The Hubbard Model for Universal Quantum Computation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simulating Quantum Field Theory with a Quantum Computer
Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers. -
First-Principles Calculations and Model Hamiltonian Approaches to Electronic and Optical Properties of Defects, Interfaces and Nanostructures
First-principles calculations and model Hamiltonian approaches to electronic and optical properties of defects, interfaces and nanostructures by Sangkook Choi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Grauduate Division of the University of California, Berkeley Committee in charge: Professor Steven G. Louie, Chair Professor John Clarke Professor Mark Asta Fall 2013 First-principles calculations and model Hamiltonian approaches to electronic and optical properties of defects, interfaces and nanostructures Copyright 2013 by Sangkook Choi Abstract First principles calculations and model Hamiltonian approaches to electronic and optical properties of defects, interfaces and nanostructures By Sangkook Choi Doctor of Philosophy in Physics University of California, Berkeley Professor Steven G. Louie, Chair The dynamics of electrons governed by the Coulomb interaction determines a large portion of the observed phenomena of condensed matter. Thus, the understanding of electronic structure has played a key role in predicting the electronic and optical properties of materials. In this dissertation, I present some important applications of electronic structure theories for the theoretical calculation of these properties. In the first chapter, I review the basics necessary for two complementary electronic structure theories: model Hamiltonian approaches and first principles calculation. In the subsequent chapters, I further discuss the applications of these approaches to nanostructures (chapter II), interfaces (chapter III), and defects (chapter IV). The abstract of each section is as follows. ● Section II-1 The sensitive structural dependence of the optical properties of single-walled carbon nanotubes, which are dominated by excitons and tunable by changing diameter and chirality, makes them excellent candidates for optical devices. -
8.7 Hubbard Model
OUP CORRECTED PROOF – FINAL, 12/6/2019, SPi 356 Models of Strongly Interacting Quantum Matter which is the lower edge of a continuum of excitations whose upper edge is bounded by ω(q) πJ cos (q/2). (8.544) = The continuum of excitations develops because spinons are always created in pairs, and therefore the momentum of the two spinons can be distributed in a continuum of different ways. Neutron scattering experiments on quasi-one-dimensional materials like KCuF3 have corroborated the picture outlined here (see, e.g. Tennant et al.,1995). In dimensions higher than one, separating a !ipped spin into a pair of kinks, or a magnon into a pair of spinons, costs energy, which thus con"nes spinons in dimensions d 2. ≥The next section we constructs the Hubbard model from "rst principles and then show how the Heisenberg model can be obtained from the Hubbard model for half- "lling and in the limit of strong on-site repulsion. 8.7 Hubbard model The Hubbard model presents one of the simplest ways to obtain an understanding of the mechanisms through which interactions between electrons in a solid can give rise to insulating versus conducting, magnetic, and even novel superconducting behaviour. The preceding sections of this chapter more or less neglected these interaction or correlation effects between the electrons in a solid, or treated them summarily in a mean-"eld or quasiparticle approach (cf. sections 8.2 to 8.5). While the Hubbard model was "rst discussed in quantum chemistry in the early 1950s (Pariser and Parr, 1953; Pople, 1953), it was introduced in its modern form and used to investigate condensed matter problems in the 1960s independently by Gutzwiller (1963), Hubbard (1963), and Kanamori (1963). -
Quantum Entanglement Producing and Precision Measurement With
