Thin Accretion Disk Signatures in Dynamical Chernsimons-Modified Gravity Tiberiu Harko, Zoltán Kovács, Francisco S N Lobo

Total Page:16

File Type:pdf, Size:1020Kb

Thin Accretion Disk Signatures in Dynamical Chernsimons-Modified Gravity Tiberiu Harko, Zoltán Kovács, Francisco S N Lobo Thin accretion disk signatures in dynamical ChernSimons-modified gravity Tiberiu Harko, Zoltán Kovács, Francisco S N Lobo To cite this version: Tiberiu Harko, Zoltán Kovács, Francisco S N Lobo. Thin accretion disk signatures in dynamical ChernSimons-modified gravity. Classical and Quantum Gravity, IOP Publishing, 2010, 27(10), pp.105010. 10.1088/0264-9381/27/10/105010. hal-00597854 HAL Id: hal-00597854 https://hal.archives-ouvertes.fr/hal-00597854 Submitted on 2 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 8 March 2010 Thin accretion disk signatures in dynamical Chern-Simons modified gravity Tiberiu Harko∗ and Zolt´an Kov´acs† Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Francisco S. N. Lobo‡ Centro de F´ısica Te´orica e Computacional, Faculdade de Ciˆencias da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa, Portugal (Dated: March 8, 2010) ApromisingextensionofgeneralrelativityisChern-Simons(CS)modifiedgravity,inwhichthe Einstein-Hilbert action is modified by adding a parity-violating CS term, which couples to gravity via a scalar field. In this work, we consider the interesting, yet relatively unexplored, dynamical formulation of CS modified gravity, where the CS coupling field is treated as a dynamical field, endowed with its own stress-energy tensor and evolution equation. We consider the possibility of observationally testing dynamical CS modified gravity by using the accretion disk properties around slowly-rotating black holes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard general rela- tivistic Kerr solution. It is shown that the Kerr black hole provide a more efficient engine for the transformation of the energy of the accreting mass into radiation than their slowly-rotating coun- terparts in CS modified gravity. Specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of directly testing CS modified gravity by using astrophysical observations of the emission spectra from accretion disks. PACS numbers: 04.50.Kd, 04.70.Bw, 97.10.Gz I. INTRODUCTION date, has considered the nondynamical formulation [7– 10], whereas the dynamical formulation remains mostly unexplored territory. Recently, modified theories of gravity have received a Relative to rotating black hole spacetimes, several solu- considerable amount of attention mainly motivated by tions in the nondynamical formulation were found in CS the problems of dark energy (see [1] for reviews) and modified gravity [8–10]. The first solutions were found dark matter [2], and from quantum gravity. A promis- by Alexander and Yunes [8, 9], using a far-field approxi- ing extension of general relativity is Chern-Simons (CS) mation (where the field point distance is considered to be modified gravity [3–5], in which the Einstein-Hilbert ac- much larger than the black hole mass). The second ro- tion is modified by adding a parity-violating CS term, tating black hole solution was found by Konno et al [10], which couples to gravity via a scalar field. It is interest- using a small slow-rotation approximation, where the ing to note that the CS correction introduces a means to spin angular momentum is assumed to be much smaller enhance parity violation through a pure curvature term, than the black hole mass. However, it is interesting to as opposed to through the matter term, as is usually con- note that recently, using the dynamical formulation of sidered in general relativity. In fact, CS modified grav- CS modified gravity, spinning black hole solutions in the ity can be obtained explicitly from superstring theory, slow-rotation approximation have been obtained [11, 12]. where the CS term in the Lagrangian density is essen- tial due to the Green-Schwarz anomaly-canceling mech- An interesting feature of CS modified gravity is that it anism, upon four-dimensional compactification [6]. Two has a characteristic observational signature, which could formulations of CS modified gravity exist as independent allow to discriminate an effect of this theory from other theories, namely, the nondynamical formulation and the phenomena. However, most of the tests of CS modified dynamical formulation (see [5] for an excellent recent re- gravity to date have been performed with astrophysical view). In the former, the CS scalar is an aprioripre- observations and concern the non-dynamical framework. scribed function, where its effective evolution equation In