An Abstract of the Dissertation Of

Total Page:16

File Type:pdf, Size:1020Kb

An Abstract of the Dissertation Of AN ABSTRACT OF THE DISSERTATION OF Jenna Sullivan Stack for the degree of Doctor of Philosophy in Zoology presented on May 3, 2019. Title: Marine Mass Mortality in a Global Change Context: Impacts on Individuals, Populations and Communities Abstract approved: _____________________________________________________________________ Bruce A. Menge Human actions are pushing natural systems into states that have no historical precedent. In response, empirical and theoretical researchers are increasingly focused on developing ways to predict the responses of ecological systems to change. However, significant knowledge gaps remain, often leading to “ecological surprises” where observed impacts of global change do not align with existing theory or hypotheses. In this dissertation, I study the response to perturbations of a well- characterized system for ecological research, the Northeast Pacific rocky intertidal, to advance our understanding of and ability to predict the impacts of global change on individuals, populations and communities. In 2013 and 2014, sea star species along the west coast of North America were affected by an outbreak of Sea Star Wasting Syndrome (SSWS), resulting in an epidemic of mass mortality that spanned unprecedented geographic and temporal scales and resulted in the near extirpation of multiple sea star species from many locations along the coast. One of the species that was most strongly affected in the intertidal zone was Pisaster ochraceus, an iconic predatory sea star that has the ability to play a keystone role in its community through foraging on and ultimately controlling the lower boundary of mussel prey populations. The first two chapters of this dissertation take advantage of SSWS as a “natural” form of top predator removal to assess the consequences of this type of perturbation on ecosystem resilience. In Chapter 2, I tested the hypotheses that P. ochraceus loss would facilitate a population expansion of a smaller, mesopredator sea star, Leptasterias sp., and that this expansion would have negative effects on P. ochraceus population recovery. This result would follow expectations of competitive release and aligns with existing research on the competitive relationship between these species from the Northeast Pacific intertidal. I used field surveys to track Leptasterias populations just before the onset of and up to three years after SSWS. Contrary to expectation, I did not see an increase in the distribution or density of Leptasterias, and instead saw a decrease in individual size post-SSWS. Further, I found no evidence of competition between P. ochraceus recruits and Leptasterias for resources. Thus, although my hypotheses were grounded in theory and previous research, they were not supported by data. These results suggest that Leptasterias will not provide a bottleneck for P. ochraceus population recovery from SSWS, nor compensate for lowered P. ochraceus predation. The dynamics of P. ochraceus at the recruit (early benthic juvenile) life- history stage has long been considered a gap in our understanding of the species, as recruits have been historically rare in the intertidal and hard to study. Post-SSWS, however, many sites along the coast experienced unprecedented recruitment of P. ochraceus into intertidal ecosystems. In Chapter 3, I used a field experiment to test the hypothesis that this pulse of recruitment was facilitated by SSWS-related adult loss, the consequent decrease in predation by adult P. ochraceus, and increase in prey availability for recruits. Instead of finding evidence that adults dominate recruits in food competition and inhibit recruit success, I found that recruits have a negative effect on P. ochraceus adult densities. Further, treatments where recruits were excluded and only adults had access to prey communities showed the highest control of sessile invertebrate prey populations at the end of the year-long experiment. Thus, these results suggest that adult P. ochraceus will not hinder recruit recovery, but propose a mechanism whereby high recruit densities may increase vulnerability to SSWS-induced shifts in community structure. Outbreaks of mass mortality, particularly those as widespread as SSWS, are one of many ecological challenges driven by anthropogenic environmental changes such as warming and ocean acidification. However, predicting the vulnerability of species and populations to global change is an ongoing and significant challenge for researchers and managers. In Chapter 4 I assessed whether intraspecific physiological variability could help predict P. ochraceus recruit response to ocean acidification and warming. I found that individual metabolic rate interacted with ocean acidification and food availability to drive sea star growth, and that an interaction between metabolic rate and temperature also predicted sea star predation on Mytilus spp. mussels. Thus, these results have implications not only for