A Two-Step Adhesion Cascade for T Cell/Endothelial Cell Interactions Under Flow Conditions

Total Page:16

File Type:pdf, Size:1020Kb

A Two-Step Adhesion Cascade for T Cell/Endothelial Cell Interactions Under Flow Conditions A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions. D A Jones, … , C W Smith, L J Picker J Clin Invest. 1994;94(6):2443-2450. https://doi.org/10.1172/JCI117612. Research Article Neutrophil adherence to endothelial cells (ECs) under conditions of flow occurs in successive steps, including selectin- dependent primary adhesion and CD18-dependent secondary adhesion. We used a parallel-plate flow chamber to assess the steps in T cell adherence in vitro. On monolayers of L cells transfected with the EC adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), or intercellular adhesion molecule-1 (ICAM-1), E-selectin was capable of mediating only primary adhesion, ICAM-1 was capable of mediating only secondary adhesion, and VCAM-1 was capable of mediating both primary and secondary adhesion. Studies using human umbilical vein EC monolayers stimulated for 24 h with IL-1 also revealed distinct primary and secondary steps in T cell adhesion under flow, and the secondary adhesion was inhibited > 90% by blocking both VCAM-1/alpha 4 beta 1 integrin and ICAM-1/CD18 integrin pathways. However, the primary adhesion under conditions of flow could not be attributed to any of the mechanisms known to support adhesion of leukocytes to ECs. Alone, this pathway was shown to mediate T cell rolling and was a necessary prerequisite for engagement of the two integrin pathways in this system. Thus, T cell adherence to 24-h IL-1-stimulated human umbilical vein ECs at venular wall shear stresses involves at least two successive steps, with clear molecular distinctions from the mechanisms accounting for neutrophil/EC adhesion. Find the latest version: https://jci.me/117612/pdf A Two-Step Adhesion Cascade for T Cell/Endothelial Cell Interactions under Flow Conditions David A. Jones, * Larry V. McIntire, * C. Wayne Smith, t and Louis J. Picker § *Cox Laboratory for Biomedical Engineering, Institute of Biosciences and Bioengineering, Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892; tSperos P. Martel Laboratory of Leukocyte Biology, Department of Pediatrics, Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030; and 'Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9072 Abstract Introduction Neutrophil adherence to endothelial cells (ECs) under con- Detailed studies of acute inflammatory processes suggest that ditions of flow occurs in successive steps, including selectin- neutrophil/endothelial cell (EC)' interaction can be divided dependent primary adhesion and CD18-dependent second- into several successive steps. These steps include primary adhe- ary adhesion. We used a parallel-plate flow chamber to as- sion, in which free-flowing neutrophils bind and roll slowly sess the steps in T cell adherence in vitro. On monolayers along the surface of activated endothelium, secondary firm ad- of L cells transfected with the EC adhesion molecules E- hesion of the rolling cells, and subsequent transmigration. Dis- selectin, vascular cell adhesion molecule-1 (VCAM-1), or tinct families of adhesion molecules have been shown to partici- intercellular adhesion molecule-1 (ICAM-1), E-selectin was pate in the primary and secondary adhesive events for neutro- capable of mediating only primary adhesion, ICAM-1 was phils. Primary adhesion involves all three members of the capable of mediating only secondary adhesion, and VCAM- selectin family (1-5) and their oligosaccharide ligands, while 1 was capable of mediating both primary and secondary secondary adhesion involves 62 (CD18) integrins on neutro- adhesion. Studies using human umbilical vein EC mono- phils (1) and immunoglobulin gene superfamily counterrecep- layers stimulated for 24 h with IL-1 also revealed distinct tors on EC (primarily intercellular adhesion molecule-I primary and secondary steps in T cell adhesion under flow, [ICAM-1]) (2). Selectin-ligand interactions are activation in- and the secondary adhesion was inhibited > 90% by dependent, are rapid enough to bind free-flowing neutrophils, blocking both VCAM-1/a43, integrin and ICAM-1/CD18 and appear to break in such a way as to allow adherent leuko- integrin pathways. However, the primary adhesion under cytes to roll slowly along the endothelium (6, 7). In contrast, conditions of flow could not be attributed to any of the CD18 integrin-ligand interactions are activation dependent mechanisms known to support adhesion of leukocytes to (i.e., high avidity can be induced through a conformation ECs. Alone, this pathway was shown to mediate T cell rolling change), are not able to initiate adhesion under flow conditions, and was a necessary prerequisite for engagement of the two but can mediate highly stable adhesion under static conditions integrin pathways in this system. Thus, T cell adherence to or once binding is initiated by selectins (1, 4, 8, 9). 