Single and Dual-Gpu Generalized Sparse Eigenvalue Solvers

Total Page:16

File Type:pdf, Size:1020Kb

Single and Dual-Gpu Generalized Sparse Eigenvalue Solvers 930 A. DZIEKONSKI, M. MROZOWSKI, SINGLE AND DUAL-GPU GENERALIZED SPARSE EIGENVALUE SOLVERS . Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method Adam DZIEKONSKI, Michal MROZOWSKI Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland [email protected], [email protected] Submitted August 30, 2018 / Accepted September 3, 2018 Abstract. This paper presents two fast generalized eigen- was considered for the finite-difference time-domain (FDTD) value solvers for sparse symmetric matrices that arise when method [1–4]. In recent years, some effort has also been de- electromagnetic cavity resonances are investigated using the voted to taking advantage of the processing power of graph- higher-order finite element method (FEM). To find a few low- ics accelerators for other techniques, such as the method of order resonances, the locally optimal block preconditioned moments [5–7], the multilevel fast multipole (MFML) algo- conjugate gradient (LOBPCG) algorithm with null-space de- rithm [8], and the discontinuous Galekin (DG) method [9], flation is applied. The computations are expedited by using as well as other techniques [10]. In this paper, we consider one or two graphical processing units (GPUs) as acceler- GPU-acceleration of the finite element Method—one of the ators. The performance of the solver is tested for single most powerful and versatile numerical techniques, which is and dual GPU hardware setups, making use of two types often applied to the solution of boundary value problems that of GPU: NVIDIA Kepler K40s and NVIDIA Pascal P100s. arise in electromagnetics. To date, most publications on FEM The speed of the GPU-accelerated solvers is compared to in the context of electromagnets have been related to the solu- a multithreaded implementation of the same algorithm using tion of a linear system of equations [11–13] and FEM matrix a multicore central processing unit (CPU, Intel Xeon E5-2680 generation and assembly [13–15]. In this paper, we concen- v3 with twelve cores). It was found that, even for the least trate on finding the solution of the generalized eigenvalue efficient setups, the GPU-accelerated code is approximately problems that emerge when FEM is applied to simulate the twice as fast as a parallel CPU-only implementation. free oscillation of microwave cavities. GPU-acceleration of eigenvalue solvers is less frequently disused in the literature, and in most cases standard, rather than generalized, eigen- value problems are considered [16–19]. Solvers for standard eigenvalue problems are not suitable for FEM analysis, so Keywords we focus on generalized eigenvalue problems, extending our recent work on this topic [20]. FEM, generalized eigenvalue problem, GPU, Maxwell’s equations, resonators 2. Finite Element Method Let us consider a lossless dielectric-loaded electromag- 1. Introduction netic cavity Ω enclosed by a perfect electric conductor bound- ary S. The behavior of the electric field inside Ω and the Computational electromagnetics (CEM) concerns the frequencies of free oscillations inside are determined by the design and implementation of fast and accurate solvers of vector Helmholtz equation: Maxwell’s equations. The ultimate goal is to solve com- r × r × ® − 2 ® plex problems in the shortest possible time. To achieve this E k0rE = 0 (1) goal, algorithms have to be considered in the context of the ® hardware they will be implemented on. As hardware evolves, where E is the electric field, k0 = !/c is the wavenumber, known numerical techniques need to be reexamined and mod- r is the relative permittivity, ! is the angular frequency, and ified in order to take advantage of the possibilities offered c is the speed of light in vacuum. The nonzero frequencies for by new hardware. GPU-computing is an emerging trend in which the above equation has a nontrivial solution determine computational electromagnetics. Initially, GPU-acceleration the resonances of the cavity. DOI: 10.13164/re.2018.0930 FEATURE ARTICLE RADIOENGINEERING, VOL. 27, NO. 4, DECEMBER 2018 931 To solve the vector Helmholtz equation in 3D, we use during each iteration of LOBPCG [25]. This process can be the finite-element method with a tetrahedral mesh and higher- called null-space filtering, as imposing the divergence-free order basis functions [21], [22]. To this end, we work with condition is, in practice, implemented as in a deflation us- the weak formulation of (1): ing a projector that ensures that the projected vectors are M-orthogonal to the null-space. The projected vectors thus have no components from the null-space, and are then used ¹ ® 2 ® to construct model fields (eigenvectors) that correspond to r × w® · r × E − k0 w® · rE dΩ = 0 (2) ® Ω nonzero