P. ochraceus but also for its food web interactions. Incorporating these results into predictive frameworks may improve our ability to anticipate and scale up responses to global change across levels of ecological organization. In summary, my dissertation, although chock-full of surprises, presents several paths forward for improving predictive ability in the face of accelerating anthropogenic global changes. Further, we reinforce the notion that management strategies should be cautious and anticipate ecological surprises. Predicting the future is challenging even when predictions are well-informed, particularly in environmental contexts that have never been encountered before. © Copyright by Jenna Sullivan Stack May 3, 2019 All Rights Reserved Marine Mass Mortality in a Global Change Context: Impacts on Individuals, Populations and Communities by Jenna Sullivan Stack A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented May 3, 2019 Commencement June 2019 Doctor of Philosophy dissertation of Jenna Sullivan Stack presented on May 3, 2019 APPROVED: Major Professor, representing Zoology Chair of the Department of Integrative Biology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Jenna Sullivan Stack, Author ACKNOWLEDGMENTS I first met my advisor Bruce Menge one early morning on the rocks at Boiler Bay. Although I’m sure he was keen to get to all the work left to do that day before the tide came in and covered our field site, he took a momentary pause to point out interesting features of the site and changes he had observed over the previous decades. A place where part of the intertidal had caved in years ago, resulting in loss of some of the ecological high zone. The old abandoned boiler from which the site got its name. A section of bench where one of his previous students had jackhammered out replicate tidepools for an experiment on how top-down vs. bottom- up forces structure communities. I was, and remain, in awe of the immensity of both Bruce’s knowledge of and also his curiosity and dedication to learning about intertidal ecosystems. It is rare that an advisor continue to do fieldwork alongside their technicians and graduate students, let alone at every opportunity, for decades. Bruce generously shared his time and expertise with me through all the ups and downs of this dissertation, from brainstorming mechanisms that might explain a puzzling observation to helping me remove “innumerable” baby sea stars from cracks in the intertidal rocks with tweezers. Bruce is kind, unfailingly supportive, and a world-class scientist. Quite obviously, I couldn’t have done this without him. I am also deeply indebted to Jane Lubchenco for her generous mentorship. Although Jane does not officially sit on my dissertation committee, she has transformed my thinking about science and how it can best serve society. Working with Jane has been an honor, and the experience has already shaped my career goals and trajectory. As a team, Bruce and Jane have taught me that high standards and rigorous science do not preclude, but are enhanced by, personal connections and empathy. Thanks for allowing me to be a small shoot on the LubMenge family tree. I am grateful to my committee, Francis Chan, Mark Novak, Debashis Mondal, Judy Li, and, most recently, Ana Spalding, for their support and guidance. Judy, thanks for the chats over coffee and for pushing me to think beyond my specific study system. Conversations and classes with Mark expanded my concept of an ecologist and inspired me to think more deeply about the theories that inform my research. I am especially grateful to Francis Chan for his mentorship, the impacts of which extend far beyond this dissertation. In every conversation, Francis challenged me to think big, question assumptions, and work to advance our thinking as ecologists. Through posing thoughtful questions and providing guidance, Francis pushed me to critically evaluate how my science can make a difference. I am grateful for Kirsten Grorud- Colvert’s mentorship, ranging from how to respond to reviewer #2 to how to deal with changing my last name. I deeply admire Kirsten as a scientist and as a person. I am privileged to be part of the LubMenge lab group, and to have overlapped with such incredible people. Field and lab work would not have been possible without the help of numerous labmates and volunteer assistants – too many to name without this dissertation becoming as long as Bruce’s – who made this PhD not only feasible but also fun. In particular: Liz Cerny-Chipman, thanks being such a generous friend and role model. Your integrity is inspiring and so are your whelk-spotting skills. Thanks to Chenchen Shen and Allie Barner for all the adventures and for inspiring me to be a more thoughtful scientist – I am so fortunate to have had your guidance throughout this PhD. Sarah Gravem, thanks for sharing your vast knowledge and fun, positive energy. Thanks to Barbara Spiecker, one of the most inspiring people I’ve ever met, for her research help, friendship and endless patience with me.