QUANTUM ENTANGLEMENT PRODUCING AND PRECISION MEASUREMENT WITH SPINOR BECS by Zhen Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2015 Doctoral Committee: Professor Luming Duan, Chair Associate Professor Hui Deng Professor Georg A. Raithel Professor Duncan G. Steel Assistant Professor Kai Sun c Zhen Zhang 2015 To my parents and my husband. ii ACKNOWLEDGMENTS I am greatly indebted to my adviser, Professor Luming Duan, for mentoring me over the last six years. He is a wise professor with sharp insights and broad knowledge and also a kind and supportive supervisor. He offered me a lot help and advise both in my research and for my career. It has been my great honor working with him during my doctoral study. I would also like to thank my undergraduate research adviser Professor Mailin Liang , Profes- sor Wusheng Dai and Professor Mi Xie at Tianjin University, China, for guiding me into the world of physics research and offering initial scientific training. I am also grateful to all the other profes- sors who gave me advice and help imparted their knowledge and enthusiasm through classroom teaching or otherwise during the ten years of undergraduate and graduate study. I also benefited tremendously from my group mates and visitors. In particular, Zhexuan Gong who gave me warm welcome and help when I joined the group; Yang-Hao Chan who taught me cold atom physics in the very beginning of my research; Jiang-Min Zhang shared with me a lot of knowledge and experience both in research and in personal life; Dong-Ling Deng and Sheng- Tao Wang discussed with me on many problems. -
The Limits of the Hubbard Model
The Limits of the Hubbard Model David Grabovsky May 24, 2019 1 CONTENTS CONTENTS Contents 1 Introduction and Abstract 4 I The Hubbard Hamiltonian 5 2 Preliminaries 6 3 Derivation of the Hubbard Model 9 3.1 Obtaining the Hamiltonian . .9 3.2 Discussion: Energy Scales . 10 4 Variants and Conventions 12 5 Symmetries of the Hubbard Model 14 5.1 Discrete Symmetries . 14 5.2 Gauge Symmetries . 14 5.3 Particle-Hole Symmetry . 15 II Interaction Limits 17 6 The Fermi-Hubbard Model 18 6.1 Single Site: Strong Interactions . 18 6.2 Tight Binding: Weak Interactions . 20 7 The Bose-Hubbard Model 22 7.1 Single Site: Strong Interactions . 22 7.2 Tight Binding: Weak Interactions . 24 III Lattice Limits 25 8 Two Sites: Fermi-Hubbard 26 8.1 One Electron . 26 8.2 Two Electrons . 27 8.3 Three Electrons . 28 8.4 Complete Solution . 29 9 Two Sites: Bose-Hubbard 33 9.1 One and Two Bosons . 33 9.2 Many Bosons . 35 9.3 High-Temperature Limit . 36 10 Conclusions and Outlook 38 2 CONTENTS CONTENTS IV Appendices 40 A The Hubbard Model from Many-Body Theory 41 B Some Algebraic Results 42 C Fermi-Hubbard Limits 43 C.1 No Hopping . 43 C.2 No Interactions . 44 D Bose-Hubbard Limits 44 D.1 No Hopping . 44 D.2 No Interactions . 46 E Two-Site Thermodynamics 47 E.1 Fermi-Hubbard Model . 47 E.2 Bose-Hubbard Model . 49 F Tridiagonal Matrices and Recurrences 50 3 1 INTRODUCTION AND ABSTRACT 1 Introduction and Abstract The Hubbard model was originally written down in the 1960's as an attempt to describe the behavior of electrons in a solid [1]. -
Multi-Photon Boson-Sampling Machines Beating Early Classical Computers
Multi-photon boson-sampling machines beating early classical computers Hui Wang1,2*, Yu He1,2*,Yu-Huai Li1,2*, Zu-En Su1,2,Bo Li1,2, He-Liang Huang1,2, Xing Ding1,2, Ming-Cheng Chen1,2, Chang Liu1,2, Jian Qin1,2,Jin-Peng Li1,2, Yu-Ming He1,2,3, Christian Schneider3, Martin Kamp3, Cheng-Zhi Peng1,2, Sven Höfling1,3,4, Chao-Yang Lu1,2,$, and Jian-Wei Pan1,2,# 1 Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai, 201315, China 2 CAS-Alibaba Quantum Computing Laboratory, CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, China 3 Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universitat Würzburg, Am Hubland, D-97074 Würzburg, Germany 4 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom * These authors contributed equally to this work $ [email protected], # [email protected] Boson sampling is considered as a strong candidate to demonstrate the “quantum computational supremacy” over classical computers. However, previous proof-of- principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multi-port optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multi-photon interferometers with 99% transmission rate, and actively demultiplexed single-photon sources from a quantum-dot-micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate 3-, 4-, and 5-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz, and 4 Hz, respectively, which are over 24,000 times faster than the previous experiments, and over 220 times faster than obtaining one sample through calculating the matrices permanent using the first electronic computer (ENIAC) and transistorized computer (TRADIC) in the human history. -
Quantum Computer-Aided Design of Quantum Optics Hardware
