Mother-To-Embryo Vitellogenin Transport in a Viviparous Teleost Xenotoca Eiseni

Total Page:16

File Type:pdf, Size:1020Kb

Mother-To-Embryo Vitellogenin Transport in a Viviparous Teleost Xenotoca Eiseni Mother-to-embryo vitellogenin transport in a viviparous teleost Xenotoca eiseni Atsuo Iidaa,b,1, Hiroyuki N. Araib, Yumiko Someyac, Mayu Inokuchic, Takeshi A. Onumad, Hayato Yokoie, Tohru Suzukie, Eiichi Hondoa, and Kaori Sanof aDepartment of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan; bDepartment of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogo-in Kawahara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan; cDepartment of Life Sciences, Toyo University, Itakura, Gunma 374-0113, Japan; dDepartment of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; eLaboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan; and fDepartment of Chemistry, Faculty of Science, Josai University, Sakado, Saitama 350-0295, Japan Edited by John J. Eppig, The Jackson Laboratory, Bar Harbor, ME, and approved September 19, 2019 (received for review July 30, 2019) Vitellogenin (Vtg), a yolk nutrient protein that is synthesized in the in nutrient incorporation during gestation. That consists of ab- livers of female animals, and subsequently carried into the ovary, sorptive epithelium, blood vessels, and mesenchymal connective contributes to vitellogenesis in oviparous animals. Thus, Vtg levels tissues (12, 13). Previous studies hypothesized that the ovarian are elevated during oogenesis. In contrast, Vtg proteins have been fluid components are absorbed into the epithelial cells and then genetically lost in viviparous mammals, thus the yolk protein is not carried into the capillary (12, 14). In some goodeid species, the involved in their oogenesis and embryonic development. In this ovarian fluids include multiple protein components in a similar study, we identified Vtg protein in the livers of females during the pattern to that in the blood serum (15, 16). In Xenotoca eiseni,the gestation of the viviparous teleost, Xenotoca eiseni. Although vi- viviparous goodeid species used in this study, the intraovarian tellogenesis is arrested during gestation, biochemical assays embryo develops for approximately 5 wk before birth. The em- revealed that Vtg protein was present in ovarian tissues and lu- bryo’s growth depends on matrotrophic nutrition absorbed from men fluid. The Vtg protein was also detected in the trophotaeniae the trophotaeniae for most of its intraovarian development (17– of the intraovarian embryo. Immunoelectron microscopy revealed 19). The trophotaeniae are regressed by apoptosis during the PHYSIOLOGY that Vtg protein is absorbed into intracellular vesicles in the epi- latest stage of gestation (20); they are no longer required in the thelial cells of the trophotaeniae. Furthermore, extraneous Vtg postnatal growth phase when oral food intake occurs. The com- protein injected into the abdominal cavity of a pregnant female ponents of the maternal nutrients absorbed from the tropho- was subsequently detected in the trophotaeniae of the intraovarian taeniae have not been identified but are hypothesized to be embryo. Our data suggest that the yolk protein is one of the matro- secreted blood serum proteins. trophic factors supplied from the mother to the intraovarian embryo Vitellogenin (Vtg) is a glycolipophosphoprotein typically X. eiseni during gestation in . present in females, but also in minor amounts in males, that is conserved in nearly all oviparous species including fish, am- Goodeidae | reproduction | viviparity | trophotaeniae phibians, reptiles, birds, monotremes, and most invertebrates (21–24). In these vertebrates, vtg genes are typically expressed iviparity is a form of reproductive system in which fertiliza- and synthesized in female liver, then the protein product is Vtion and embryonic development progress inside the moth- transported to the ovary via the bloodstream. In the ovary, Vtg er’s body prior to the birth, as opposed to oviparity where such protein is cleaved into subdomains and absorbed into the egg developmental events are completed outside of the parent. In some viviparous vertebrates, the embryo receives nutrients from Significance the mother in addition to those in the yolk sac. The nutrient supply and embryonic growth in the mother’s body are important Viviparity is a type of reproductive system in which the embryo factors influencing survival in the habitat environment after the utilizes a maternal nutrient supply until birth. Viviparous species birth (1). In eutherian mammals, maternal nutrients including occur in many taxa including bony fish. The mother fish raises blood plasma pass into the fetus via a placenta and umbilical her offspring in the ovarian lumen or oviduct during gestation. cords (2). Viviparous species also occur in reptiles, amphibians, Embryos of the viviparous bony fish Xenotoca eiseni (family and fish (3–5). The embryos of some amphibians and sharks eat Goodeidae) utilize nutrients secreted into the ovarian lumen. each other and develop within the mother’s body (6, 7). A vi- However, the source of the maternal nutrients and their mother- viparous reptile possesses a placenta-like structure similar to to-embryo transport have not been experimentally