Recommended publications
  • Coll Survey June 2003 Summary Report
    Coll Survey kelp forest June 2003 3-bearded rockling Summary Report nudibranch Cuthona caerulea bloody Henry starfish and elegant anemones snake pipefish and sea cucumber diver and soft corals North-west Coast SS Nevada Sgeir Bousd Cairns of Coll Sites 22-28 were exposed, rocky offshore reefs reaching a seabed of The wreck of the SS Nevada (Site 14) lies with the upper Sites 15-17 were offshore rocky reefs, slightly less wave exposed but more Off the northern end of Coll, the clean, coarse sediments at around 30m. Eilean an Ime (Site 23) was parts against a steep rock slope at 8m, and lower part on current exposed than those further west. Rock slopes were covered with kelp Cairns (Sites 5-7) are swept by split by a narrow vertical gully from near the surface to 15m, providing a a mixed seabed at around 16m. The wreck still has some in shallow water, with dabberlocks Alaria esculenta in the sublittoral fringe at very strong currents on most spectacular swim-through. In shallow water there was dense cuvie kelp large pieces intact, providing homes for a variety of Site 17. A wide range of animals was found on rock slopes down to around states of the tide, with little slack forest, with patches of jewel and elegant anemones on vertical rock. animals and seaweeds. On the elevated parts of the 20m, including the rare seaslug Okenia aspersa, and the snake pipefish water. These were very scenic Below 15-20m rock and boulder slopes had a varied fauna of dense soft wreck, bushy bryozoans, soft corals, lightbulb seasquirts Entelurus aequorius.
    [Show full text]
  • The Leptasterias (Echinodermata: Asteroidea) Species Complex: Variation in Reproductive Investment
    MARINE ECOLOGY PROGRESS SERIES Vol. 109: 95-98, 1994 Published June 9 Mar. Ecol. Prog. Ser. NOTE The Leptasterias (Echinodermata: Asteroidea) species complex: variation in reproductive investment Sophie B. George' Friday Harbor Laboratories, University of Washington. Friday Harbor. Washington 98250, USA ABSTRACT: Egg diameter, the amount of protein per egg, Egg size, egg numbers, and the organic content of and the number of eggs per individual produced did not differ the eggs may vary within a single spawn of a single between 2 morphologically and genetically distinct species individual, among individuals from the same popula- of seastars, Leptastenas epichlora (Brandt) and L. hexactis (Stimpson). In these 2 closely related sympatric species, vari- tion, and among individuals from different populations abll~tyin egg quality mght be mostly attributed to environ- or species (Emlet et al. 1987, McEdward & Carson 1987, mental factors rather than genetic constraints. George et al. 1990, McEdward & Chia 1991). Closely KEY WORDS Egg size. Egg number. Protein content. Seastar related species can have slmilar egg sizes or a broad range of egg sizes (Emlet et al. 1987). The present paper investigates the use of these reproductive para- The systematics of small six-rayed seastars of the meters to clarify the Leptasterias species complex. genus Leptasterias in the Puget Sound region (Wash- L, epichlora and L. hexactis were used because they ington, USA) has been controversial (Bush 1918, Fisher were the most abundant species in the Puget Sound 1930, Chia 1966a, Kwast et al. 1990). Chia (1966a), region. Kwast et al. (1990). and Stickle et al. (1992) identified 3 Materials and methods.
