Central Venous Pressure and Blood Volume Relationships = a A, 9

Total Page:16

File Type:pdf, Size:1020Kb

Central Venous Pressure and Blood Volume Relationships = a A, 9 Central venous pressure Blood volume and blood volume relationships ALBERT A. WITTE, D.O. Detroit, Michigan Blood volume measurements and Both central venous pressure (CVP) monitor- central venous pressure monitoring ing and blood volume measurements are ac- cepted and commonly practiced procedures in have become established procedures. the management of hypovolemic and hypervo- This article reviews the physiologic lemic states. Both modalities are readily avail- basis of central venous pressure and able in most hospitals today. blood volume measurements and Experimental and research use of the cen- correlates the determinations tral venous pressure dates back many years, made in fifteen patients. but only in the last several years has it become an established procedure in clinical The measurements were performed in a medicine. Techniques for insertion of CVP routine manner in a general hospital. catheters and instrumentation vary widely but Central venous pressure varied with the development of disposable units, some independently of the red blood standardization is promising.2-4 cell volume in most cases. The CVP is an index of circulating blood The central venous pressure and volume in relation to the total cardiovascular capacity. The pressure arises primarily from plasma volume changes complemented the arterial pressure and is transmitted each other in any one patient through the capillary bed; the CVP at any one but had no quantitative relationship instant is the result of a complex interaction in terms of a given number of cubic of blood volume, cardiac action, and vascular centimeters blood volume per unit of alteration.5 central venous pressure. The central HalUric summarized four major areas which influence the CVP; namely, (1) the force be- venous pressure measures the ability hind the venous pressure at the capillary bed of the right heart to handle a load which represents the end of left ventricular presented to it, that is, contractile force; (2) lateral pressure along it determines whether compensatory the vein, both extramural and intramural, mechanisms are adequate. The which is increased by muscular pumping in the simultaneous use of the two parameters extremities and affected by intra-abdominal and intrathoracic pressures; (3) the venous is of more clinical value than when blood volume; and (4) forward resistance. A each is used independently. decrease in cardiac competence in emptying the right atrium is one of the most common causes of a marked increase in venous pres- sure in shock. Vascular frictional resistance, obstructions, and intracardiac defects are ad- ditional factors. When cardiovascular function is stable, then the CVP will vary directly with alteration in blood volume. When blood volume is constant and vascular dynamics are stable, the CVP 382/118 should vary inversely with the cardiac pump One of the earliest methods employing dilu- efficiency. tion of labeled red cells was the administra- Another basic principle is that alterations tion of carbon monoxide, still occasionally used of blood volume and cardiac action occur in- in research. With minor exceptions, most of dependently of each other, and it is impossible the success in labeling red cells with test sub- to depend on the CVP alone as an index of stances other than carbon monoxide has been blood volume or pump action. Basically, the largely restricted to the use of radioactive iso- CVP will reflect the ability of the right heart topes. to handle a load which is presented to it. Most successful of the dilution techniques There are various ways to assess blood vol- for plasma volume was T-1824 (Evans blue ume. Early methods for estimating the quan- dye) , which can be estimated colorimetrically tity of blood volume were based on clinical cri- or spectrophotometrically. Before the advent of teria (pulse, blood pressure, urinary output, radioactive isotopes as labeling substances, skin, et cetera) and are grossly inadequate and plasma dilution methods for plasma volume frequently misleading. The use of hematocrit employed hemoglobin, antitoxin material, dex- values did provide something measurable but a tran serum albumin, and various dyes. fall in hematocrit value did not prove an ac- Modern measurement of blood volume by curate reflection of blood volume. radioisotope dilution methods began in 1943 Another method, which has become stand- with Fine and Seligman,7 who labeled serum ard, is a direct attempt to measure blood loss. proteins with isotopes. The use of radioactive This is the familiar estimation of surgical tracer elements is the most common method blood loss in sponges, suction bottles, et cetera. employed clinically. Albert and co-workers8 This method is inaccurate and, in addition, im- stated that the methodology has been reduced possible to use with trauma, medical diseases, to a few simple steps but that this denies the shock, et cetera. user a basic understanding and leads to mis- Experimental methods to utilize dilution conceptions of what and how blood volume techniques to measure blood volume date back is measured. The radioactive tracers are one to the early 1800s when Valentin measured of two types, plasma-bound or red-blood- the concentration of solids in blood samples cell-bound tracers. The plasma-bound tracers, before and after injection of a known quanti- such as radioiodinated serum albumin, meas- ty of distilled water. The principle in this ex- ure the plasma space. The ratio and the extent periment is the estimation of volume from of loss here are minimal over a 10-minute inter- changes in concentration of whole blood after val, approximately 10 per cent per hour, but infusion of relatively large known quantities in