The Cryosphere, 12, 2461–2479, 2018 https://doi.org/10.5194/tc-12-2461-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Glacier change along West Antarctica’s Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability Frazer D. W. Christie1, Robert G. Bingham1, Noel Gourmelen1, Eric J. Steig2, Rosie R. Bisset1, Hamish D. Pritchard3, Kate Snow1, and Simon F. B. Tett1 1School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 2Department of Earth & Space Sciences, University of Washington, Seattle, WA 98195-1310, USA 3NERC British Antarctic Survey, Cambridge, CB3 0ET, UK Correspondence: Robert Bingham (
[email protected]) Received: 27 November 2017 – Discussion started: 29 January 2018 Revised: 29 June 2018 – Accepted: 3 July 2018 – Published: 26 July 2018 Abstract. Over the past 20 years satellite remote sensing tively, our findings underscore the importance of spatial and has captured significant downwasting of glaciers that drain inter-decadal variability in atmosphere and ocean interac- the West Antarctic Ice Sheet into the ocean, particularly tions in moderating glaciological change around Antarctica. across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely 1 Introduction monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sec- Recent in situ and satellite remote sensing campaigns have tor between 2003 and 2015, and compare observed changes played an important role in constraining the relative roles of with ICESat and CryoSat-2-derived surface elevation and ice, ocean and atmosphere interactions responsible for con- thickness change records.