Quantum computer-aided design of quantum optics hardware Jakob S. Kottmann,1, 2, ∗ Mario Krenn,1, 2, 3, y Thi Ha Kyaw,1, 2 Sumner Alperin-Lea,1, 2 and Al´anAspuru-Guzik1, 2, 3, 4, z 1Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Canada. 2Department of Computer Science, University of Toronto, Canada. 3Vector Institute for Artificial Intelligence, Toronto, Canada. 4Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, Canada (Dated: May 4, 2021) The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wave- function goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger-Horne-Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design. -
Models of Optical Quantum Computing
Nanophotonics 2017; 6(3): 531–541 Review article Open Access Hari Krovi* Models of optical quantum computing DOI 10.1515/nanoph-2016-0136 element method [9], and search on graphs for marked ver- Received August 2, 2016; accepted November 9, 2016 tices [10]. All these examples provide evidence that this model of computing is potentially more powerful than Abstract: I review some work on models of quantum com- classical computing. However, it should also be pointed puting, optical implementations of these models, as well out that there is currently no evidence that quantum com- as the associated computational power. In particular, we puters can solve NP-hard problems in polynomial time. discuss the circuit model and cluster state implemen- The class NP stands for nondeterministic polynomial time tations using quantum optics with various encodings (defined more explicitly in the next section) and consists such as dual rail encoding, Gottesman-Kitaev-Preskill of problems whose solution can be checked polynomial encoding, and coherent state encoding. Then we discuss time by deterministic classical computers. The impor- intermediate models of optical computing such as boson tance of this class stems from the fact that several practi- sampling and its variants. Finally, we review some recent cal problems lie in this class. Despite the lack of evidence work in optical implementations of adiabatic quantum of an exponential quantum speed-up for problems in this computing and analog optical computing. We also pro- class, there are a lot of examples where one has a polyno- vide a brief description of the relevant aspects from com- mial speed-up (such as a square-root speed-up) for several plexity theory needed to understand the results surveyed. -
Research Statement Bill Fefferman, University of Maryland/NIST
Research Statement Bill Fefferman, University of Maryland/NIST Since the discovery of Shor's algorithm in the mid 1990's, it has been known that quan- tum computers can efficiently solve integer factorization, a problem of great practical relevance with no known efficient classical algorithm [1]. The importance of this result is impossible to overstate: the conjectured intractability of the factoring problem provides the basis for the se- curity of the modern internet. However, it may still be a few decades before we build universal quantum computers capable of running Shor's algorithm to factor integers of cryptographically relevant size. In addition, we have little complexity theoretic evidence that factoring is com- putationally hard. Consequently, Shor's algorithm can only be seen as the first step toward understanding the power of quantum computation, which has become one of the primary goals of theoretical computer science. My research focuses not only on understanding the power of quantum computers of the indefinite future, but also on the desire to develop the foundations of computational complexity to rigorously analyze the capabilities and limitations of present-day and near-term quantum devices which are not yet fully scalable quantum computers. Furthermore, I am interested in using these capabilities and limitations to better understand the potential for cryptography in a fundamentally quantum mechanical world. 1 Comparing quantum and classical nondeterministic computation Starting with the foundational paper of Bernstein and Vazirani it has been conjectured that quantum computers are capable of solving problems whose solutions cannot be found, or even verified efficiently on a classical computer [2]. -
Arxiv:1412.8427V1 [Quant-Ph] 29 Dec 2014