pathologic states may be more significant. of distilled water. Labeled red blood cells normally do not pass The further development of dilution methods the capillary membrane and here the red cell utilized the dilution of labeled cells and of test volume is measured. Normally, equilibration is substances in plasma. Each of these two ap- complete in 5 minutes, but may be delayed un- proaches measures only its own fraction of der certain conditions. the blood, cells or plasma, and each provides The simplest method using radioisotopes in- only a blood volume estimation based on the volves the use of serum albumin tagged with blood fraction affected. radioiodine to obtain the plasma volume, and Journal AOA/vol. 61. December 1961 383/119 CVP and blood volume relationships then the calculation of the blood volume from when each is used individually. the plasma volume and peripheral hematocrit With a realization of the limitations of both value. This method is based on the assump- modalities, as well as compensatory mecha- tion that the hematocrit value of peripheral nisms, as just noted, a study was made to as- venous blood is the same as the total body he- certain the correlation between the two param- matocrit value. Some authors have questioned eters as well as common complications. this assumption and hold that the same objec- tion is valid for methods based on tagging Methods and materials erythrocytes and calculating the blood volume Fifteen patients, randomly selected, had both from the red cell volume and peripheral hema- CVP and blood volume measurements per- tocrit value. formed in a routine manner in a general hos- Gurney and Bolt, 9 with the simultaneous use pital. The central venous pressure catheters of chromium-labeled erythrocytes and I131-tag- were inserted via various routes. The medial ged human serum albumin in blood volume de- basilic vein approach was the most commonly terminations, reported that in every case, the used, followed by the femoral and jugular vein blood volume obtained from the sum of the routes. Here, we feel that the subclavian ap- plasma volume and erythrocyte volume was proach has hazards and should be used as a last less than the blood volume obtained using tag- resort. ged albumin alone, and greater than that The disposable Plexitron R86 venous pres- obtained by using tagged erythrocytes and di- sure set (Baxter) was used routinely along viding the red blood cell volume by the periph- with the Bardic radiopaque intracath in both eral hematocrit. These authors, therefore, feel 23 and 36-inch lengths for the CVP monitor- that the greatest accuracy in blood volume de- ing. With jugular vein punctures, a standard terminations requires separate determination 8 inch 17 gauge radiopaque Intracath (Bardic) of the two vascular fractions without reliance was utilized. CVP catheter positions were sub- on hematocrit. stantiated by routine use of chest x-ray in all The theoretical or predicted normal values cases. have to be modified for certain variables. For Blood volume determinations were perform- example, if a marked weight loss has occurred ed using the Volemetron Model 600 counter within 6 months, then normal values should be (Ames Atomium, Inc.) and the standardized estimated at the original weight. But, if weight Voletron Radioiodinated (1131 ) Serum Albu- loss has been gradual over a long period, then min (Human) dose syringes (Ames) . The the present weight should be used, and the standard dose as prepared is approximately 5 values raised 10-15 per cent. In the obese pa- microcuries of I 131 activity. tient and the short subject, normal values The predicted or theoretical patient blood should be reduced by 10 per cent. Normal volume values were determined from the tables values for the elderly patient should also be re- reported by Nadler and co-workers," based on duced by 10 per cent.9 height and weight. The theoretical patient red There is general agreement that the com- blood cell volume was obtained by using bined use of CVP monitoring and blood volume a standardized hematocrit value of 45 per measurements gives more information as to cent for males and 40 per cent for females, and the hemodynamics at any one instant than the standard correction factors.
Recommended publications
  • Blood Volume and Circulation Time in Children
    Arch Dis Child: first published as 10.1136/adc.11.61.21 on 1 February 1936. Downloaded from BLOOD VOLUME AND CIRCULATION TIME IN CHILDREN BY H. SECKEL, M.D., Late of the University Children's Clinic, Cologne. This paper is based mainly on the results of the author's own research work on blood volume and circulation time in cases of normal and sick children. The following methods were used:- 1. The colorimetric method for determining the circulating plasma volume, and the haematocrit method for estimating the volume of the total circulating blood; and 2. The histamine rash method for estimating the minimum circulation time of the blood. By means of these two methods there is determined only that portion of the total blood volume which is in rapid circulation, the other part, the so-called stored or depot blood, which is moving slowly or is almost stationary, being neglected. The organs which may act as blood depots are the spleen, the liver, the intestines, the sub-papillary plexus of the skin http://adc.bmj.com/ and possibly the muscles. The greater part of the capillary system of these organs is quite extensive enough to supply stored-up blood as and when required to the more rapid circulation or alternatively, withdraw rapidly circulating blood and store it. This action is regulated by the autonomic nervous system. The circulating blood volume as de-termined by the above methods is not absolutely fixed in quantity but chatnges within wide limits, according to the physiological or pathological conditions under on September 25, 2021 by guest.