eigenvalues and fulfill r · tE = 0. where w® is a vector testing function. We then use the Galerkin The LOBPCG method with null-space filtration is method with hierarchical vector basis functions up to the third shown in Algorithm 1. The null-space filtering is applied in order [23], arriving at: lines 2 and 13. In practice, this is implemented as a solution of a relatively small system of sparse equations with multiple right-hand sides. The system matrix for null-space filtration 2 ¹K − k0Mº e = 0 (3) is identical to the system matrix obtained when solving the Poisson equation with the Lagrange finite elements. The ma- T where K, M 2 Rn×n are large and sparse real-valued stiffness trix is given by Y MYº, with Y being a discrete gradient op- and mass matrices, respectively, e 2 Rn is a vector of expan- erator with only two nonzero elements per row (1 or -1) [25]. sion coefficients for the basis functions, and n is the number To solve the Poisson equation, we use the conjugate gradient of degrees of freedom (DoF). Additionally, the matrix M is method with a hierarchical multilevel preconditioner operat- positive definite. Equation (3) defines the generalized eigen- ing in a V-cycle (Algorithm 2 [22]. The hierarchical mul- value problems. Since matrices are real and symmetric, and tilevel preconditioner (Hie-ML) is shown in lines P.1–P.11 one of them is positive definite, the eigenvalues are real and of Algorithm 2. The preconditioner takes advantage of nonnegative. the hierarchy of the basis functions used in FEM. In our case, the basis functions up to the third order are considered (QTCuN) [23], so we used three levels in a V-cycle. On the lowest level (P.4), the direct solution of a linear system 3. Finding Small Nonzero Eigenvalues is needed. However, since on this level only the first-order basis functions are involved, the system is very small and The system matrix that emerges from FEM using its solution does not pose any problem, For the smoothing higher-order basis functions is large and sparse. This means that is performed when transfers between levels occur during that direct solution methods for eigenproblems cannot be restriction and prolongation (lines P.6–P.10), we used a few applied. The only way to find the resonances and modal weighted Jacobi iterations. fields is to use iterative techniques. In practice, we are in- terested in a few low-order resonances that correspond to Another important element is the precondi- eigenvalues with small magnitudes. One algorithm recom- tioner P used in the LOBPCG (Algorithm 1, line 12). mended for finding a few algebraically smallest eigenvalues In this paper, we employ for this a sequence of operations of symmetric positive definite matrix pencils is the locally approximately equal to the inverse of the matrix A = K− κM, optimal block preconditioned conjugate gradient (LOBPCG) on a vector or a block of vectors (κ is a real scalar chosen to method proposed by Knyazev [24]. With a good precon- be smaller than, but close to, the smallest nonzero eigenvalue ditioner, this method converges rapidly. Moreover, it does of the matrix pencil ¹K; Mº. This is implemented as a few not require any matrix factorization and, because it involves iterations of the preconditioned conjugate gradient method a three-term recurrence, its memory requirements are rela- (PCG-V)—the same method used for null-space filtering. In tively low. Finally, the basic operation in the algorithm is other words, in Step 12 of the LOPCG algorithm, instead of a sparse matrix–vector product. These features are desirable −1 computing Hk = P Rk , we used an approximate solution from the point of view of efficiently using the massive par- of the matrix system ¹K − κMºHk = Rk . allelization capabilities offered by state-of-the-art graphics processing units. The LOBPCG algorithm cannot be ap- Note that, except for the direct solution on the low- plied directly to the FEM problems resulting from the weak est level (Algorithm 2, line P.4), almost all other steps form (2), as the r × r × ¹·º operator yields zero when ap- in the LOBPCG algorithm can be expressed in terms of plied to the gradient of any scalar function. As a result, a matrix-times-vector operation or simple BLAS1-type op- the eigenproblem (3) has multiple zero eigenvalues. Such erations. Also, the preconditioned conjugate-gradient algo- eigenvalues would be found by LOBPCG, but they are of rithm involves a sparse matrix–vector product (SpMV). This no interest, since they are not physical solutions fulfilling is typical of all iterative techniques based on Krylov-spaces. Maxwell’s equations. More precisely, the model field associ- In order to execute the iterations rapidly, the performance of ated with each zero eigenvalue does not fulfill the condition the sparse matrix–times vector product should be increased. ® that r ·tE = 0 .