    [Show full text]
  • Practical Euthanasia Method for Common Sea Stars (Asterias Rubens) That Allows for High-Quality RNA Sampling
    animals Article Practical Euthanasia Method for Common Sea Stars (Asterias rubens) That Allows for High-Quality RNA Sampling Sarah J. Wahltinez 1 , Kevin J. Kroll 2, Elizabeth A. Nunamaker 3 , Nancy D. Denslow 2,4 and Nicole I. Stacy 1,* 1 Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; swahltinez@ufl.edu 2 Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; krollk@ufl.edu (K.J.K.); ndenslow@ufl.edu (N.D.D.) 3 Animal Care Services, University of Florida, Gainesville, FL 32611, USA; nunamaker@ufl.edu 4 Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA * Correspondence: stacyn@ufl.edu Simple Summary: Sea stars are iconic marine invertebrates and are important for maintaining the biodiversity in their ecosystems. As humans, we interact with sea stars when they are used as research animals or displayed at public or private aquaria. Molecular research requires fresh tissues that have thus far been considered to be of the best quality if collected without euthanasia. This is the first paper describing a method to euthanize sea stars that still allows for sampling of high-quality tissue that can be used for advanced research. Since it can be difficult to tell if an invertebrate has died, it is important to use a two-step method where the first step makes it non-responsive and Citation: Wahltinez, S.J.; Kroll, K.J.; the next step ensures it has died.
    [Show full text]
  • The Advantages of the Pentameral Symmetry of the Starfish
    The advantages of the pentameral symmetry of the starfish Liang Wua1, Chengcheng Jia1, Sishuo Wanga, and Jianhao Lvb a College of Biological Sciences, China Agricultural University, Beijing, 100094, China b College of Science, China Agricultural University, Beijing, 100094, China 1 Joint first authors. Corresponding author Liang Wu College of Biological Sciences, China Agricultural University, Beijing, 100094, China Tel: +86-10-62731071/+86-13581827546 Fax: +86-10-62731332 E-mail: [email protected] Chengcheng Ji E-mail: [email protected] Sishuo Wang E-mail: [email protected] Jianhao Lv E-mail: [email protected] Abstract Starfish typically show pentameral symmetry, and they are typically similar in shape to a pentagram. Although starfish can evolve and live with other numbers of arms, the dominant species always show pentameral symmetry. We used mathematical and physical methods to analyze the superiority of starfish with five arms in comparison with those with a different number of arms with respect to detection, turning over, autotomy and adherence. In this study, we determined that starfish with five arms, although slightly inferior to others in one or two aspects, exhibit the best performance when the four aforementioned factors are considered together. In addition, five-armed starfish perform best on autotomy, which is crucially important for starfish survival. This superiority contributes to the dominance of five-armed starfish in evolution, which is consistent with the practical situation. Nevertheless, we can see some flexibility in the number and conformation of arms. The analyses performed in our research will be of great help in unraveling the mysteries of dominant shapes and structures.
    [Show full text]
  • Contributions to the Classification of the Sea-Stars of Japan. : II
    Contributions to the Classification of the Sea-stars of Japan. : II. Forcipulata, with the Note on the Relationships Title between the Skeletal Structure and Respiratory Organs of the Sea-stars (With 11 Plates and 115 textfigures) Author(s) HAYASHI, Ryoji Citation 北海道帝國大學理學部紀要, 8(3), 133-281 Issue Date 1943-03 Doc URL http://hdl.handle.net/2115/27045 Type bulletin (article) File Information 8(3)_P133-281.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP , \ Contributio~s to the Classification of the Sea"stars ,of Japan. n. Forclpulata, with the Note on the Rela.. tionships between the Skeletal Structure and Respiratory Organs of the Sea"starsU Ryoji Hayashi Research Institute for Natural Resources (With 11 plates and 115 te::etjigures) It is the second report o{ the writer's investigation on the sea­ stars of Japan, undertaken under the guidance of Prof. Tohru Uchida and contains the following 41 forms belonging to the three families, Brisingidae, Zoroasteridae and Asteriidae. These families are all included in the .order Forcipulata. From Japanese waters 18 species of Forcipulata have previously been reported. 'l'hey all belong to the family Asteriidae, except Sladen's two species of Brisingidae. , The species newly recorde~ are marked with asterisk. Family Brisingidae * Odinia pacifica forma sagamiana n. forma * Odinia aust't'ni forma japonioo n. forma * Parabrisinga, pellucida n. sp. ' Brisingellaarmillata (SLADEN) * Freyellaster Fecundus forma ochotJensis n. forma * Freyellaster mtermedius n. sp. Freyella pennata SLADEN Family Zoroasteri~e * Zoroaster orientalis n. sp. * Zoroasterorientalis n. sp. forma gracilis n. forma * Zoroaster ophia.ctis FISHER * Zoroaster micropoTus FISHER * Cnemidaster 'wyvillii .SLADEN" 1) : Contributions from the Akkeshi Marine Biologi~al Station, No.