    [Show full text]
  • Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: a PET Study with the Acetazolamide Test in Cerebrovascular Disease
    CLINICAL INVESTIGATIONS Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: A PET Study with the Acetazolamide Test in Cerebrovascular Disease Hidehiko Okazawa, MD, PhD1,2; Hiroshi Yamauchi, MD, PhD1; Hiroshi Toyoda, MD, PhD1,2; Kanji Sugimoto, MS1; Yasuhisa Fujibayashi, PhD2; and Yoshiharu Yonekura, MD, PhD2 1PET Unit, Research Institute, Shiga Medical Center, Moriyama, Japan; and 2Biomedical Imaging Research Center, Fukui Medical University, Fukui, Japan Key Words: acetazolamide; cerebrovascular disease; cerebral The changes in cerebral blood flow (CBF) and arterial-to- blood volume; vasodilatory capacity; cerebral perfusion pressure capillary blood volume (V0) induced by acetazolamide (ACZ) are expected to be parallel each other in the normal circula- J Nucl Med 2003; 44:1875–1883 tion; however, it has not been proven that the same changes in those parameters are observed in patients with cerebro- vascular disease. To investigate the relationship between changes in CBF, vasodilatory capacity, and other hemody- namic parameters, the ACZ test was performed after an The ability of autoregulation to maintain the cerebral 15O-gas PET study. Methods: Twenty-two patients with uni- blood flow (CBF), which resides in the cerebral circulation lateral major cerebral arterial occlusive disease underwent despite transient changes in systemic mean arterial blood 15 PET scans using the H2 O bolus method with the ACZ test pressure, has been shown to occur via the mechanism of 15 after the O-gas steady-state method. CBF and V0 for each arteriolar vasodilatation in the cerebral circulation (1). The subject were calculated using the 3-weighted integral vasodilatory change in the cerebral arteries is assumed for method as well as the nonlinear least-squares fitting method.
    [Show full text]
  • Frequency Response of Blood Flow Autoregulation
    FREQUENCY RESPONSE OF BLOOD FLOW AUTOREGULATION NICHOLAS BRATTO∗, AFRAH HANEK, AND DAVID WENDL FACULTYADVISORS:DR.HYEJINKIMANDDR.YULIAHRISTOVA INDUSTRYMENTOR:DR.SEBASTIANACOSTA Abstract. Autoregulation is the capability of an organ such as the brain, heart, and kidney to maintain a constant blood flow over a series of changes in arterial pressure within their vascular beds. Since the organs in the humany bod demand a steady delivery of blood and bio–agents to sustain their metabolic activity, autoregulation is crucial in protecting the organs from both over and under perfusion of blood. The impairment of autoregulation may lead to neurological, renal, and other complications. In this study, we analyze a simplified and recently developed mathematical model of blood flow autoregulation based on a system of nonlinear ordinary differential equations. Utilizing this model, we develop the optimal and realistic wall–compliance profiles of the blood vessels. Using the realistic wall–compliance profile, we then findthefrequencyresponseoftheautoregulationsystem. Thefrequencyresponsecanbeusedtodetermine whetheranorganisautoregulatingornotgivensomeinputfrequency. 1. Introduction Autoregulation is an extremely important mechanism that keeps blood flow and volume stable in the circulatory system. The circulatory system regulates the blood flow and supply of nutrients, vitamins, minerals,oxygen,carbondioxide,hormones,metabolicwasteandmoretomeetfunctionalneedsoftissues, muscles,andorgans. Thebasiccomponentsofthesystemconsistsoftheheart,arteries,capillarybeds,and
    [Show full text]
  • Jugular Venous Pressure
    NURSING Jugular Venous Pressure: Measuring PRACTICE & SKILL What is Measuring Jugular Venous Pressure? Measuring jugular venous pressure (JVP) is a noninvasive physical examination technique used to indirectly measure central venous pressure(i.e., the pressure of the blood in the superior and inferior vena cava close to the right atrium). It is a part of a complete cardiovascular assessment. (For more information on cardiovascular assessment in adults, see Nursing Practice & Skill ... Physical Assessment: Performing a Cardiovascular Assessment in Adults ) › What: Measuring JVP is a screening mechanism to identify abnormalities in venous return, blood volume, and right heart hemodynamics › How: JVP is determined by measuring the vertical distance between the sternal angle and the highest point of the visible venous pulsation