Recommended publications
  • Accelerating the LOBPCG Method on Gpus Using a Blocked Sparse Matrix Vector Product
    Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product Hartwig Anzt and Stanimire Tomov and Jack Dongarra Innovative Computing Lab University of Tennessee Knoxville, USA Email: [email protected], [email protected], [email protected] Abstract— the computing power of today’s supercomputers, often accel- erated by coprocessors like graphics processing units (GPUs), This paper presents a heterogeneous CPU-GPU algorithm design and optimized implementation for an entire sparse iter- becomes challenging. ative eigensolver – the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) – starting from low-level GPU While there exist numerous efforts to adapt iterative lin- data structures and kernels to the higher-level algorithmic choices ear solvers like Krylov subspace methods to coprocessor and overall heterogeneous design. Most notably, the eigensolver technology, sparse eigensolvers have so far remained out- leverages the high-performance of a new GPU kernel developed side the main focus. A possible explanation is that many for the simultaneous multiplication of a sparse matrix and a of those combine sparse and dense linear algebra routines, set of vectors (SpMM). This is a building block that serves which makes porting them to accelerators more difficult. Aside as a backbone for not only block-Krylov, but also for other from the power method, algorithms based on the Krylov methods relying on blocking for acceleration in general. The subspace idea are among the most commonly used general heterogeneous LOBPCG developed here reveals the potential of eigensolvers [1]. When targeting symmetric positive definite this type of eigensolver by highly optimizing all of its components, eigenvalue problems, the recently developed Locally Optimal and can be viewed as a benchmark for other SpMM-dependent applications.
    [Show full text]
  • Solving Symmetric Semi-Definite (Ill-Conditioned)
    Solving Symmetric Semi-definite (ill-conditioned) Generalized Eigenvalue Problems Zhaojun Bai University of California, Davis Berkeley, August 19, 2016 Symmetric definite generalized eigenvalue problem I Symmetric definite generalized eigenvalue problem Ax = λBx where AT = A and BT = B > 0 I Eigen-decomposition AX = BXΛ where Λ = diag(λ1; λ2; : : : ; λn) X = (x1; x2; : : : ; xn) XT BX = I: I Assume λ1 ≤ λ2 ≤ · · · ≤ λn LAPACK solvers I LAPACK routines xSYGV, xSYGVD, xSYGVX are based on the following algorithm (Wilkinson'65): 1. compute the Cholesky factorization B = GGT 2. compute C = G−1AG−T 3. compute symmetric eigen-decomposition QT CQ = Λ 4. set X = G−T Q I xSYGV[D,X] could be numerically unstable if B is ill-conditioned: −1 jλbi − λij . p(n)(kB k2kAk2 + cond(B)jλbij) · and −1 1=2 kB k2kAk2(cond(B)) + cond(B)jλbij θ(xbi; xi) . p(n) · specgapi I User's choice between the inversion of ill-conditioned Cholesky decomposition and the QZ algorithm that destroys symmetry Algorithms to address the ill-conditioning 1. Fix-Heiberger'72 (Parlett'80): explicit reduction 2. Chang-Chung Chang'74: SQZ method (QZ by Moler and Stewart'73) 3. Bunse-Gerstner'84: MDR method 4. Chandrasekaran'00: \proper pivoting scheme" 5. Davies-Higham-Tisseur'01: Cholesky+Jacobi 6. Working notes by Kahan'11 and Moler'14 This talk Three approaches: 1. A LAPACK-style implementation of Fix-Heiberger algorithm 2. An algebraic reformulation 3. Locally accelerated block preconditioned steepest descent (LABPSD) This talk Three approaches: 1. A LAPACK-style implementation of Fix-Heiberger algorithm Status: beta-release 2.