    [Show full text]
  • Marine News Issue 15 Photo
    MARINE NEWS GLOBAL MARINE AND POLAR PROGRAMME ISSUE 15 June 2020 CLIMATE CHANGE Financing nature- based solutions PLASTIC OCEANS Tackling a 21st Century scourge PLUS news on IUCN’s other marine, coastal and polar activities from around the globe MARINE NEWS In this Issue... Editorial Issue 15 - June 2020 Humanity’s relationship and cultural heritage with the ocean 1 Editorial by Minna Epps is deeply anchored - from the air that we breathe to the food that we eat to the planet we live on - it is our life support system. It distributes heat from the equator to the poles, plays 2 Focus on the Sweden-IUCN a crucial role in the carbon cycle and climate regulation, and IUCN Global Marine partnership carries 90% of the world’s traded goods. Our ocean economy and Polar Programme is worth trillions; we urgently need to protect our assets Rue Mauverney 28 sustainably for future generations. In return, healthy and 1196 Gland, Switzerland 4 GMPP 2017-2020 Programme resilient marine and coastal ecosystems will protect us. Tel +4122 999 0217 update But the pressure on marine biodiversity is on. The exploitation www.iucn.org/marine of living marine resources and threats to marine ecosystems 6 Global Coasts have never been higher. We are faced with cumulative © MSC Edited by David Coates, Anna Tuson, impacts, which are amplified by climate change. The double Save our Mangroves Now, Blue crisis of climate change impacts (ocean warming, ocean areas beyond national jurisdiction, through a future-proofed James Oliver & Anthony Hobson acidification and ocean deoxygenation - the deadly trio) and Natural Capital, Blue Forests, Blue internationally legally binding agreement under UNCLOS, while biodiversity loss have already caused long-term negative Solutions, MPA & Islands (Corsica), ensuring that existing treaties and conventions are ratified and Layout by Imre Sebestyén impacts on people and biodiversity.
    [Show full text]
  • Diversity of Sea Star-Associated Densoviruses and Transcribed Endogenous Viral Elements of Densovirus Origin
    GENETIC DIVERSITY AND EVOLUTION crossm Diversity of Sea Star-Associated Densoviruses and Transcribed Endogenous Viral Elements of Densovirus Origin Elliot W. Jackson,a Roland C. Wilhelm,b Mitchell R. Johnson,a Holly L. Lutz,c,d Isabelle Danforth,d Joseph K. Gaydos,e Michael W. Hart,f Ian Hewsona Downloaded from aDepartment of Microbiology, Cornell University, Ithaca, New York, USA bSchool of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, New York, USA cDepartment of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA dScripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA eSeaDoc Society, UC Davis Karen C. Drayer Wildlife Health Center—Orcas Island Office, Eastsound, Washington, USA fDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada ABSTRACT A viral etiology of sea star wasting syndrome (SSWS) was originally ex- http://jvi.asm.org/ plored with virus-sized material challenge experiments, field surveys, and metag- enomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate patho- gen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association be- tween densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, Califor- on January 8, 2021 by guest nia, Washington, and Alaska. We used 179 publicly available sea star transcriptomes to complement our approaches for densovirus discovery.