in the internal jugular vein orthe height of the column of blood in the external jugular vein › Where: JVP can be measured in inpatient, outpatient, and residential settings › Who: Nurses, nurse practitioners, physician assistants, and treating clinicians can measure JVP as part of a complete cardiovascular assessment What is the Desired Outcome of Measuring Jugular Venous Pressure? › The desired outcome of measuring JVP is to establish the patient’s JVP within the normal range or for abnormal JVP to be identified so that appropriate treatment may be initiated. Patients’ level of activity should not be affected by having had the JVP measured ICD-9 Why is Measuring Jugular Venous Pressure Important? 89.62 › The JVP is
    [Show full text]
  • Hemodynamic Effects of Pneumonia: II
    Hemodynamic effects of pneumonia: II. Expansion of plasma volume Raj Kumar, … , Herbert Benson, Walter H. Abelmann J Clin Invest. 1970;49(4):799-805. https://doi.org/10.1172/JCI106293. Previous work has demonstrated that approximately one-third of patients with pneumonia have a hypodynamic circulatory response. This response is characterized by an abnormally wide arteriovenous oxygen difference, a low cardiac output, increased peripheral resistance, and an increased hematocrit. This state was found to abate in convalescence. In an attempt to elucidate the pathogenesis of this hypodynamic state, nine additional patients were studied hemodynamically during the acute phase of pneumonia before and during acute expansion of blood volume by low molecular weight dextran (seven patients) or normal saline (two patients). Five patients were restudied before and during acute blood volume expansion in convalescence. Three patients with pneumonia had a normal arteriovenous oxygen difference (< 5.5 vol%), and six patients were hypodynamic in that their arteriovenous oxygen differences were greater than 5.5 vol%. With expansion of blood volume in the acute phase of pneumonia, all patients showed an increase in cardiac output, a decrease in arteriovenous oxygen difference, and a decrease in peripheral vascular resistance; however, the percentage change in the hypodynamic patients was not as great as occurred in the patients with normal hemodynamics nor as great as occurred when restudied in convalescence. Likewise, all patients had a normal or near normal hemodynamic profile in convalescence. In addition, ventricular function in the acute phase of pneumonia was depressed. The findings suggest […] Find the latest version: https://jci.me/106293/pdf Hemodynamic Effects of Pneumonia II.
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]
  • Study and Evaluation of Palmar Blood Volume Pulse for Heart Rate Monitoring in a Multimodal Framework
    Study and Evaluation of Palmar Blood Volume Pulse for Heart Rate Monitoring in a Multimodal Framework Hugo Silva1;2, Joana Sousa1;2 and Hugo Gamboa1;3 1PLUX - Wireless Biosignals, S.A., Av. 5 de Outubro, n. 70 - 6, 1050-059 Lisbon, Portugal 2IT - Instituto Superior Tecnico,´ Av. Rovisco Pais, n. 1, 1049-001 Lisboa, Portugal 3CEFITEC - Faculdade de Cienciasˆ e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Abstract. Within the field of biosignal acquisition and processing, there is a growing need for combining multiple modalities. Clinical psychology is an area where this is often the case, and one example are the studies where heart rate and electrodermal activity need to be acquired simultaneously. Both of these pa- rameters are typically measured in distinct anatomical regions (the former at the chest, and the later at the hand level), which raises wearability issues as in some cases two independent devices are used; finger clip sensors already enable heart rate measurement at the hand level, however they can be limiting for free living and quality of life activities. In this paper we perform a study and evaluation of an experimental blood volume pulse sensor, to assess the feasibility of measuring the heart rate at the hand palms, and thus enabling the design of more convenient systems for multimodal data acquisition. 1 Introduction Blood Volume Pulse (BVP) sensors are a commonly used method for assessing the cardiovascular activity at the arterial level [1]. Their operating principle is based on photoplethysmography, that is, by externally applying a light source in the visible or invisible wavelengths to the tissues, and measuring the amount of light that reaches a photodetector [2].