    [Show full text]
  • On the Performance and Energy Efficiency of Sparse Linear Algebra on Gpus
    Original Article The International Journal of High Performance Computing Applications 1–16 On the performance and energy efficiency Ó The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav of sparse linear algebra on GPUs DOI: 10.1177/1094342016672081 hpc.sagepub.com Hartwig Anzt1, Stanimire Tomov1 and Jack Dongarra1,2,3 Abstract In this paper we unveil some performance and energy efficiency frontiers for sparse computations on GPU-based super- computers. We compare the resource efficiency of different sparse matrix–vector products (SpMV) taken from libraries such as cuSPARSE and MAGMA for GPU and Intel’s MKL for multicore CPUs, and develop a GPU sparse matrix–matrix product (SpMM) implementation that handles the simultaneous multiplication of a sparse matrix with a set of vectors in block-wise fashion. While a typical sparse computation such as the SpMV reaches only a fraction of the peak of current GPUs, we show that the SpMM succeeds in exceeding the memory-bound limitations of the SpMV. We integrate this kernel into a GPU-accelerated Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) eigensolver. LOBPCG is chosen as a benchmark algorithm for this study as it combines an interesting mix of sparse and dense linear algebra operations that is typical for complex simulation applications, and allows for hardware-aware optimizations. In a detailed analysis we compare the performance and energy efficiency against a multi-threaded CPU counterpart. The reported performance and energy efficiency results are indicative of sparse computations on supercomputers. Keywords sparse eigensolver, LOBPCG, GPU supercomputer, energy efficiency, blocked sparse matrix–vector product 1Introduction GPU-based supercomputers.
    [Show full text]
  • High Efficiency Spectral Analysis and BLAS-3
    High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank Approximations by Jed Alma Duersch A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Applied Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ming Gu, Chair Assistant Professor Lin Lin Professor Kameshwar Poolla Fall 2015 High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP with Low-Rank Approximations Copyright 2015 by Jed Alma Duersch i Contents Contents i 1 A Robust and Efficient Implementation of LOBPCG 2 1.1 Contributions and results . 2 1.2 Introduction to LOBPCG . 3 1.3 The basic LOBPCG algorithm . 4 1.4 Numerical stability and basis selection . 6 1.5 Stability improvements . 10 1.6 Efficiency improvements . 13 1.7 Analysis . 22 1.8 Numerical examples . 25 2 Spectral Target Residual Descent 32 2.1 Contributions and results . 32 2.2 Introduction to interior eigenvalue targeting . 33 2.3 Spectral targeting analysis . 34 2.4 Notes on generalized spectral targeting . 42 2.5 Numerical experiments . 48 3 True BLAS-3 Performance QRCP using Random Sampling 53 3.1 Contributions and results . 53 3.2 Introduction to QRCP . 54 3.3 Sample QRCP . 58 3.4 Sample updates . 64 3.5 Full randomized QRCP . 66 3.6 Parallel implementation notes . 71 3.7 Truncated approximate Singular Value Decomposition . 73 3.8 Experimental performance . 77 ii Bibliography 93 iii Acknowledgments I gratefully thank my coauthors, Dr. Meiyue Shao and Dr. Chao Yang, for their time and expertise. I would also like to thank Assistant Professor Lin Lin, Dr.
    [Show full text]
  • A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations Hasan Metin Aktulga, Md
    1 A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations Hasan Metin Aktulga, Md. Afibuzzaman, Samuel Williams, Aydın Buluc¸, Meiyue Shao, Chao Yang, Esmond G. Ng, Pieter Maris, James P. Vary Abstract—As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. We consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We present techniques to significantly improve the SpMM and the transpose operation SpMMT by using the compressed sparse blocks (CSB) format. We achieve 3–4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.
