ofthe35th InternationalParticleboard/CompositeMaterialsSymposium.WashingtonStateUniversity,Pullman,WA. Morse,R.andAcker,D.2006.Indoorairqualityandmoldpreventionofthebuildingenvelope.Morse ZehnterAssociates.Online.AccessedAugust26,2008.http://www.wbdg.org/resources/env_iaq.php. MoscowStateForestryUniversity.2005.ConfidentialtestingreportprovidedbyEltomationBV. Oyagade, A. O. 1994. Compatibility of some tropical hardwood species with Portland cement. J. of TropicalForestSci.6(4):387396. Papadopoulos, A. N. 2006. Decay resistance of cementbonded oriented strand board. BioResources. 1(1):6266. PATH. 1999. Improving durability in housing: Background paper. Prepared for National Forum on DurabilityResearch,UpperMarlboro,Maryland.March. Shimada,M.,Ma,D.B.,andAkamatsu,Y.1994.Aproposedroleofoxalicacidinwooddecaysystemsof woodrottingbasidiomycetes.FEMSMicrobiol.Rev.13,285296. Simatupang, M. H. and Geimer, R. L. 1990. Inorganic binder for wood composites: feasibility and limitations.In:Proc.oftheWoodAdhesiveSymposium.Madison,WI.pp.169176. Simatupang,M.H.,Kasim,A.,Seddig,N.,andSmid,M.1991.Improvingthebondbetweenwoodand gypsum. In: Proc. of the 2nd International Inorganic Bonded Wood and Fiber Composite Materials Conference.UniversityofIdaho.pp.6169. VanElten,G.2005.Woodstrandboard.U.S.PatentApplicationNo.20050193661. Walchli,O.1977.DerTemperatureinflußaufdieHolzzerstorungdurchPilze.HolzalsRohundWerkstoff, 35,4551. Wang,Q.1992.Woodbasedboards:responsetoattackby moldandstainfungi.Ph.D.dissertation, SverigesLantbruksuniversitet,Uppsala,Sweden,pp.126. Zhou, Y. andKamdem, D. P. 2002. Effectofcement/wood ratio on the properties of cementbonded particleboardusingCCAtreatedwoodremovedfromservice.ForestProd.J.52(3):7381.

179