    [Show full text]
  • Altered Blood Volume Regulation in Sustained Essential Hypertension: a Hemodynamic Study
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 8 (1975), p. 42—47 Altered blood volume regulation in sustained essential hypertension: A hemodynamic study MICHEL E. SAFAR, GERARD M. LONDON, YVES A. WEIss and PAUL L. MILLIEZ Hemodynamic Laboratory, Hypertension Research Center, Hospital Broussais,Paris, France Altered blood volume regulation in sustained essential hyper- sion normale comme système de réfèrence, une evaluation quan- tension: A hemodynamic study. Cardiac and renal hemodynamics titative du trouble de Ia regulation volCmique des hypertendus and total blood volume were determined in 28 normal subjects est proposee. Chez ces patients, Ia valeur de Ia résistance pen- and 60 patients with untreated essential well-established hyper- pherique correspond a deux valeurs du volume sanguin: Ia tension. Endogenous creatinine clearance was within normal valeur mesurée et Ia valeur theorique, extrapolée a partir de Ia ranges and sodium intake was 110 mEq/day. A significant courbe normale. La difference entre ces deux valeurs est appelée negative volume-resistance relationship was observed both in "variation relative en volume sanguin" et utilisée comme normal subjects (P< 0.005) and hypertensive patients (P< 0.001). modéle mathématique. Chez les hypertendus, Ic volume sanguin In comparison with the normal curve, the hypertensive curve has mesuré est rCduit (P< 0,001) alors que Ia "variation relative en two characteristics: 1) the curve was reset on the right-hand side volume sanguin" augmente (P< 0,001). Cette "augmentation and, 2) the slope was significantly shallower, indicating a reduced relative" est correlée directement avec Ia pression artérielle dia- ability to decrease the volume per unit rise in resistance.
    [Show full text]
  • Cardiac Output
    Overview of Human Anatomy and Physiology: Cardiac Output Introduction Welcome to the Overview of Human Anatomy and Physiology course on the Cardiac System. This module, Cardiac Output, discusses measurement of heart activity and factors that affect activity. After completing this module, you should be able to: 1. Define stroke volume and cardiac output. 2. Discuss the relationship between heart rate, stroke volume, and cardiac output. 3. Identify the factors that control cardiac output. Measurement Cardiac Output The activity of the heart can be quantified to provide information on its health and efficiency. One important measurement is cardiac output (CO), which is the volume of blood ejected by the left ventricle each minute. Heart rate and stroke volume determine cardiac output. Heart rate (HR) is the number of heartbeats in one minute. The volume of blood ejected by the left ventricle during a heartbeat is the stroke volume (SV), which is measured in milliliters. Equation Cardiac output is calculated by multiplying the heart rate and the stroke volume. Average Values Cardiac output is the amount of blood pumped by the left ventricle--not the total amount pumped by both ventricles. However, the amount of blood within the left and right ventricles is almost equal, approximately 70 to 75 mL. Given this stroke volume and a normal heart rate of 70 beats per minute, cardiac output is 5.25 L/min. Relationships When heart rate or stroke volume increases, cardiac output is likely to increase also. Conversely, a decrease in heart rate or stroke volume can decrease cardiac output. What factors regulate increases and decreases in cardiac output? Regulation Factors Regulating Cardiac Output Factors affect cardiac output by changing heart rate and stroke volume.
    [Show full text]
  • Cardiac Output and Distribution of Blood Volume in Central and Peripheral Circulations in Hypertensive and Normotensive Man* MILOS ULRYCH, EDWARD D
    Br Heart J: first published as 10.1136/hrt.31.5.570 on 1 September 1969. Downloaded from Brit. Heart J., 1969, 31, 570. Cardiac Output and Distribution of Blood Volume in Central and Peripheral Circulations in Hypertensive and Normotensive Man* MILOS ULRYCH, EDWARD D. FROHLICH, ROBERT C. TARAZI, HARRIET P. DUSTAN, AND IRVINE H. PAGE From the Research Division, Cleveland Clinic, Cleveland, Ohio, U.S.A. Most haemodynamic studies of arterial hyper- blood volume expansion since intravascular volume tension have been concerned with cardiac output was, if anything, decreased (Tarazi et al., 1969). and peripheral resistance (Page and McCubbin, The possibility remained that output might be 1965). Some, additionally, have investigated re- raised through a redistribution of intravascular gional distribution of blood flow and vascular volume from peripheral veins to the cardiopulmon- resistances, whereas only a few, dealing with circu- ary capacitance bed, even if total blood volume were lation in the extremities, were designed to provide diminished. The present study describes the rela- information about the venous segment of the circu- tions among cardiopulmonary blood volume, total lation (Wood, 1961; Caliva et al., 1963a, b). These blood volume, cardiac output, and arterial blood studies of the capacitance segment in hypertension pressure in normal subjects, in patients with dealt only with regional circulations; there has been essential hypertension, or with hypertension no report on the relationships of total blood volume accompanying renal arterial disease. This was to its distribution between the central and peripheral made possible by the recent development of circulations, to cardiac output, or to systemic arterial methods for determination of cardiopulmonary http://heart.bmj.com/ pressure in hypertensive patients.