particular, it was found that the CS modified theory reduces to a differential constraint on the space of allowed predicts an anomalous precession effect [14], which was solutions; in the latter, the CS is treated as a dynami- tested [15] with LAGEOS [16]. Another constraint on the cal field, possessing an effective stress-energy tensor and non-dynamical theory was proposed in [17], where it was an evolution equation. The majority of the work, up to considered that the CS correction could be used to ex- plain the flat rotation curves of galaxies. However, in [18] aboundwasplacedonthenon-dynamicalmodelwitha canonical CS scalar that is eleven orders of magnitude ∗Electronic address: [email protected] stronger than the Solar System one, using double binary †Electronic address: [email protected] pulsar data. Recently, using the dynamical formulation ‡Electronic address: [email protected] of CS modified gravity, a stringent constraint was placed 2 on the coupling parameter associated to the dynamical The first term is the standard Einstein-Hilbert action coupling of the scalar field [19]. √ Z 4 In this work, we further extend the constraints placed SEH = κ d x −gR , (2) on the dynamical formulation of CS gravity by using the observational signatures of thin disk properties around where κ−1 =16πG and R is the Ricci scalar. The second rotating black holes. In the context of stationary axisym- term defined as metric spacetimes, the mass accretion around rotating α √ black holes was studied in general relativity for the first S = Z d4x −gϑ ∗RR, (3) time in [20], by extending the theory of non-relativistic CS 4 accretion [21]. The radiation emitted by the disk sur- face was also studied under the assumption that black is the Chern-Simons correction; the third term body radiation would emerge from the disk in thermo- √ β Z 4 µν dynamical equilibrium [22, 23]. More recently, the emis- Sϑ = − d x −g [g (∇µϑ)(∇ν ϑ)+2V (ϑ)] , (4) 2 sivity properties of the accretion disks were investigated for exotic central objects, such as wormholes [24], and is the scalar field term. The matter action is given by non-rotating or rotating quark, boson or fermion stars, √ brane-world black holes or gravastars [25–34]. Z 4 Smat = d x −gLmat , (5) Thus, it is the purpose of the present paper to study the thin accretion disk models for slowly-rotating black where L the matter Lagrangian. holes in the dynamical formulation of CS modified the- mat The parameters α and β are dimensional coupling con- ories of gravity, and carry out an analysis of the prop- stants; the CS coupling field, ϑ,isafunctionofspace- erties of the radiation emerging from the surface of the time that parameterizes deformations from GR [12]; ∇ disk. As compared to the standard general relativistic µ is the covariant derivative associated with the metric ten- case, significant differences appear in the energy flux and sor g ;andthequantity∗RR is the Pontryagin density electromagnetic spectrum for CS slowly-rotating black µν defined as holes, thus leading to the possibility of directly testing CS modified gravity by using astrophysical observations ∗ ∗ τ µν σ RR = R σ R τµν , (6) of the emission spectra from accretion disks. ∗ τ µν The present paper is organized as follows. In Sec. II, we where the dual Riemann tensor is given by R σ = 1 µναβ τ µναβ review the dynamical formulation of CS modified grav- 2 R σαβ,with the 4-dimensional Levi-Civita ity, and present the Yunes-Pretorius (YP) slowly-rotating tensor. solution found in [12]. In Sec. III, we review the formal- Varying the action S with respect to the metric gµν ism and the physical properties of the thin disk accretion one obtains the gravitational field equation given by onto compact objects, for stationary axisymmetric space- times. In Sec. IV, we analyze the basic properties of mat- α 1 mat ϑ Gµν + Cµν = Tµν + Tµν , (7) ter forming a thin accretion disk in slowly-rotating black κ 2κ hole spacetimes in CS modified gravity. We discuss and where Gµν is the Einstein tensor, and Cµν is the cotton conclude our results in Sec. V. Throughout this work, tensor defined as we use a system of units so that c = G =¯h = kB =1, µν σαβ(µ ν) ∗ α(µν)σ where kB is Boltzmann’s constant. C = ∇σϑ ∇β R α + ∇σ∇αϑ R . (8) The total stress-energy tensor is split into the matter µν µν term Tmat,andthescalarfieldcontributionTϑ ,which II. DYNAMICAL CHERN-SIMONS MODIFIED is provided by the following relationship GRAVITY ϑ 1 ν Tµν = β (∇µϑ)(∇ν ϑ) − gµν (∇µϑ)(∇ ϑ) − gµν V (ϑ) . In this Section, we write down the field equations of the 2 Chern-Simons gravity, and present the Yunes-Pretorius (9) (YP) slowly-rotating solution found in [12].