    [Show full text]
  • Computing Singular Values of Large Matrices with an Inverse-Free Preconditioned Krylov Subspace Method∗
    Electronic Transactions on Numerical Analysis. ETNA Volume 42, pp. 197-221, 2014. Kent State University Copyright 2014, Kent State University. http://etna.math.kent.edu ISSN 1068-9613. COMPUTING SINGULAR VALUES OF LARGE MATRICES WITH AN INVERSE-FREE PRECONDITIONED KRYLOV SUBSPACE METHOD∗ QIAO LIANG† AND QIANG YE† Dedicated to Lothar Reichel on the occasion of his 60th birthday Abstract. We present an efficient algorithm for computing a few extreme singular values of a large sparse m×n matrix C. Our algorithm is based on reformulating the singular value problem as an eigenvalue problem for CT C. To address the clustering of the singular values, we develop an inverse-free preconditioned Krylov subspace method to accelerate convergence. We consider preconditioning that is based on robust incomplete factorizations, and we discuss various implementation issues. Extensive numerical tests are presented to demonstrate efficiency and robust- ness of the new algorithm. Key words. singular values, inverse-free preconditioned Krylov Subspace Method, preconditioning, incomplete QR factorization, robust incomplete factorization AMS subject classifications. 65F15, 65F08 1. Introduction. Consider the problem of computing a few of the extreme (i.e., largest or smallest) singular values and the corresponding singular vectors of an m n real ma- trix C. For notational convenience, we assume that m n as otherwise we can× consider CT . In addition, most of the discussions here are valid for≥ the case m < n as well with some notational modifications. Let σ1 σ2 σn be the singular values of C. Then nearly all existing numerical methods are≤ based≤···≤ on reformulating the singular value problem as one of the following two symmetric eigenvalue problems: (1.1) σ2 σ2 σ2 are the eigenvalues of CT C 1 ≤ 2 ≤···≤ n or σ σ σ 0= = 0 σ σ σ − n ≤···≤− 2 ≤− 1 ≤ ··· ≤ 1 ≤ 2 ≤···≤ n m−n are the eigenvalues of the augmented matrix| {z } 0 C (1.2) M := .
    [Show full text]
  • Recent Implementations, Applications, and Extensions of The
    Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG) Andrew Knyazev (Mitsubishi Electric Research Laboratories) Abstract Since introduction [A. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SISC (2001) doi:10.1137/S1064827500366124] and efficient parallel implementation [A. Knyazev et al., Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, SISC (2007) doi:10.1137/060661624], LOBPCG has been used is a wide range of applications in mechanics, material sciences, and data sciences. We review its recent implementations and applications, as well as extensions of the local optimality idea beyond standard eigenvalue problems. 1 Background Kantorovich in 1948 has proposed calculating the smallest eigenvalue λ1 of a symmetric matrix A by steepest descent using a direction r = Ax − λ(x) of a scaled gradient of a Rayleigh quotient λ(x) = (x,Ax)/(x,x) in a scalar product (x,y)= x′y, where the step size is computed by minimizing the Rayleigh quotient in the span of the vectors x and w, i.e. in a locally optimal manner. Samokish in 1958 has proposed applying a preconditioner T to the vector r to generate the preconditioned direction w = T r and derived asymptotic, as x approaches the eigenvector, convergence rate bounds. Block locally optimal multi-step steepest descent is described in Cullum and Willoughby in 1985. Local minimization of the Rayleigh quotient on the subspace spanned by the current approximation, the current residual and the previous approximation, as well as its block version, appear in AK PhD thesis; see 1986.