    [Show full text]
  • The Renin-Angiotensin-Aldosterone System in Patients with Cystic Fibrosis of the Pancreas
    Pcdiat. Res. 5:626-C32 (1971) Aldosterone renin angiotensin sodium cystic fibrosis of sweat the pancreas The Renin-Angiotensin-Aldosterone System in Patients with Cystic Fibrosis of the Pancreas A. P. SIMOPOULOS'191, A. LAPEY, T. F. BOAT, P. A. DI SANT' AGNESE, AND F. C. BARTTER Endocrinology Branch, National Heart and Lung Institute, and Pediatric Metabolism Branch, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethcsda, Maryland, USA Extract Patients with cystic fibrosis of the pancreas (CFP) have elevated plasma renin activity, supine renin 497-595 compared with a normal value of 228 ± 133 ng/100 ml plasma on 109 mEq sodium intake/24 hr, but have normal renin release mechanisms as far as postural changes are concerned, since the renin activity increases normally with the upright posture; upright renin, 594-875 compared with a normal value of 359 ± 210 ng/100 ml plasma on the same sodium intake. The high aldosterone secretion rates (ASR), 161 —4-45 compared with a normal value of 90 ± 31 /jg/24 hr, seen on 109 mEq sodium intake were probably secondary to the abnormally high renin release. The same can be said for the lack of adequate suppression to normal of both renin and ASR on 249 mEq sodium intake/24 hr, supine renin 205-544 compared with a normal value of 97 ± 71 ng/100 ml plasma; upright renin 845-893 compared with a normal value of 212 ±61 ng/100 ml plasma; ASR on the same intake, 93-333 compared with a normal value of 62.15 ± 27.8 /ug/24 hr.
    [Show full text]
  • Angiotensin-Converting Enzyme 2 (ACE2) As a Potential Diagnostic and Prognostic Biomarker for Chronic Inflammatory Lung Diseases
    G C A T T A C G G C A T genes Review Angiotensin-Converting Enzyme 2 (ACE2) as a Potential Diagnostic and Prognostic Biomarker for Chronic Inflammatory Lung Diseases Dejan Marˇceti´c 1,2 , Miroslav Samaržija 2, Andrea Vuki´cDugac 2,† and Jelena Kneževi´c 3,4,*,† 1 Department of Internal and Pulmonary Diseases, General Hospital Virovitica, Ljudevita Gaja 21, 33000 Virovitica, Croatia; [email protected] 2 Department of Lung Diseases Jordanovac, Zagreb University Hospital Centre, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (M.S.); [email protected] (A.V.D.) 3 Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruder¯ Boškovi´cInstitute, 10000 Zagreb, Croatia 4 Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia * Correspondence: [email protected] † These authors share senior authorship. Abstract: Chronic inflammatory lung diseases are characterized by uncontrolled immune response in the airways as their main pathophysiological manifestation. The lack of specific diagnostic and thera- peutic biomarkers for many pulmonary diseases represents a major challenge for pulmonologists. The majority of the currently approved therapeutic approaches are focused on achieving disease re- mission, although there is no guarantee of complete recovery. It is known that angiotensin-converting Citation: Marˇceti´c,D.; Samaržija, M.; enzyme 2 (ACE2), an important counter-regulatory component of the renin–angiotensin–aldosterone Vuki´cDugac, A.; Kneževi´c,J. system (RAAS), is expressed in the airways. It has been shown that ACE2 plays a role in systemic Angiotensin-Converting Enzyme 2 regulation of the cardiovascular and renal systems, lungs and liver by acting on blood pressure, (ACE2) as a Potential Diagnostic and Prognostic Biomarker for Chronic electrolyte balance control mechanisms and inflammation.
    [Show full text]