Recommended publications
  • Pulsar Physics Without Magnetars
    Chin. J. Astron. Astrophys. Vol.8 (2008), Supplement, 213–218 Chinese Journal of (http://www.chjaa.org) Astronomy and Astrophysics Pulsar Physics without Magnetars Wolfgang Kundt Argelander-Institut f¨ur Astronomie der Universit¨at, Auf dem H¨ugel 71, D-53121 Bonn, Germany Abstract Magnetars, as defined some 15 yr ago, are inconsistent both with fundamental physics, and with the (by now) two observed upward jumps of the period derivatives (of two of them). Instead, the class of peculiar X-ray sources commonly interpreted as magnetars can be understood as the class of throttled pulsars, i.e. of pulsars strongly interacting with their CSM. This class is even expected to harbour the sources of the Cosmic Rays, and of all the (extraterrestrial) Gamma-Ray Bursts. Key words: magnetars — throttled pulsars — dying pulsars — cavity — low-mass disk 1 DEFINITION AND PROPERTIES OF THE MAGNETARS Magnetars have been defined by Duncan and Thompson some 15 years ago, as spinning, compact X-ray sources - probably neutron stars - which are powered by the slow decay of their strong magnetic field, of strength 1015 G near the surface, cf. (Duncan & Thompson 1992; Thompson & Duncan 1996). They are now thought to comprise the anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), recurrent radio transients (RRATs), or ‘stammerers’, or ‘burpers’, and the ‘dim isolated neutron stars’ (DINSs), i.e. a large, fairly well defined subclass of all neutron stars, which has the following properties (Mereghetti et al. 2002): 1) They are isolated neutron stars, with spin periods P between 5 s and 12 s, and similar glitch behaviour to other neutron-star sources, which correlates with their X-ray bursting.
    [Show full text]
  • Progenitors of Magnetars and Hyperaccreting Magnetized Disks
    Feeding Compact Objects: Accretion on All Scales Proceedings IAU Symposium No. 290, 2012 c International Astronomical Union 2013 C. M. Zhang, T. Belloni, M. M´endez & S. N. Zhang, eds. doi:10.1017/S1743921312020340 Progenitors of Magnetars and Hyperaccreting Magnetized Disks Y. Xie1 andS.N.Zhang1,2 1 National Astronomical Observatories, Chinese Academy Of Sciences, Beijing, 100012, P. R.China email: [email protected] 2 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100012, P. R. China email: [email protected] Abstract. We propose that a magnetar could be formed during the core collapse of massive stars or coalescence of two normal neutron stars, through collecting and inheriting the magnetic fields magnified by hyperaccreting disk. After the magnetar is born, its dipole magnetic fields in turn have a major influence on the following accretion. The decay of its toroidal field can fuel the persistent X-ray luminosity of either an SGR or AXP; however the decay of only the poloidal field is insufficient to do so. Keywords. Magnetar, accretion disk, gamma ray bursts, magnetic fields 1. Introduction Neutron stars (NSs) with magnetic field B stronger than the quantum critical value, 2 3 13 Bcr = m c /e ≈ 4.4 × 10 G, are called magnetars. Observationally, a magnetar may appear as a soft gamma-ray repeater (SGR) or an anomalous X-ray pulsar (AXP). It is believed that its persistent X-ray luminosity is powered by the consumption of their B- decay energy (e.g. Duncan & Thompson 1992; Paczynski 1992). However, the formation of strong B of a magnetar remains unresolved, and the possible explanations are divided into three classes: (i) B is generated by a convective dynamo (Duncan & Thompson 1992); (ii) B is essentially of fossil origin (e.g.