    [Show full text]
  • Block Locally Optimal Preconditioned Eigenvalue Xolvers BLOPEX
    Block Locally Optimal Preconditioned Eigenvalue Xolvers I.Lashuk, E.Ovtchinnikov, M.Argentati, A.Knyazev Block Locally Optimal Preconditioned Eigenvalue Xolvers BLOPEX Ilya Lashuk, Merico Argentati, Evgenii Ovtchinnikov, Andrew Knyazev (speaker) Department of Mathematical Sciences and Center for Computational Mathematics University of Colorado at Denver and Health Sciences Center Supported by the Lawrence Livermore National Laboratory and the National Science Foundation Center for Computational Mathematics, University of Colorado at Denver Block Locally Optimal Preconditioned Eigenvalue Xolvers I.Lashuk, E.Ovtchinnikov, M.Argentati, A.Knyazev Abstract Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) is a package, written in C, that at present includes only one eigenxolver, Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG). BLOPEX supports parallel computations through an abstract layer. BLOPEX is incorporated in the HYPRE package from LLNL and is availabe as an external block to the PETSc package from ANL as well as a stand-alone serial library. Center for Computational Mathematics, University of Colorado at Denver Block Locally Optimal Preconditioned Eigenvalue Xolvers I.Lashuk, E.Ovtchinnikov, M.Argentati, A.Knyazev Acknowledgements Supported by the Lawrence Livermore National Laboratory, Center for Applied Scientific Computing (LLNL–CASC) and the National Science Foundation. We thank Rob Falgout, Charles Tong, Panayot Vassilevski, and other members of the Hypre Scalable Linear Solvers project team for their help and support. We thank Jose E. Roman, a member of SLEPc team, for writing the SLEPc interface to our Hypre LOBPCG solver. The PETSc team has been very helpful in adding our BLOPEX code as an external package to PETSc. Center for Computational Mathematics, University of Colorado at Denver Block Locally Optimal Preconditioned Eigenvalue Xolvers I.Lashuk, E.Ovtchinnikov, M.Argentati, A.Knyazev CONTENTS 1.
    [Show full text]
  • Robust and Efficient Computation of Eigenvectors in a Generalized
    Robust and Efficient Computation of Eigenvectors in a Generalized Spectral Method for Constrained Clustering Chengming Jiang Huiqing Xie Zhaojun Bai University of California, Davis East China University of University of California, Davis [email protected] Science and Technology [email protected] [email protected] Abstract 1 INTRODUCTION FAST-GE is a generalized spectral method Clustering is one of the most important techniques for constrained clustering [Cucuringu et al., for statistical data analysis, with applications rang- AISTATS 2016]. It incorporates the must- ing from machine learning, pattern recognition, im- link and cannot-link constraints into two age analysis, bioinformatics to computer graphics. Laplacian matrices and then minimizes a It attempts to categorize or group date into clus- Rayleigh quotient via solving a generalized ters on the basis of their similarity. Normalized eigenproblem, and is considered to be sim- Cut [Shi and Malik, 2000] and Spectral Clustering ple and scalable. However, there are two [Ng et al., 2002] are two popular algorithms. unsolved issues. Theoretically, since both Laplacian matrices are positive semi-definite Constrained clustering refers to the clustering with and the corresponding pencil is singular, it a prior domain knowledge of grouping information. is not proven whether the minimum of the Here relatively few must-link (ML) or cannot-link Rayleigh quotient exists and is equivalent to (CL) constraints are available to specify regions an eigenproblem. Computationally, the lo- that must be grouped in the same partition or be cally optimal block preconditioned conjugate separated into different ones [Wagstaff et al., 2001]. gradient (LOBPCG) method is not designed With constraints, the quality of clustering could for solving the eigenproblem of a singular be improved dramatically.
    [Show full text]
  • Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions
    Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions Xin Liu∗ Zaiwen Weny Yin Zhangz March 22, 2012 Abstract In many data-intensive applications, the use of principal component analysis (PCA) and other related techniques is ubiquitous for dimension reduction, data mining or other transformational purposes. Such transformations often require efficiently, reliably and accurately computing dominant singular value de- compositions (SVDs) of large unstructured matrices. In this paper, we propose and study a subspace optimization technique to significantly accelerate the classic simultaneous iteration method. We analyze the convergence of the proposed algorithm, and numerically compare it with several state-of-the-art SVD solvers under the MATLAB environment. Extensive computational results show that on a wide range of large unstructured matrices, the proposed algorithm can often provide improved efficiency or robustness over existing algorithms. Keywords. subspace optimization, dominant singular value decomposition, Krylov subspace, eigen- value decomposition 1 Introduction Singular value decomposition (SVD) is a fundamental and enormously useful tool in matrix computations, such as determining the pseudo-inverse, the range or null space, or the rank of a matrix, solving regular or total least squares data fitting problems, or computing low-rank approximations to a matrix, just to mention a few. The need for computing SVDs also frequently arises from diverse fields in statistics, signal processing, data mining or compression, and from various dimension-reduction models of large-scale dynamic systems. Usually, instead of acquiring all the singular values and vectors of a matrix, it suffices to compute a set of dominant (i.e., the largest) singular values and their corresponding singular vectors in order to obtain the most valuable and relevant information about the underlying dataset or system.
