Connections on Conformal Blocks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rational Curves on Hypersurfaces
Rational curves on hypersurfaces ||||||{ Lecture notes for the II Latin American School of Algebraic Geometry and Applications 1{12 June 2015 Cabo Frio, Brazil ||||||{ Olivier Debarre January 4, 2016 Contents 1 Projective spaces and Grassmannians 3 1.1 Projective spaces . 3 1.2 The Euler sequence . 4 1.3 Grassmannians . 4 1.4 Linear spaces contained in a subscheme of P(V )................ 5 2 Projective lines contained in a hypersurface 9 2.1 Local study of F (X) ............................... 9 2.2 Schubert calculus . 10 2.3 Projective lines contained in a hypersurface . 12 2.3.1 Existence of lines in a hypersurface . 12 2.3.2 Lines through a point . 16 2.3.3 Free lines . 17 2.4 Projective lines contained in a quadric hypersurface . 18 2.5 Projective lines contained in a cubic hypersurface . 19 2.5.1 Lines on a smooth cubic surface . 20 2.5.2 Lines on a smooth cubic fourfold . 22 2.6 Cubic hypersurfaces over finite fields . 25 3 Conics and curves of higher degrees 29 3.1 Conics in the projective space . 29 3.2 Conics contained in a hypersurface . 30 3.2.1 Conics contained in a quadric hypersurface . 32 3.2.2 Conics contained in a cubic hypersurface . 33 3.3 Rational curves of higher degrees . 35 4 Varieties covered by rational curves 39 4.1 Uniruled and separably uniruled varieties . 39 4.2 Free rational curves and separably uniruled varieties . 41 4.3 Minimal free rational curves . 44 Abstract In the past few decades, it has become more and more obvious that rational curves are the primary player in the study of the birational geometry of projective varieties. -
The Jouanolou-Thomason Homotopy Lemma
The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation. -
Vector Bundles As Generators on Schemes and Stacks
Vector Bundles as Generators on Schemes and Stacks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Philipp Gross aus D¨usseldorf D¨usseldorf,Mai 2010 Aus dem Mathematischen Institut der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Stefan Schr¨oer Koreferent: Prof. Dr. Holger Reich Acknowledgments The work on this dissertation has been one of the most significant academic challenges I have ever had to face. This study would not have been completed without the support, patience and guidance of the following people. It is to them that I owe my deepest gratitude. I am indebted to my advisor Stefan Schr¨oerfor his encouragement to pursue this project. He taught me algebraic geometry and how to write academic papers, made me a better mathematician, brought out the good ideas in me, and gave me the opportunity to attend many conferences and schools in Europe. I also thank Holger Reich, not only for agreeing to review the dissertation and to sit on my committee, but also for showing an interest in my research. Next, I thank the members of the local algebraic geometry research group for their time, energy and for the many inspiring discussions: Christian Liedtke, Sasa Novakovic, Holger Partsch and Felix Sch¨uller.I have had the pleasure of learning from them in many other ways as well. A special thanks goes to Holger for being a friend, helping me complete the writing of this dissertation as well as the challenging research that lies behind it. -
NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation. -
Bertini's Theorem on Generic Smoothness
U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave. -
On the De Rham Cohomology of Algebraic Varieties
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. ROBIN HARTSHORNE On the de Rham cohomology of algebraic varieties Publications mathématiques de l’I.H.É.S., tome 45 (1975), p. 5-99 <http://www.numdam.org/item?id=PMIHES_1975__45__5_0> © Publications mathématiques de l’I.H.É.S., 1975, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES by ROBIN HARTSHORNE CONTENTS INTRODUCTION .............................................................................. 6 CHAPTER I. — Preliminaries .............................................................. n § i. Cohomology theories ............................................................... 9 § 2. Direct and inverse images .......................................................... 10 § 3. Hypercohomology ................................................................. 11 § 4. Inverse limits...................................................................... 12 § 5. Completions ...................................................................... 18 § -
Introduction