    [Show full text]
  • Testing Quantum Gravity with LIGO and VIRGO
    Testing Quantum Gravity with LIGO and VIRGO Marek A. Abramowicz1;2;3, Tomasz Bulik4, George F. R. Ellis5 & Maciek Wielgus1 1Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716, Warszawa, Poland 2Physics Department, Gothenburg University, 412-96 Goteborg, Sweden 3Institute of Physics, Silesian Univ. in Opava, Bezrucovo nam. 13, 746-01 Opava, Czech Republic 4Astronomical Observatory Warsaw University, 00-478 Warszawa, Poland 5Mathematics Department, University of Cape Town, Rondebosch, Cape Town 7701, South Africa We argue that if particularly powerful electromagnetic afterglows of the gravitational waves bursts detected by LIGO-VIRGO will be observed in the future, this could be used as a strong observational support for some suggested quantum alternatives for black holes (e.g., firewalls and gravastars). A universal absence of such powerful afterglows should be taken as a sug- gestive argument against such hypothetical quantum-gravity objects. If there is no matter around, an inspiral-type coalescence (merger) of two uncharged black holes with masses M1, M2 into a single black hole with the mass M3 results in emission of grav- itational waves, but no electromagnetic radiation. The maximal amount of the gravitational wave 2 energy E=c = (M1 + M2) − M3 that may be radiated from a merger was estimated by Hawking [1] from the condition that the total area of all black hole horizons cannot decrease. Because the 2 2 2 horizon area is proportional to the square of the black hole mass, one has M3 > M2 + M1 . In the 1 1 case of equal initial masses M1 = M2 = M, this yields [ ], E 1 1 h p i = [(M + M ) − M ] < 2M − 2M 2 ≈ 0:59: (1) Mc2 M 1 2 3 M From advanced numerical simulations (see, e.g., [2–4]) one gets, in the case of comparable initial masses, a much more stringent energy estimate, ! EGRAV 52 M 2 ≈ 0:03; meaning that EGRAV ≈ 1:8 × 10 [erg]: (2) Mc M The estimate assumes validity of Einstein’s general relativity.
    [Show full text]
  • MHD Accretion Disk Winds: the Key to AGN Phenomenology?
    galaxies Review MHD Accretion Disk Winds: The Key to AGN Phenomenology? Demosthenes Kazanas NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA; [email protected]; Tel.: +1-301-286-7680 Received: 8 November 2018; Accepted: 4 January 2019; Published: 10 January 2019 Abstract: Accretion disks are the structures which mediate the conversion of the kinetic energy of plasma accreting onto a compact object (assumed here to be a black hole) into the observed radiation, in the process of removing the plasma’s angular momentum so that it can accrete onto the black hole. There has been mounting evidence that these structures are accompanied by winds whose extent spans a large number of decades in radius. Most importantly, it was found that in order to satisfy the winds’ observational constraints, their mass flux must increase with the distance from the accreting object; therefore, the mass accretion rate on the disk must decrease with the distance from the gravitating object, with most mass available for accretion expelled before reaching the gravitating object’s vicinity. This reduction in mass flux with radius leads to accretion disk properties that can account naturally for the AGN relative luminosities of their Optical-UV and X-ray components in terms of a single parameter, the dimensionless mass accretion rate. Because this critical parameter is the dimensionless mass accretion rate, it is argued that these models are applicable to accreting black holes across the mass scale, from galactic to extragalactic. Keywords: accretion disks; MHD winds; accreting black holes 1. Introduction-Accretion Disk Phenomenology Accretion disks are the generic structures associated with compact objects (considered to be black holes in this note) powered by matter accretion onto them.