demon- those found in eutherians (8). Some viviparous chondrichthyans strated. In this study, we focus on the yolk nutrient protein raise their offspring in the uterus filled with a nutrient-rich liquid vitellogenin (Vtg) as a matrotrophic factor. Our results are of during gestation (9, 10). In viviparous teleosts, the mother fish fundamental importance to the investigation of viviparous sys- maintains her embryo in the ovarian lumen or oviduct (5). Di- tems in teleosts and in other vertebrates and invertebrates. verse mechanisms of embryo growth among viviparous verte- brates have been described. However, the nature of the maternal Author contributions: A.I. and K.S. designed research; A.I., H.N.A., Y.S., M.I., T.A.O., and nutrients in viviparous teleosts has not been identified. E.H. performed research; H.Y., T.S., and K.S. contributed new reagents/analytic tools; A.I. The teleost family Goodeidae is currently known to include 42 analyzed data; and A.I. wrote the paper. viviparous species distributed in the lakes and rivers of México The authors declare no competing interest. (11). Their embryo increases in dry mass in the mother’s body This article is a PNAS Direct Submission. during the gestation, suggesting that maternal nutrients are This open access article is distributed under Creative Commons Attribution-NonCommercial- supplied in addition to those in the yolk sac (5). In the mid to late NoDerivatives License 4.0 (CC BY-NC-ND). gestation stages, the goodeid embryo possesses a pseudoplacenta, 1To whom correspondence may be addressed. Email: [email protected]. called the trophotaeniae. The trophotaeniae form through hy- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. pertrophic development of elongated processes that extend from 1073/pnas.1913012116/-/DCSupplemental. the hindgut out through the cloaca and are thought to be involved First published October 8, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1913012116 PNAS | October 29, 2019 | vol. 116 | no. 44 | 22359–22365 Downloaded by guest on September 27, 2021 yolk (25, 26). In eutherian mammals, vtg genes have been ge- arrested at previtellogenesis stages, thus there are no mature eggs netically lost through coevolution with casein genes, thus few in the ovarian lumen (Fig. 1B) and the ovary is dedicated to raising yolk nutrients are included in their eggs (22, 27). In contrast, the embryo via nutrient supply. To investigate expression of some viviparous fish species have maintained vtg genes, and a vitellogenin genes (vtgA, vtgB,andvtgC)inX. eiseni, RT-PCR large amount of yolk nutrient is contained in their eggs (28, 29). analysis was performed using cDNA purified from the liver and In these fish, Vtg protein is a potential candidate for one of the gonad. In vitellogenic females, but not in male fish, vtgA and B maternal nutrients supplied into the intraovarian embryo. were strongly expressed in the liver. In contrast, there were no However, there is no definitive evidence that maternal Vtg detectable signals in testis and ovary. Expression of vtgC was protein is transported into the intraovarian embryo. In this study, minimal in all tissues examined in this study (SI Appendix, Fig. we investigated Vtg transport from mother to embryo in the S1A). Expression of the vtg genes in the liver was not decreased in goodeid species, X. eiseni, and our results suggest that the yolk pregnant females, despite the cessation of vitellogenesis (Fig. 1C). protein lost in eutherian mammals is one of the matrotrophic In the ovary, vtg genes were not expressed during gestation, as for factors supplied to the intraovarian embryo during gestation in the vitellogenesis stage (Fig. 1C and SI Appendix, Fig. S1A). VtgA the viviparous teleost. and B proteins were detectable by immunohistochemistry in the nonpregnant female liver (SI Appendix,Fig.S1B). The strong Results signals for Vtg proteins in female liver were replicated using an- Production and Distribution of Vitellogenin Proteins during Gestation. other antibody, anti-Vtg#1 (SI Appendix,Fig.S2A and Table S1). At the onset of gestation in goodeid species including X. eiseni In contrast, specific signals for Vtg protein in male liver were
Recommended publications
  • A Risk Assessment of the Effects of Mercury on Baltic Sea, Greater
    A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves Rune Dietz, Jérôme Fort, Christian Sonne, Céline Albert, Jan Bustnes, Thomas Kjaer Christensen, Maciej Tomasz, Jóhannis Danielsen, Sam Dastnai, Marcel Eens, et al. To cite this version: Rune Dietz, Jérôme Fort, Christian Sonne, Céline Albert, Jan Bustnes, et al.. A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fishand bivalves. Environment International, Elsevier, 2021, 146, pp.106178. 10.1016/j.envint.2020.106178. hal-03031071 HAL Id: hal-03031071 https://hal.archives-ouvertes.fr/hal-03031071 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fsh and bivalves Rune Dietz a,*, J´eromeˆ Fort b, Christian Sonne a, C´eline Albert b, Jan Ove Bustnes c, Thomas Kjær Christensen d, Tomasz Maciej Ciesielski e, Johannis´ Danielsen f, Sam Dastnai a, Marcel Eens g, Kjell Einar Erikstad c, Anders Galatius a, Svend-Erik Garbus a, Olivier Gilg h,i, Sveinn Are Hanssen c, Bjorn¨ Helander j, Morten Helberg k, Veerle L.B.