24-h IL-1-stimulated human umbilical vein ECs at venular Fewer details are known about the interactions between lym- wall shear stresses involves at least two successive steps, phocytes and EC during extravasation at sites of inflammation. with clear molecular distinctions from the mechanisms ac- The selectin and CD18 integrin adhesion pathways, as well as counting for neutrophil/EC adhesion. (J. Clin. Invest. 1994. other pathways not used by neutrophils, including the a401 94:2443-2450.) Key words: cell adhesion molecules * vascu- integrin (VLA-4) and a4f37 integrin pathways (which preferen- - * lar endothelium * lymphocytes interleukin-1 monoclonal tially bind to the EC ligands vascular cell adhesion molecule- antibodies 1 [VCAM-1] and mucosal addressin cell adhesion molecule-I [ MAdCAM- 1 ], respectively), have been implicated in lympho- cyte-EC recognition (10, 11). However, most studies of the Address correspondence to David A. Jones, Cox Laboratory for Biomed- adhesive functions of these pathways have used assays which ical Engineering, Institute of Biosciences and Bioengineering, Rice Uni- do not discriminate the relative participation of these pathways versity, Houston, TX 77251-1892. in primary and secondary adhesion. It is therefore still not clear Received for publication 29 March 1994 and in revised form 5 August 1994. if lymphocyte-EC adhesive interactions under flow are analo- gous to the multistep process described for neutrophils, and if 1. Abbreviations used in this paper: CLA, cutaneous lymphocyte anti- so, which receptors contribute at each stage. gen; D-PBS, Dulbecco's phosphate-buffered saline; EC, endothelial cell; This study addresses these issues by examining the behavior HUVEC, human umbilical vein EC; ICAM-1, intercellular adhesion of purified peripheral blood T cells in static and flow adhesion molecule-i; L-ELAM, murine L cells expressing human E-selectin; L- assays using two model systems: (a) murine L cell monolayers ICAM-l; ICAM-1-transfected L cells; L-VCAM-1, L cells transfected transfected with a single human receptor (E-selectin, ICAM-1, with the seven-domain form of VCAM-1; MAdCAM-l, mucosal ad- or VCAM-1) to examine adhesion mediated by single adhesion dressin cell adhesion molecule-i; VCAM- 1, vascular cell adhesion mol- pathways; and (b) cultured human umbilical vein EC (HU- ecule-1. VEC) monolayers stimulated with cytokines to explore possible J. Clin. Invest. cooperative interactions between the various adhesion molecule © The American Society for Clinical Investigation, Inc. pairs in a physiologically relevant cell type. Monoclonal anti- 0021-9738/94/12/2443/08 $2.00 body (mAb) blocking was used to confirm the specificity of Volume 94, December 1994, 2443-2450 interaction using the transfected cells and to analyze the contri- T Cell Adhesion under Flow 2443 butions of particular adhesion pathways with the HUVECs. Our endothelial cell adhesion molecule-I (CD31). CL2 (anti-E-selectin, results confirm that T cell interactions with 24-h IL-I -stimu- CD62E), DREG56 (anti-L-selectin, CD62L), PJ-18 (binds an irrele- lated HUVEC monolayers involve distinct primary and second- vant endothelial cell epitope), Hermes-3 (anti-CD44), MECA-79, and ary adhesion steps and use both ICAM-l/CD18 integrin and HECA-452 (anti-CLA) have been described previously (14-17). VCAM-I/a431 integrin interactions. However, we were unable In static and flow adhesion assays, L cell and HUVEC monolayers to define the adhesion molecules that account for primary adhe- were treated with mAbs for 30 min at 37°C before use. T cells were treated with mAbs for 30 min at room temperature before use. Experi- sion of T cells to activated EC monolayers and suggest that this ments were also run in which T cells were treated with mAbs at 37 or event may be independent of the three known members of the 4°C instead of at room temperature to check for possible activating or selectin family. inhibitory side effects of the mAb treatments, and no differences in binding were observed. In most experiments, cells were pretreated with Methods antibodies before use in the flow system, since preliminary experiments showed identical results for pretreatment alone and pretreatment with Isolation of T lymphocytes. Human peripheral blood T cells were ob- inclusion of mAb in the flow buffer. tained by centrifugation of whole blood through Ficoll-Hypaque (Histo- Adhesion assays. Physiological flow conditions were produced in paque 1077; Sigma Chemical Co., St. Louis, MO) and negative selection vitro using a flow chamber with parallel-plate geometry as described using a T cell enrichment column (R&D Systems, Inc., Minneapolis, previously (2). The chamber produces a well-defined laminar flow over MN). Preparations were > 95% CD3+ and > 99% viable and were monolayers grown in 35-mm tissue culture dishes and was used for labeled when necessary using the fluorescent DNA-binding dye Hoescht both static and flow adhesion assays. 33342 (bis-benzamide; Sigma Chemical Co.; reference 12). Chymo- In the static assays, a suspension of 5 x 106 fluorescently labeled trypsin treatment to remove surface L-selectin was performed as de- T cells/ml in 37°C Dulbecco's phosphate-buffered saline (D-PBS) was scribed elsewhere (13).