    [Show full text]
  • Chapter 9 Accretion Disks for Beginners
    Chapter 9 Accretion Disks for Beginners When the gas being accreted has high angular momentum, it generally forms an accretion disk. If the gas conserves angular momentum but is free to radiate energy, it will lose energy until it is on a circular orbit of radius 2 Rc = j /(GM), where j is the specific angular momentum of the gas, and M is the mass of the accreting compact object. The gas will only be able to move inward from this radius if it disposes of part of its angular momentum. In an accretion disk, angular momentum is transferred by viscous torques from the inner regions of the disk to the outer regions. The importance of accretion disks was first realized in the study of binary stellar systems. Suppose that a compact object of mass Mc and a ‘normal’ star of mass Ms are separated by a distance a. The normal star (a main- sequence star, a giant, or a supergiant) is the source of the accreted matter, and the compact object is the body on which the matter accretes. If the two bodies are on circular orbits about their center of mass, their angular velocity will be 1/2 ~ G(Mc + Ms) Ω= 3 eˆ , (9.1) " a # wheree ˆ is the unit vector normal to the orbital plane. In a frame of reference that is corotating with the two stars, the equation of momentum conservation has the form ∂~u 1 +(~u · ∇~ )~u = − ∇~ P − 2Ω~ × ~u − ∇~ Φ , (9.2) ∂t ρ R 89 90 CHAPTER 9. ACCRETION DISKS FOR BEGINNERS Figure 9.1: Sections in the orbital plane of equipotential surfaces, for a binary with q = 0.2.
    [Show full text]
  • Timescales of the Solar Protoplanetary Disk 233
    Russell et al.: Timescales of the Solar Protoplanetary Disk 233 Timescales of the Solar Protoplanetary Disk Sara S. Russell The Natural History Museum Lee Hartmann Harvard-Smithsonian Center for Astrophysics Jeff Cuzzi NASA Ames Research Center Alexander N. Krot Hawai‘i Institute of Geophysics and Planetology Matthieu Gounelle CSNSM–Université Paris XI Stu Weidenschilling Planetary Science Institute We summarize geochemical, astronomical, and theoretical constraints on the lifetime of the protoplanetary disk. Absolute Pb-Pb-isotopic dating of CAIs in CV chondrites (4567.2 ± 0.7 m.y.) and chondrules in CV (4566.7 ± 1 m.y.), CR (4564.7 ± 0.6 m.y.), and CB (4562.7 ± 0.5 m.y.) chondrites, and relative Al-Mg chronology of CAIs and chondrules in primitive chon- drites, suggest that high-temperature nebular processes, such as CAI and chondrule formation, lasted for about 3–5 m.y. Astronomical observations of the disks of low-mass, pre-main-se- quence stars suggest that disk lifetimes are about 3–5 m.y.; there are only few young stellar objects that survive with strong dust emission and gas accretion to ages of 10 m.y. These con- straints are generally consistent with dynamical modeling of solid particles in the protoplanetary disk, if rapid accretion of solids into bodies large enough to resist orbital decay and turbulent diffusion are taken into account. 1. INTRODUCTION chondritic meteorites — chondrules, refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine ag- Both geochemical and astronomical techniques can be gregates (AOAs)], Fe,Ni-metal grains, and fine-grained ma- applied to constrain the age of the solar system and the trices — are largely crystalline, and were formed from chronology of early solar system processes (e.g., Podosek thermal processing of these grains and from condensation and Cassen, 1994).