    [Show full text]
  • Mapping Biodiversity on the Scotian Shelf and in the Bay of Fundy
    Canadian Science Advisory Secretariat (CSAS) Research Document 2016/006 Maritimes Region Mapping Biodiversity on the Scotian Shelf and in the Bay of Fundy C.A. Ward-Paige and A. Bundy Science Branch, Maritimes Region Ocean and Ecosystem Science Division Fisheries and Oceans Canada PO Box 1006, 1 Challenger Drive Dartmouth, Nova Scotia B2Y 4A2 March 2016 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044 Correct citation for this publication: Ward-Paige, C.A., and Bundy, A. 2016. Mapping Biodiversity on the Scotian Shelf and in the Bay of Fundy. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/006. v + 90 p. TABLE OF CONTENTS ABSTRACT ................................................................................................................................ iv RÉSUMÉ .................................................................................................................................... v INTRODUCTION ........................................................................................................................1
    [Show full text]
  • A New Sea Star of the Genus Leptasterias (Asteroidea: Asteriidae) from the Aleutian Islands
    Zootaxa 3941 (4): 579–584 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3941.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:CCC3BFF9-1EF6-45A6-AFE1-07ED3DFD2E41 A new sea star of the genus Leptasterias (Asteroidea: Asteriidae) from the Aleutian Islands ROGER N. CLARK¹, ² & STEPHEN C. JEWETT³ ¹Associate in Invertebrate Zoology, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, Califor- nia 90007 USA ²Mailing address: 3808 E. Pinehurst Dr., Eagle Mountain, Utah 84005-6007 USA. E-mail: [email protected] ³Research Professor, Institute of Marine Science, 128 O’Neill, P.O. Box 757220, University of Alaska Fairbanks, Fairbanks, Alaska 99775-7220 USA. E-mail: [email protected] Abstract A new species of asteriid sea star of the genus Leptasterias (Order Forcipulatida) is described from the nearshore waters of the Aleutian Islands. Leptaterias tateisp. nov. is distinguished from Leptasterias stolacantha Fisher, 1930, by the char- acteristics of the spines and pedicellariae. Geographic distribution is discussed and a key to the five-rayed Leptasterias of the Aleutian Islands is provided. Key words: sea star, Leptasterias, new species, Alaska, Aleutian Introduction The Aleutian Islands have a highly diverse asteroid fauna. An inventory of shallow water (< 20 m) sea star species yielded six families, 18 genera, and 53 species (Jewett et al. 2012), including 17 recently discovered species (Clark & Jewett 2010, 2011a, b). The family Asteriidae is well represented with more than 20 species (Fisher 1930; Jewett et al.
    [Show full text]
  • Pycnopodia Helianthoides)
    Sunflower Sea Star (Pycnopodia helianthoides) Red List Category: Critically Endangered Year Published: 2020 Date Assessed: 26 August 2020 Date Reviewed: 31 August 2020 Assessors: Sarah A. Gravem*, Oregon State University; Walter N. Heady, The Nature Conservancy; Vienna R. Saccomanno, The Nature Conservancy; Kristen F. Alvstad, Oregon State University; Alyssa L.M. Gehman, Hakai Institute; Taylor N. Frierson, Washington Department of Fish and Wildlife; Sara L. Hamilton*, Oregon State University. * co-first-authors who contributed equally to the assessment Reviewers Gina Ralph, International Union for the Conservation of Nature; Melissa Miner, University of California Santa Cruz and MARINe; Pete Raimondi, University of California Santa Cruz and PISCO; Steve Lonhart, Monterey Bay National Marine Sanctuary, NOAA. Compilers Rodrigo Beas-Luna, Universidad Autónoma de Baja California; Joseph Gaydos, SeaDoc Society, UC Davis Karen C. Drayer Wildlife Health Center; Drew Harvell, Cornell University and Friday Harbor Labs, University of Washington; Erin Meyer, Seattle Aquarium. Contributors John Aschoff, Lindsay Aylesworth, Tristan Blaine, Jenn Burt, Jenn Caselle, Henry Carson, Mark Carr, Ryan Cloutier, Mike Dawson, Eduardo Diaz, David Duggins, Norah Eddy, George Esslinger, Fiona Francis, Jan Freiwald, Aaron Galloway, Katie Gavenus, Donna Gibbs, Josh Havelind, Jason Hodin, Elisabeth Hunt, Stephen Jewett, Christy Juhasz, Corinne Kane, Aimee Keller, Brenda Konar, Kristy Kroeker, Andy Lauermann, THE IUCN RED LIST OF THREATENED SPECIES™ Julio Lorda, Dan Malone, Scott Marion, Gabriela Montaño, Fiorenza Micheli, Tim Miller- Morgan, Melissa Neuman, Andrea Paz Lacavex, Michael Prall, Laura Rogers-Bennett, Nancy Roberson, Dirk Rosen, Anne Salomon, Jessica Schultz, Lauren Schiebelhut, Ole Shelton, Christy Semmens, Jorge Torre, Guillermo Torres-Moye, Nancy Treneman, Jane Watson, Ben Weitzman, and Greg Williams.