Recommended publications
  • Bioinformatics Approach for Pattern of Myelin-Specific Proteins And
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Qazvin University of Medical Sciences Repository Biotech Health Sci. 2016 November; 3(4):e38278. doi: 10.17795/bhs-38278. Published online 2016 August 16. Research Article Bioinformatics Approach for Pattern of Myelin-Specific Proteins and Related Human Disorders Samiie Pouragahi,1,2,3 Mohammad Hossein Sanati,4 Mehdi Sadeghi,2 and Marjan Nassiri-Asl3,* 1Department of Molecular Medicine, School of Medicine, Qazvin university of Medical Sciences, Qazvin, IR Iran 2Department of Bioinformatics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, IR Iran 3Department of Pharmacology, Cellular and Molecular Research Center, School of Medicine, Qazvin university of Medical Sciences, Qazvin, IR Iran 4Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, IR Iran *Corresponding author: Marjan Nassiri-Asl, School of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran. Tel: +98-2833336001, Fax: +98-2833324971, E-mail: [email protected] Received 2016 April 06; Revised 2016 May 30; Accepted 2016 June 22. Abstract Background: Recent neuroinformatic studies, on the structure-function interaction of proteins, causative agents basis of human disease have implied that dysfunction or defect of different protein classes could be associated with several related diseases. Objectives: The aim of this study was the use of bioinformatics approaches for understanding the structure, function and relation- ship of myelin protein 2 (PMP2), a myelin-basic protein in the basis of neuronal disorders. Methods: A collection of databases for exploiting classification information systematically, including, protein structure, protein family and classification of human disease, based on a new approach was used.
    [Show full text]
  • Circulating Intercellular Adhesion Molecule 1 (ICAM-1), E-Selectin
    British Journal of Cancer (1999) 79(2), 360–362 © 1999 Cancer Research Campaign Circulating intercellular adhesion molecule 1 (ICAM-1), E-selectin and vascular cell adhesion molecule 1 (VCAM-1) in head and neck cancer C-M Liu1, T-S Sheen1, J-Y Ko1 and C-T Shun2 Departments of 1Otolaryngology and 2Pathology, College of Medicine, National Taiwan University, 7, Chung-shan South Road, Taipei, Taiwan, Republic of China Summary The sera from patients with nasopharyngeal carcinoma (n = 30), oral carcinoma (n = 22) and laryngeal carcinoma (n = 22) was extracted before treatment. The concentration of circulating intercellular adhesion molecule 1 (ICAM-1), E-selectin and vascular cell adhesion molecule 1 (VCAM-1) was measured by enzyme-linked immunoassay and compared with those from normal subjects (n = 20). The concentration of circulating ICAM-1, E-selectin and VCAM-1 was significantly increased in nasopharyngeal carcinoma. Correspondingly, VCAM-1 and E-selectin were significantly increased in laryngeal carcinoma, whereas only E-selectin was elevated in oral carcinoma. The concentrations of these adhesion molecules did not significantly differ with respect to the early and late stages of these carcinomas. Elevated levels of soluble adhesion molecules in the sera of cancer patients at three different head and neck regions, although appearing to be implicated in these tumour formations, may be unrelated to tumour progression. Keywords: circulating adhesion molecule; intercellular adhesion molecule 1; E-selectin; vascular cell adhesion molecule 1; head and neck cancer It is generally accepted that the direct interaction between adhesion by Wenzel et al (1995), it suggests that the Sialyl Lewisx endothe- molecules on the surfaces of inflammatory cells and vascular lial-selectin ligand interaction may be important in facilitating head endothelium is thought to be necessary for cellular infiltration at the and neck squamous cell carcinoma (HNSCC) cells to adhere during sites of inflammation (Roitt et al, 1993).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Targeting E-Selectin to Tackle Cancer Using Uproleselan