    [Show full text]
  • Conserving Endangered Mexican Goodeid Livebearers: the Critical Role of the Aquarium Hobbyist
    Conserving Endangered Mexican Goodeid Livebearers: The Critical Role of the Aquarium Hobbyist Ameca splendens Dr. John Lyons University of Wisconsin Zoological Museum Outline 1) Who are the Goodeids? - Taxonomic definitions - Evolutionary relationships 2) Mexican Goodeid biology - Life history - Habitats 3) Mexican Goodeid status and conservation - Impacts and threats - Some dire statistics 4) How YOU, the hobbyist, can help - Captive maintenance - Involvement in ALA and GWG Lago Zirahuén, Michoacán, Mexico 1) Who are the Goodeids? A family of fishes (Goodeidae; aka “Splitfins”) in the order Cyprinodontiformes, with two subfamilies: Goodeinae Empetrichthyinae ~ 40 species (~ 87 ESU’s) 4 species (8 ESU’s) Central Mexico Southwestern USA Livebearers Egg Layers Skiffia lermae Crenichthys baileyi Current Goodeid Distribution Family ~ 16.5 million years old; subfamilies split 5-10 million years ago Durango Puerto Vallarta Mexico City In Mexico, a generalized Goodeid ancestor Fossilized Tapatia occidentalis, Barranca de Santa Rosa, Jalisco; from Pliocene Epoch, at least 2.6 million years ago gave rise to a rich modern fauna Goodeid Evolutionary Relationships Cyprinodontiformes Goodeidae (Tooth Carps): Profundulidae Family Tree Cyprinodontidae1 Fundulidae Poeciliidae Valenciidae Cyprinodontidae2 Are Goodeids and Rivulidae Poeciliids merely Nothobranchidae livebearing killies? Aplocheilidae (or vice versa)? 2) Mexican Goodeid Biology - Small (maximum size 1.5” to 7”; most ~ 2.5”) - Short-lived (mature in 1 year, max age 3-5 years) - Livebearers
    [Show full text]
  • Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
    Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship.
    [Show full text]
  • Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
    Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Redalyc.Endohelminths of Some Species of Fishes from Lake
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México García-López, María de Lourdes; Salguero-Vargas, Guadalupe; García-Prieto, Luis; Osorio-Sarabia, David; Pérez-Ponce de León, Gerardo Endohelminths of some species of fishes from Lake Xochimilco, Mexico Revista Mexicana de Biodiversidad, vol. 87, núm. 4, diciembre, 2016, pp. 1-5 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42548632023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Modele + RMB-2182; No. of Pages 5 ARTICLE IN PRESS Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad xxx (2016) xxx–xxx www.ib.unam.mx/revista/ Research note Endohelminths of some species of fishes from Lake Xochimilco, Mexico Endohelmintos de algunos peces del lago de Xochimilco, México a a a María de Lourdes García-López , Guadalupe Salguero-Vargas , Luis García-Prieto , b a,∗ David Osorio-Sarabia , Gerardo Pérez-Ponce de León a Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-157, 04510 Mexico City, Mexico b Colegio de Ciencias y Humanidades, Plantel Oriente, Universidad Nacional Autónoma de México, Av. Canal de San Juan S/N, Iztapalapa, Tepalcates, 09210 Mexico City, Mexico Received 20 October 2015; accepted 16 June 2016 Abstract The helminth fauna of 8 introduced and 1 native species (Chirostoma jordani) of freshwater fishes from Xochimilco Lake in southern México City, Mexico, is studied for the first time.