Chapter 1 Introduction In the late 1940s Weil posed the challenge to create a cohomology theory for algebraic varieties X over an arbitrary field k with coefficients in Z. Weil had a deep arithmetic application in mind, namely to prove a conjecture of his concerning the -function attached to a variety over a finite field: Its first part asserts the rationality of this - function, the second claims the existence of a functional equation, and the third predicts the locations of its zeros and poles. Assuming a well-developed cohomology theory with coefficients in Z, possessing in particular a Lefschetz trace formula, he indicated a proof of these conjectures, cf. [48]. As we now know, for fields k of positive characteristic one cannot hope to con- struct meaningful cohomology groups H i .X; Z/. Nevertheless Weil’s quest provided an important stimulus. Starting with Serre and then with the main driving force of Grothendieck, several good substitutes for such a theory have been constructed. Many later developments in arithmetic algebraic geometry hinge crucially on these theories. Among the most important cohomology theories for algebraic varieties over a field k are the following: If k is of characteristic zero, one may pass from k to the field of complex numbers C and consider the singular cohomology of the associated complex analytic space X.C/. Other invariants in the same situation are given by the algebraic de Rham cohomology of X. For general k and a prime ` different from the characteristic of k, there is the cohomology theory of étale `-adic sheaves due to Grothendieck et al. -
An Introduction to Factorization Algebras
AN INTRODUCTION TO FACTORIZATION ALGEBRAS NOTES BY RYAN MICKLER AND BRIAN WILLIAMS Our primary reference are the books of Costello and Gwillam [CG17, CG]. 1. Prefactorization algebras 1.1. Definitions. A prefactorization algebra F on a topological space M, with values in V ect⊗ (the symmetric monodical category of vector spaces), is an assignment of a vector space F(U) for each open set U ⊆ M together with the following data: V • For an inclusion U ! V , a map µU : F(U) !F(V ). • For a finite collection of disjoint opens ti2I Ui ⊂ V , an ΣjIj- equivariant map µV : ⊗ F(U ) !F(V ) fUig i2I i The maps µV are subject to following compatibility for sequences fUig of inclusions: • For a collection of disjoint opens Vj ⊂ W , and collections of disjoint opens Uj;i ⊂ Vj, the composite maps ⊗j ⊗i F(Uj;i) / ⊗jF(Vj) & y F(W ) agree. For example, the composition maps for the following configuration of three open sets are given by: 1 Note that F(;) must be a commutative algebra, and the map ;! U for any open U, turns F(U) into a pointed vector space. A prefactorization algebra is called multiplicative if ∼ ⊗iF(Ui) = F(U1 q · · · q Un) via the natural map µtUi . fUig 1.1.1. An equivalent definition. One can reformulate the definition of a factorization algebra in the following way. It uses the following defi- nition. A pseudo-tensor category is a collection of objects M together with ΣjIj-equivariant vector spaces M(fAigi2I jB) for each finite open set I and objects fAi;Bg in M satisfying certain associativity, equivariance, and unital axioms. -
Twisted Differential Operators and Q-Crystals Michel Gros, Bernard Le Stum, Adolfo Quirós
Twisted differential operators and q-crystals Michel Gros, Bernard Le Stum, Adolfo Quirós To cite this version: Michel Gros, Bernard Le Stum, Adolfo Quirós. Twisted differential operators and q-crystals. 2020. hal-02559467 HAL Id: hal-02559467 https://hal.archives-ouvertes.fr/hal-02559467 Preprint submitted on 30 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Twisted differential operators and q-crystals Michel Gros, Bernard Le Stum & Adolfo Quirós∗ Version of April 29, 2020 Abstract We describe explicitly the q-PD-envelopes considered by Bhatt and Scholze in their recent theory of q-crystalline cohomology and explain the relation with our notion of a divided polynomial twisted algebra. Together with an interpretation of crystals on the q-crystalline site, that we call q-crystals, as modules endowed with some kind of stratification, it allows us to associate a module on the ring of twisted differential operators to any q-crystal. Contents Introduction 2 1 δ-structures 3 2 δ-rings and twisted divided powers 5 3 q-divided powers and twisted divided powers 7 4 Complete q-PD-envelopes 14 5 Complete q-PD-envelope of a diagonal embedding 17 6 Hyper q-stratifications 19 7 q-crystals 22 8 Appendix: 1-crystals vs usual crystals 24 References 25 ∗Supported by grant PGC2018-095392-B-I00 (MCIU/AEI/FEDER, UE). -
A Stacky Approach to Crystals