    cancers Review Targeting E-selectin to Tackle Cancer Using Uproleselan Barbara Muz 1 , Anas Abdelghafer 1,2, Matea Markovic 1,2 , Jessica Yavner 1 , Anupama Melam 1 , Noha Nabil Salama 2,3 and Abdel Kareem Azab 1,* 1 Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; [email protected] (B.M.); [email protected] (A.A.); [email protected] (M.M.); [email protected] (J.Y.); [email protected] (A.M.) 2 Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO 63110, USA; [email protected] 3 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt * Correspondence: [email protected]; Tel.: +1-(314)-362-9254; Fax: +1-(314)-362-9790 Simple Summary: This review focuses on eradicating cancer by targeting a surface protein expressed on the endothelium—E-selectin—with a novel drug, uproleselan (GMI-1271). Blocking E-selectin in the tumor microenvironment acts on multiple levels; uproleselan was shown (i) to inhibit cancer cell tethering, rolling and extravasating, i.e., cancer dissemination, (ii) to reduce adhesion and lose stem cell-like properties, (iii) to mobilize cancer cells to circulation where they are more susceptible to chemotherapy, which altogether contributes (iv) to overcome drug resistance. Uproleselan has been tested effective in leukemia, myeloma, pancreatic, colon and breast cancer cells, all of which can be found in the bone marrow as a primary or as a metastatic tumor site.
    [Show full text]
  • Luminex Performance Assay Human Adhesion Molecule Multiplex
    Luminex® Performance Assay Human Adhesion Molecule Multiplex Kit Catalog Number LKT007 For the simultaneous quantitative determination of multiple human cell adhesion molecules in cell culture supernates, serum, and plasma. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................1 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 PRECAUTIONS .........................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................4
    [Show full text]
  • A Novel Recombinant Anti-CD22 Immunokinase Delivers
    Published OnlineFirst January 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0685 Large Molecule Therapeutics Molecular Cancer Therapeutics A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death- Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells Nils Lilienthal1,2, Gregor Lohmann1, Giuliano Crispatzu1, Elena Vasyutina1, Stefan Zittrich3, Petra Mayer1, Carmen Diana Herling4, Mehmet Kemal Tur5, Michael Hallek4, Gabriele Pfitzer3, Stefan Barth6,7, and Marco Herling1,4 Abstract The serine/threonine death-associated protein kinases (DAPK) SGIII against the B-cell–exclusive endocytic glyco-receptor CD22 provide pro-death signals in response to (oncogenic) cellular stres- was created. Its high purity and large-scale recombinant production ses. Lost DAPK expression due to (epi)genetic silencing is found in a provided a stable, selectively binding, and efficiently internalizing broad spectrum of cancers. Within B-cell lymphomas, deficiency of construct with preserved robust catalytic activity. DK1KD-SGIII the prototypic family member DAPK1 represents a predisposing or specifically and efficiently killed CD22-positive cells of lymphoma early tumorigenic lesion and high-frequency promoter methylation lines and primary CLL samples, sparing healthy donor– or CLL marks more aggressive diseases. On the basis of protein studies and patient–derived non-B cells. The mode of cell death was predom- meta-analyzed gene expression profiling data, we show here that inantly PARP-mediated and caspase-dependent conventional apo- within the low-level context of B-lymphocytic DAPK, particularly ptosis as well as triggering of an autophagic program. The notori- CLL cells have lost DAPK1 expression. To target this potential ously high apoptotic threshold of CLL could be overcome by vulnerability, we conceptualized B-cell–specific cytotoxic reconsti- DK1KD-SGIII in vitro also in cases with poor prognostic features, tution of the DAPK1 tumor suppressor in the format of an immu- such as therapy resistance.