Boson Sampling for Molecular Vibronic Spectra Joonsuk Huh,∗ Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean, and Al´anAspuru-Guziky Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States (Dated: December 30, 2014) Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a full- scale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, boson sampling has emerged as a problem that is suspected to be intractable on any classical computer, but efficiently implementable with a linear quantum optical setup. Therefore, boson sampling may offer an experimentally realizable challenge to the Extended Church-Turing thesis and this remarkable possibility motivated much of the interest around boson sampling, at least in relation to complexity-theoretic questions. In this work, we show that the successful development of a boson sampling apparatus would not only answer such inquiries, but also yield a practical tool for difficult molecular computations. Specifically, we show that a boson sampling device with a modified input state can be used to generate molecular vibronic spectra, including complicated effects such as Duschinsky rotations. I. INTRODUCTION a b Quantum mechanics allows the storage and manipula- tion of information in ways that are not possible accord- ing to classical physics. At a glance, it appears evident that the set of operations characterizing a quantum com- puter is strictly larger than the operations possible in a classical hardware. This speculation is at the basis of quantum speedups that have been achieved for oracu- lar and search problems [1, 2]. -
Arxiv:2007.01582V2 [Quant-Ph] 15 Jul 2020
Preparing symmetry broken ground states with variational quantum algorithms Nicolas Vogt,∗ Sebastian Zanker, Jan-Michael Reiner, and Michael Marthaler HQS Quantum Simulations GmbH Haid-und-Neu-Straße 7 76131 Karlsruhe, Germany Thomas Eckl and Anika Marusczyk Robert Bosch GmbH Robert-Bosch-Campus 1 71272 Renningen, Germany (Dated: July 16, 2020) One of the most promising applications for near term quantum computers is the simulation of physical quantum systems, particularly many-electron systems in chemistry and condensed matter physics. In solid state physics, finding the correct symmetry broken ground state of an interacting electron system is one of the central challenges. The Variational Hamiltonian Ansatz (VHA), a variational hybrid quantum-classical algorithm especially suited for finding the ground state of a solid state system, will in general not prepare a broken symmetry state unless the initial state is chosen to exhibit the correct symmetry. In this work, we discuss three variations of the VHA designed to find the correct broken symmetry states close to a transition point between different orders. As a test case we use the two-dimensional Hubbard model where we break the symmetry explicitly by means of external fields coupling to the Hamiltonian and calculate the response to these fields. For the calculation we simulate a gate-based quantum computer and also consider the effects of dephasing noise on the algorithms. We find that two of the three algorithms are in good agreement with the exact solution for the considered parameter range. The third algorithm agrees with the exact solution only for a part of the parameter regime, but is more robust with respect to dephasing compared to the other two algorithms. -
Mott Transition in the Π-Flux SU(4) Hubbard Model on a Square Lattice
PHYSICAL REVIEW B 97, 195122 (2018) Mott transition in the π-flux SU(4) Hubbard model on a square lattice Zhichao Zhou,1,2 Congjun Wu,2 and Yu Wang1,* 1School of Physics and Technology, Wuhan University, Wuhan 430072, China 2Department of Physics, University of California, San Diego, California 92093, USA (Received 23 March 2018; published 14 May 2018) With increasing repulsive interaction, we show that a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η are also estimated. To account for the effect of a π flux on the ordering in the strong-coupling regime, we analytically derive by the perturbation theory the ring-exchange term, which is the leading-order term that can reflect the difference between the π-flux and zero-flux SU(4) Hubbard models. DOI: 10.1103/PhysRevB.97.195122 I. INTRODUCTION dimer orders exist in a projector QMC (PQMC) simulation [30]. With the rapid development of ultracold atom experiments, Considering the significance of density fluctuations in a the synthetic gauge field can be implemented in optical lattice realistic fermionic system, the SU(2N) Hubbard model is a systems [1–4]. Recently, the “Hofstadter butterfly” model prototype model for studying the interplay between density Hamiltonian has also been achieved with ultracold atoms of and spin degrees of freedom. Previous PQMC studies of the 87Rb [5,6]. When ultracold atoms are considered as carriers half-filled SU(2) Hubbard model with a π flux have demon- in optical lattices, they can carry large hyperfine spins.