    [Show full text]
  • Ast 777: Star and Planet Formation Accretion Disks
    Ast 777: Star and Planet Formation Jonathan Williams, University of Hawaii Accretion disks https://www.universetoday.com/135153/first-detailed-image-accretion-disk-around-young-star/ The main phases of star formation https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf Star grows by accretion through a disk https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf Accretion continues (at a low rate) through the CTTS phase https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The mass of a star is, by far, the dominant parameter that determines its fate. The primary question for star formation is how stars reach their ultimate mass. Mass infall rate for a BE core that collapses A strikingly simple equation! in a free-fall time isothermal sound speed calculated for T=10K This is very high — if sustained, a solar mass star would form in 0.25 Myr… …but it can’t all fall into the center Conservation of angular momentum Bonnor-Ebert sphere, R ~ 0.2pc ~ 6x1017cm 11 Protostar, R ~ 3R⊙ ~ 2x10 cm => gravitational collapse results in a compression of spatial scales > 6 orders of magnitude! => spin up! https://figureskatingmargotzenaadeline.weebly.com/angular-momentum.html Conservation of angular momentum Angular momentum Moment of inertia J is conserved Galactic rotation provides a lower limit to core rotation (R⊙=8.2kpc, V⊙=220 km/s) Upper limit to rotation period of the star So how do stars grow? • Binaries (~50% of field stars are in multiples)
    [Show full text]
  • The Unique Potential of Extreme Mass-Ratio Inspirals for Gravitational-Wave Astronomy 1, 2 3, 4 Christopher P
    Main Thematic Area: Formation and Evolution of Compact Objects Secondary Thematic Areas: Cosmology and Fundamental Physics, Galaxy Evolution Astro2020 Science White Paper: The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy 1, 2 3, 4 Christopher P. L. Berry, ∗ Scott A. Hughes, Carlos F. Sopuerta, Alvin J. K. Chua,5 Anna Heffernan,6 Kelly Holley-Bockelmann,7 Deyan P. Mihaylov,8 M. Coleman Miller,9 and Alberto Sesana10, 11 1CIERA, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA 2Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Institut de Ciencies` de l’Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Valles,` Spain 4Institut d’Estudis Espacials de Catalunya (IEEC), Edifici Nexus I, Carrer del Gran Capita` 2-4, despatx 201, 08034 Barcelona, Spain 5Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 6School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland 7Department of Physics and Astronomy, Vanderbilt University and Fisk University, Nashville, TN 37235, USA 8Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 9Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421, USA 10School of Physics & Astronomy and Institute for Gravitational Wave Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 11Universita` di Milano Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126, Milano, Italy (Dated: March 7, 2019) The inspiral of a stellar-mass compact object into a massive ( 104–107M ) black hole ∼ produces an intricate gravitational-wave signal.
    [Show full text]
  • Arxiv:1707.03021V4 [Gr-Qc] 8 Oct 2017
    The observational evidence for horizons: from echoes to precision gravitational-wave physics Vitor Cardoso1,2 and Paolo Pani3,1 1CENTRA, Departamento de F´ısica,Instituto Superior T´ecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal 2Perimeter Institute for Theoretical Physics, 31 Caroline Street North Waterloo, Ontario N2L 2Y5, Canada 3Dipartimento di Fisica, \Sapienza" Universit`adi Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy October 10, 2017 Abstract The existence of black holes and of spacetime singularities is a fun- damental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation unclear. We overview how strong a case for black holes has been made in the last few decades, and how well observations adjust to this paradigm. Unsurprisingly, we con- clude that observational proof for black holes is impossible to come by. However, just like Popper's black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the next few years and decades, we will enter the era of precision gravitational-wave physics with more sensitive detectors. Just as accelera- tors require larger and larger energies to probe smaller and smaller scales, arXiv:1707.03021v4 [gr-qc] 8 Oct 2017 more sensitive gravitational-wave detectors will be probing regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking? 1 Contents 1 Introduction 3 2 Setting the stage: escape cone, photospheres, quasinormal modes, and tidal effects 6 2.1 Geodesics . .6 2.2 Escape trajectories .