    [Show full text]
  • High-Performance SVD for Big Data
    High-Performance SVD for big data Andreas Stathopoulos Eloy Romero Alcalde Computer Science Department, College of William & Mary, USA Bigdata'18 High-Performance SVD for big data Computer Science Department College of William & Mary 1/50 The SVD problem Given a matrix A with dimensions m × n find k singular triplets (σi ; ui ; vi ) such that Avi ≈ σi ui and fui g; fvi g are orthonormal bases. Applications: applied math (norm computation, reduction of dimensionality or variance) combinatorial scientific computing, social network analysis computational statistics and Machine Learning (PCA, SVM, LSI) low dimensionality embeddings (ISOMAP, MDS) SVD updating of streaming data High-Performance SVD for big data Computer Science Department College of William & Mary 2/50 Notation for SVD σi , i-th singular value, Σ = diag([σ1 : : : σk ]), σ1 ≤ · · · ≤ σk ui , i-th left singular vector, U = [u1 ::: uk ] vi , i-th right singular vector, V = [v1 ::: vk ] Full decomposition, Partial decomposition, k = minfm; ng: k < minfm; ng: k minfm;ng T X T T X T A ≈ UΣV = ui σi vi A = UΣV = ui σi vi i=1 i=1 Given vi , then σi = kAvi k2, and ui = Avi /σi . T T Given ui , then σi = kA ui k2, and vi = A ui /σi . High-Performance SVD for big data Computer Science Department College of William & Mary 3/50 Relevant Aspects The performance of various methods depends on the next aspects: Matrix dimensions, m rows and n columns Sparsity Number of singular triplets sought If few singular triplets are sought, which ones Accuracy required Spectral distribution/gaps/decay High-Performance SVD for big data Computer Science Department College of William & Mary 4/50 Accuracy of singular values Accuracy of σi : distance between the exact singular value σi and an approximationσ ~i It can be bound as q l 2 r 2 jσi − σ~i j ≤ kri k2 + kri k2 kAT Av~ − σ~ v~ k ≤ i i i σi +σ ~i kAAT u~ − σ~ u~ k ≤ i i i ; σi +σ ~i l r T where ri = Av~i − σi u~i and ri = A u~i − σi v~i We say a method obtains accuracy kAk2f () if jσi − σ~i j .
    [Show full text]
  • Locally Optimal Block Preconditioned Conjugate Gradient Method for Hierarchical Matrices
    Proceedings in Applied Mathematics and Mechanics, 24 May 2011 Locally Optimal Block Preconditioned Conjugate Gradient Method for Hierarchical Matrices Peter Benner1,2 and Thomas Mach1,∗ 1 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany 2 Mathematik in Industrie und Technik, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany We present a method of almost linear complexity to approximate some (inner) eigenvalues of symmetric self-adjoint integral or differential operators. Using H-arithmetic the discretisation of the operator leads to a large hierarchical (H-) matrix M. We assume that M is symmetric, positive definite. Then we compute the smallest eigenvalues by the locally optimal block preconditioned conjugate gradient method (LOBPCG), which has been extensively investigated by Knyazev and Neymeyr. Hierarchical matrices were introduced by W. Hackbusch in 1998. They are data-sparse and require only O(nlog2n) storage. There is an approximative inverse, besides other matrix operations, within the set of H-matrices, which can be computed in linear-polylogarithmic complexity. We will use the approximative inverse as preconditioner in the LOBPCG method. Further we combine the LOBPCG method with the folded spectrum method to compute inner eigenvalues of M. That is 2 the application of LOBPCG to the matrix Mµ = (M − µI) . The matrix Mµ is symmetric, positive definite, too. Numerical experiments illustrate the behavior of the suggested approach. Copyright line will be provided by the publisher 1 Introduction The numerical solution of the eigenvalue problem for partial differential equations is of constant interest, since it is an impor- tant task in many applications, see e.g.
    [Show full text]