A STACKY APPROACH TO CRYSTALS VLADIMIR DRINFELD Abstract. Inspired by a theorem of Bhatt-Morrow-Scholze, we develop a stacky approach to crystals and isocrystals on “Frobenius-smooth” schemes over Fp . This class of schemes goes back to Berthelot-Messing and contains all smooth schemes over perfect fields of char- acteristic p. To treat isocrystals, we prove some descent theorems for sheaves of Banachian modules, which could be interesting in their own right. 1. Introduction Fix a prime p. 1.1. A theorem of Bhatt-Morrow-Scholze. Let X be a smooth scheme over a perfect field k of characteristic p. Let Xperf be the perfection of X, i.e., X := lim(... −→Fr X −→Fr X −→Fr X). perf ←− Let W (Xperf ) be the p-adic formal scheme whose underlying topological space is that of Xperf (or of X) and whose structure sheaf is obtained by applying to OXperf the functor of p-typical Witt vectors. Theorem 1.10 of [BMS] can be reformulated as a canonical isomorphism RΓcris(X, O)= RΓ(W (Xperf)/G , O), where G is a certain flat affine groupoid (in the category of p-adic formal schemes) acting 1 on W (Xperf), and W (Xperf)/G is the quotient stack . If X is affine this gives an explicit complex computing RΓcris(X, O) (the complex is constructed using the nerve of G ). arXiv:1810.11853v1 [math.AG] 28 Oct 2018 One can define G to be the unique groupoid acting on W (Xperf ) such that the morphism G → W (Xperf ) × W (Xperf ) is obtained by taking the divided power envelope of the ideal of the closed subscheme Xperf ×X Xperf ⊂ W (Xperf ) × W (Xperf ). -
Arxiv:2012.08504V5 [Math.AG]
A model for the E3 fusion-convolution product of constructible sheaves on the affine Grassmannian Guglielmo Nocera∗ September 29, 2021 Abstract In this paper we provide a detailed construction of an associative and braided convolution product on the category of equivariant constructible sheaves on the affine Grassmannian through derived geometry. This product extends the convolution product on equivariant perverse sheaves and is constructed as an E3-algebra object in ∞–categories. The main tools amount to a formulation of the convolution and fusion procedures over the Ran space involving the formalism of 2-Segal objects and correspondences from [DK19] and [GR17]; of factorising constructible cosheaves over the Ran space from Lurie, [Lur17, Chapter 5]; and of constructible sheaves via exit paths. Contents 1 Introduction 2 1.1 The affine Grassmannian and the Geometric Satake Theorem . .3 1.2 Motivations and further aims . .7 1.3 Overview of the work . .9 1.4 Glossary . 13 arXiv:2012.08504v6 [math.AG] 28 Sep 2021 2 Convolution over the Ran space 14 2.1 The presheaves FactGrk ................................... 15 2.2 The 2-Segal structure . 17 2020 Mathematics subject classification. Primary 14D24, 57N80; Secondary 18N70, 22E57, 32S60 Key words and phrases. Affine Grassmannian, Geometric Satake Theorem, constructible sheaves, exit paths, little cubes operads, symmetric monoidal ∞-categories, stratified spaces, correspondences. ∗Scuola Normale Superiore, Pza. dei Cavalieri 7, Pisa | UFR Mathématiques Strasbourg, 7 Rue Descartes - Bureau 113. email: guglielmo.nocera-at-sns.it. 1 2 2.3 Action of the arc group in the Ran setting . 19 2.4 The convolution product over Ran(X) ........................... 20 2.5 Stratifications . -
A CARDINALITY FILTRATION Contents 1. Preliminaries 1 1.1
A CARDINALITY FILTRATION ARAMINTA AMABEL Contents 1. Preliminaries 1 1.1. Stratified Spaces 1 1.2. Exiting Disks 2 2. Recollections 2 2.1. Linear Poincar´eDuality 3 3. The Ran Space 5 4. Disk Categories 6 4.1. Cardinality Filtration 7 5. Layer Computations 9 5.1. Reduced Extensions 13 6. Convergence 15 References 16 1. Preliminaries 1.1. Stratified Spaces. Two talks ago, we discussed zero-pointed manifolds M∗. For parts of what we will do today, we will need to consider a wider class of spaces: (conically smooth) stratified spaces. Definition 1.1. Let P be a partially ordered set. Topologize P by declaring sets that are closed upwards to be open. A P -stratified space is a topological space X together with a continuous map −1 f : X ! P . We refer to the fiber f fpg =: Xp as the p-stratum. We view zero-pointed manifolds as stratified spaces over f0 < 1g with ∗ in the 0 stratum and M = M∗ n ∗ in the 1 stratum. Definition 1.2. A stratified space X ! P is called conically stratified if for every p 2 A and x 2 Xp there exists an P>p-stratified space U and a topological space Z together with an open embedding C(Z) × U ! X ` of stratified spaces whose image contains x. Here C(Z) = ∗ (Z × R≥0). Z×{0g We will not discuss the definition of conically smooth stratified space. For now, just think of conically smooth stratified spaces as conically stratified spaces that are nice and smooth like manifolds. Details can be found in [4].