    [Show full text]
  • Black Hole Math Is Designed to Be Used As a Supplement for Teaching Mathematical Topics
    National Aeronautics and Space Administration andSpace Aeronautics National ole M a th B lack H i This collection of activities, updated in February, 2019, is based on a weekly series of space science problems distributed to thousands of teachers during the 2004-2013 school years. They were intended as supplementary problems for students looking for additional challenges in the math and physical science curriculum in grades 10 through 12. The problems are designed to be ‘one-pagers’ consisting of a Student Page, and Teacher’s Answer Key. This compact form was deemed very popular by participating teachers. The topic for this collection is Black Holes, which is a very popular, and mysterious subject among students hearing about astronomy. Students have endless questions about these exciting and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills the gap by presenting black hole concepts in their simplest mathematical form. General Approach: The activities are organized according to progressive difficulty in mathematics. Students need to be familiar with scientific notation, and it is assumed that they can perform simple algebraic computations involving exponentiation, square-roots, and have some facility with calculators. The assumed level is that of Grade 10-12 Algebra II, although some problems can be worked by Algebra I students. Some of the issues of energy, force, space and time may be appropriate for students taking high school Physics. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr.
    [Show full text]
  • Black Holes by John Percy, University of Toronto
    www.astrosociety.org/uitc No. 24 - Summer 1993 © 1993, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Black Holes by John Percy, University of Toronto Gravity is the midwife and the undertaker of the stars. It gathers clumps of gas and dust from the interstellar clouds, compresses them and, if they are sufficiently massive, ignites thermonuclear reactions in their cores. Then, for millions or billions of years, they produce energy, heat and pressure which can balance the inward pull of gravity. The star is stable, like the Sun. When the star's energy sources are finally exhausted, however, gravity shrinks the star unhindered. Stars like the Sun contract to become white dwarfs -- a million times denser than water, and supported by quantum forces between electrons. If the mass of the collapsing star is more than 1.44 solar masses, gravity overwhelms the quantum forces, and the star collapses further to become a neutron star, millions of times denser than a white dwarf, and supported by quantum forces between neutrons. The energy released in this collapse blows away the outer layers of the star, producing a supernova. If the mass of the collapsing star is more than three solar masses, however, no force can prevent it from collapsing completely to become a black hole. What is a black hole? Mini black holes How can you "see'' a Black Hole? Supermassive black holes Black holes and science fiction Activity #1: Shrinking Activity #2: A Scale Model of a Black Hole Black hole myths For Further Reading About Black Holes What is a black hole? A black hole is a region of space in which the pull of gravity is so strong that nothing can escape.
    [Show full text]
  • 1.3 Accretion Power in Astrophysics Accretion Power in Astrophysics the Strong Gravitational Force of the Compact Object Attracts Matter from the Companion
    1.3 Accretion power in astrophysics Accretion power in astrophysics The strong gravitational force of the compact object attracts matter from the companion grav.energy ---> Accretion -----> radiation The infalling matter have some angular momentum ( the secondary star is orbiting the compact object when the gas comes off the star, it, too will orbit the compact object) and conservation of angular momentum prevents matter from falling directly into the black hole) X-ray Binaries, Lewin, van Paradijs, and van den Heuvel, 1995, p. 420; High energy astrophysics, M. Longair p.134. Because of the friction, some of the particles rub up against each other. The friction will heat up the gas (dissipation of energy). Because of the conservation of angular momentum if some particle slows down, so that it gradually spirals in towards the compact object, some other must expand outwards, creating a disc from the initial ring. The disc edge thus expands, far beyond the initial radius, most of the original angular momentum is carried out to this edge, (LPH, cap. 10, pag 420) Another, external, agent of angular momentum sink is the magnetic field. Initial ring of gas spreads into the disk due to diffusion. To be able to accrete on the star, matter should lose angular momentum Friction leads to heating of the disk and intense radiation Accretion Accretion disks are the most common mode of accretion in astrophytsics. Examples Accretion disk around a protostar – this is essentially the protostellar/proto- planetary disk . Accretion disks Suppose matter (gas) moves in a disk around a star or compact object Then it means matter is in centrifugal equilibrium.
    [Show full text]