    [Show full text]
  • Bidirectional Crosstalk Between PD-L1 Expression and Epithelial To
    Alsuliman et al. Molecular Cancer (2015) 14:149 DOI 10.1186/s12943-015-0421-2 RESEARCH Open Access Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells Abdullah Alsuliman1, Dilek Colak2, Olfat Al-Harazi2, Hanaa Fitwi1, Asma Tulbah3, Taher Al-Tweigeri4, Monther Al-Alwan1,5 and Hazem Ghebeh1,5* Abstract Background: The T-cell inhibitory molecule PD-L1 (B7-H1, CD274) is expressed on tumor cells of a subset of breast cancer patients. However, the mechanism that regulates PD-L1 expression in this group of patients is still not well-identified. Methods: We have used loss and gain of function gene manipulation approach, multi-parametric flow cytometry, large scale gene expression dataset analysis and immunohistochemistry of breast cancer tissue sections. Results: Induction of epithelial to mesenchymal transition (EMT) in human mammary epithelial cells upregulated PD-L1 expression, which was dependent mainly on the activation of the PI3K/AKT pathway. Interestingly, gene expression signatures available from large cohort of breast tumors showed a significant correlation between EMT score and the PD-L1 mRNA level (p < 0.001). Strikingly, very strong association (p < 0.0001) was found between PD-L1 expression and claudin-low subset of breast cancer, which is known to have high EMT score. On the protein level, significant correlation was found between PD-L1 expression and standard markers of EMT (p =0.005)in67breast cancer patients. Importantly, specific downregulation of PD-L1 in claudin-low breast cancer cells showed signs of EMT reversal as manifested by CD44 and Vimentin downregulation and CD24 upregulation.
    [Show full text]
  • Increased Expression of Cell Adhesion Molecule P-Selectin in Active Inflammatory Bowel Disease Gut: First Published As 10.1136/Gut.36.3.411 on 1 March 1995
    Gut 1995; 36: 411-418 411 Increased expression of cell adhesion molecule P-selectin in active inflammatory bowel disease Gut: first published as 10.1136/gut.36.3.411 on 1 March 1995. Downloaded from G M Schurmann, A E Bishop, P Facer, M Vecchio, J C W Lee, D S Rampton, J M Polak Abstract proposed, entailing margination from the The pathogenic changes of inflammatory centreline of blood flow towards the vascular bowel disease (IBD) depend on migration wall, rolling, tethering to the endothelia, stable of circulating leucocytes into intestinal adhesion, and finally, transendothelial migra- tissues. Although leucocyte rolling and tion.1 Each of these steps involves specific fam- tenuous adhesion are probably regulated ilies of adhesion molecules, which are by inducible selectins on vascular expressed on endothelial cells and on circulat- endothelia, little is known about the ing cells as their counterparts and ligands.2 3 expression of these molecules in Crohn's The selectin family of adhesion molecules, disease and ulcerative colitis. Using which comprises E-selectin, P-selectin, and L- immunohistochemistry on surgically selectin, predominantly mediates the first steps resected specimens, this study investi- of cellular adhesion4 5 and several studies have gated endothelial P-selectin (CD62, gran- shown upregulation of E-selectin on activated ular membrane protein-140) in frozen endothelial cells in a variety oftissues6-8 includ- sections of histologically uninvolved ing the gut in patients with IBD.9 10 Little tissues adjacent to inflammation (Crohn's investigation has been made, however, of P- disease= 10; ulcerative colitis= 10), from selectin in normal and diseased gut, although highly inflamed areas (Crohn's its DNA was cloned and sequenced in 1989.11 disease=20; ulcerative colitis=13), and P-selectin (also known as PADGEM, from normal bowel (n=20).
    [Show full text]
  • B Lymphocyte Binding to E- and P-Selectins Is Mediated Through the De Novo Expression of Carbohydrates on in Vitro and in Vivo Activated Human B Cells
    B lymphocyte binding to E- and P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells. A A Postigo, … , F Sánchez-Madrid, M O de Landázuri J Clin Invest. 1994;94(4):1585-1596. https://doi.org/10.1172/JCI117500. Research Article Cell adhesion to endothelium regulates the trafficking and recruitment of leukocytes towards lymphoid organs and sites of inflammation. This phenomenon is mediated by the expression of a number of adhesion molecules on both the endothelium and circulating cells. Activation of endothelial cells (EC) with different stimuli induces the expression of several adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1), involved in their interaction with circulating cells. In this report, we have studied the binding of nonactivated and activated B cells to purified E- and P-selectins. Activated but not resting B cells were able to interact with both selectins. This binding capacity of activated B cells paralleled the induction of different carbohydrate epitopes (Lewisx, sialyl-Lewisx, CD57 and CDw65) as well as other molecules bearing these or related epitopes in myeloid cells (L-selectin, alpha L beta 2 and alpha X beta 2 integrins, and CD35) involved in the interaction of different cell types with selectins. B cells infiltrating inflamed tissues like in Hashimoto's thyroiditis, also expressed these selectin-binding carbohydrates in parallel with the expression of E-selectin by surrounding follicular dendritic cells. Moreover, the crosslinking of these selectin-binding epitopes resulted in an increased binding of B cells to different integrin ligands.