    [Show full text]
  • SOME ASPECTS of the BIOLOGY of a BROODING STARFISH, LEPTASTERIAS LITTORALIS (STIMPSON) 1853 FRANCIS XAVIER O'brien University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1972 SOME ASPECTS OF THE BIOLOGY OF A BROODING STARFISH, LEPTASTERIAS LITTORALIS (STIMPSON) 1853 FRANCIS XAVIER O'BRIEN University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation O'BRIEN, FRANCIS XAVIER, "SOME ASPECTS OF THE BIOLOGY OF A BROODING STARFISH, LEPTASTERIAS LITTORALIS (STIMPSON) 1853" (1972). Doctoral Dissertations. 2343. https://scholars.unh.edu/dissertation/2343 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" fo r pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Marine Invasive Species and Biodiversity of South Central Alaska
    Marine Invasive Species and Biodiversity of South Central Alaska Anson H. Hines & Gregory M. Ruiz, Editors Smithsonian Environmental Research Center PO Box 28, 647 Contees Wharf Road Edgewater, Maryland 21037-0028 USA Telephone: 443. 482.2208 Fax: 443.482-2295 Email: [email protected], [email protected] Submitted to: Regional Citizens’ Advisory Council of Prince William Sound 3709 Spenard Road Anchorage, AK 99503 USA Telephone: 907.277-7222 Fax: 907.227.4523 154 Fairbanks Drive, PO Box 3089 Valdez, AK 99686 USA Telephone: 907835 Fax: 907.835.5926 U.S. Fish & Wildlife Service 43655 Kalifornski Beach Road, PO Box 167-0 Soldatna, AK 99661 Telephone: 907.262.9863 Fax: 907.262.7145 1 TABLE OF CONTENTS 1. Introduction and Background - Anson Hines & Gregory Ruiz 2. Green Crab (Carcinus maenas) Research – Gregory Ruiz, Anson Hines, Dani Lipski A. Larval Tolerance Experiments B. Green Crab Trapping Network 3. Fouling Community Studies – Gregory Ruiz, Anson Hines, Linda McCann, Kimberly Philips, George Smith 4. Taxonomic Field Surveys A. Motile Crustacea on Fouling Plates– Jeff Cordell B. Hydroids – Leanne Henry C. Pelagic Cnidaria and Ctenophora – Claudia Mills D. Anthozoa – Anson Hines & Nora Foster E. Bryozoans – Judith Winston F. Nemertineans – Jon Norenburg & Svetlana Maslakova G. Brachyura – Anson Hines H. Molluscs – Nora Foster I. Urochordates and Hemichordates – Sarah Cohen J. Echinoderms –Anson Hines & Nora Foster K. Wetland Plants - Dennis Whigham 2 Executive Summary This report summarizes research on nonindigenous species (NIS) in marine ecosystems of Alaska during the year 2000 by the Smithsonian Environmental Research Center. The project is an extension of three years of research on NIS in Prince William Sound, which is presented in a major report (Hines and Ruiz, 2000) that is on line at the website of the Regional Citizens’ Advisory Council: www.pwsrcac.org.
    [Show full text]