    [Show full text]
  • Alpha 1,3 Fucosyltransferases Are Master Regulators of Prostate Cancer Cell Trafficking
    Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking Steven R. Barthela,b, Georg K. Wiesea, Jaehyung Chob,c, Matthew J. Oppermana, Danielle L. Haysa, Javed Siddiquid, Kenneth J. Pientad, Bruce Furieb,c, and Charles J. Dimitroffa,b,1 aHarvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115; bHarvard Medical School, Boston, MA 02115; cDivision of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115; and dDepartment of Urology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109 Edited by Carolyn R. Bertozzi, University of California, Berkeley, CA, and approved September 24, 2009 (received for review June 2, 2009) How cancer cells bind to vascular surfaces and extravasate into target sistent with several observations, including the association of sLeX organs is an underappreciated, yet essential step in metastasis. We with PCa grade and progression (2, 16, 17), cancer cell E-selectin postulate that the metastatic process involves discrete adhesive ligand activity is a direct correlate with metastatic potential (18, 19) interactions between circulating cancer cells and microvascular en- and cancer cells can trigger E-selectin expression on liver sinusoidal dothelial cells. Sialyl Lewis X (sLeX) on prostate cancer (PCa) cells is microvasculature to steer circulating cancer cells to the liver (20, thought to promote metastasis by mediating PCa cell binding to 21). Thus, mapping glyco-metabolic pathways regulating E-selectin microvascular endothelial (E)-selectin. Yet, regulation of sLeX and ligand synthesis may be vital for understanding PCa metastasis. related E-selectin ligand expression in PCa cells is a poorly understood In this report, we identify E-selectin ligand formation through factor in PCa metastasis.
    [Show full text]
  • Differential Regulation of PD-L1 Expression by Immune and Tumor Cells in NSCLC and the Response to Treatment with Atezolizumab (Anti–PD-L1)
    Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti–PD-L1) Marcin Kowanetza,1, Wei Zoua, Scott N. Gettingerb, Hartmut Koeppena, Mark Kockxc, Peter Schmidd, Edward E. Kadel IIIa, Ignacio Wistubae, Jamie Chaftf, Naiyer A. Rizvig, David R. Spigelh, Alexander Spirai, Fred R. Hirschj, Victor Cohenk, Dustin Smitha, Zach Boyda, Natasha Mileya, Susan Flynna, Vincent Levequea, David S. Shamesa, Marcus Ballingera, Simonetta Moccia, Geetha Shankara, Roel Funkea, Garret Hamptona, Alan Sandlera, Lukas Amlera, Ira Mellmana,1, Daniel S. Chena, and Priti S. Hegdea aOncology Biomarker Development, Genentech, Inc., South San Francisco, CA 94080; bMedical Oncology, Yale Cancer Center, New Haven, CT 06510; cHistoGeneX, 2610 Antwerp, Belgium; dBarts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; eTranslational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77054; fMedical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065; gHematology and Oncology, Columbia University, New York, NY 10027; hSarah Cannon Research Institute, Nashville, TN 37203; iOncology Program, Virginia Cancer Specialists, Fairfax, VA 22031; jMedical Oncology, University of Colorado Cancer Center, Denver, CO 80045; and kOncology, Jewish General Hospital, Montreal, QC, Canada H3T 1E2 Edited by Dennis A. Carson, University of California, San Diego, La Jolla, CA, and approved August 21, 2018 (received for review August 21, 2018) Programmed death-ligand 1 (PD-L1) expression on tumor cells cell response, the mechanistic significance of PD-L1 on TC vs. IC (TCs) by immunohistochemistry is rapidly gaining importance as a is unclear. diagnostic for the selection or stratification of patients with non- PD-L1 expression is generally thought to be induced at the small cell lung cancer (NSCLC) most likely to respond to single- transcriptional level after exposure to IFN-γ released by T ef- agent checkpoint inhibitors.
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]