    [Show full text]
  • Goodea Atripinnis; a Fish) Ecological Risk Screening Summary
    Blackfin Goodeid (Goodea atripinnis; a fish) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, July 2017 Revised, February 2018 Web Version, 8/16/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “Central America: Lerma River basin and Ayuquila River, Guanajuato, Mexico.” Status in the United States This species has not been reported as introduced or established in the United States. From Imperial Tropicals (2015): “Black-Finned Goodeid (Goodea atripinnis) IMPERIAL TROPICALS […] Out of stock Up for sale are Black Finned Goodeids. They can grow upwards of 6" making them much larger than other livebearers. Goodeids are a unique livebearer from Mexico. $ 15.99 $ 10.99” 1 Means of Introductions in the United States Goodea atripinnis has not been reported as introduced or established in the United States. Remarks From Goodeid Working Group (2017): “Common Name: Blackfin Goodea” “Mexican Name: Tiro” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Cyprinodontiformes Suborder Cyprinodontoidei Family Goodeidae Subfamily Goodeinae Genus Goodea Species Goodea atripinnis (Jordan, 1880)” “Current Standing: Valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 13.0 cm TL male/unsexed [Miranda et al. 2009]” Environment From Froese and Pauly (2017): “Freshwater; demersal; pH range: 7.5 - 8.0; […].” 2 “[…] 18°C - 24°C [Baensch et al. 1991; assumed to represent recommended aquarium water temperatures]” From Goodeid Working Group (2017): “In contrast to all other Goodeids, Goodea atripinnis is high tolerant of highly degraded environments […]” “The habitats are very versatile, including lakes, ponds, streams, springs and outflows.
    [Show full text]
  • Bacterioflora of Digestive Tract of Fishes in Vitro Žuvų
    ISSN 1392-2130. VETERINARIJA IR ZOOTECHNIKA (Vet Med Zoot). T. 56 (78). 2011 BACTERIOFLORA OF DIGESTIVE TRACT OF FISHES IN VITRO Janina Šyvokienė, Svajūnas Stankus, Laura Andreikėnaitė Institute of Ecology of Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania Tel. +370 5 2729241, fax +370 5 2729352, e-mail: [email protected] Summary. Microbiological method was used to assess peculiarities of abundance of autochthonous and petroleum hydrocarbon-degrading bacteria (HDB) in the digestive tract of fish of different trophic groups and the proportion of HDB in the total heterotrophic bacteria (THB). The number and dynamics of petroleum hydrocarbon-degrading bacteria in the digestive tract of fish was registered in different seasons of the year. Regularities of abundance of petroleum hy- drocarbon-degrading bacteria in freshwater and marine fish species were pointed out. The bacteriocenoses of the diges- tive tract of investigated fish were found to be dominated by the total heterotrophic bacteria. The variability of abun- dance and dynamics of autochthonous and alochthonous bacterioflora of the digestive tract of fish from the Baltic Sea and the Curonian Lagoon was due to fish species, nutrition habits and intensity, and season of the year. The lowest amount of bacteria of investigated functional groups was observed in early spring, and the highest in summer, during intensive fish feeding. The total heterotrophic bacteria in bacteriocenoses of the digestive tract of river perch and gud- geon from the Curonian Lagoon varied from 10-7 to 10-8 g-1 of intestine content. A similar tendency was observed in fish from the Baltic Sea; however, summer counts of THB in fish from the sea were considerably lower than in fish from the Curonian Lagoon.
    [Show full text]
  • 2016-01 Catalog of Fishes. Online Version: (2016): 72 Records
    2016-01 Catalog of Fishes. Online Version: (2016): 72 records http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Genera and Species of Goodeidae W. N. Eschmeyer, R. Fricke, R. van der Laan (eds) albivallis, Crenichthys baileyi Williams [J. E.] & Wilde [G. R.] 1981:489, Fig. 7 [Southwestern Naturalist v. 25 (no. 4); ref. 8991] Preston Big Spring, White Pine County, Nevada, U.S.A. Holotype: UMMZ 203332. Paratypes: UMMZ 203333 (1, allotype); UNLV F-952 (28). •Synonym of Crenichthys baileyi (Gilbert 1893), but a valid subspecies albivallis Williams & Wilde 1981 as described -- (Fuller et al. 1999:322 [ref. 25838], Lazara 2001:71 [ref. 25711], Scoppettone & Rissler 2002:82 [ref. 25956], Scharpf 2007:27 [ref. 30398], Minckley & Marsh 2009:243 [ref. 31114], Page & Burr 2011:452 [ref. 31215]). Current status: Synonym of Crenichthys baileyi (Gilbert 1893). Goodeidae: Empetrichthyinae. Distribution: Springs in White Pine County, Nevada, U.S.A. [subspecies Albivallis]. Habitat: freshwater. atripinnis, Goodea Jordan [D. S.] 1880:299 [Proceedings of the United States National Museum v. 2 (no. 94); ref. 2382] Leon, Guanajuato, Mexico. Lectotype: USNM 23137. Paralectotypes: USNM 23137 (many). Lectotype established (as figured specimen) in caption to Pl. 114, p. 3257 in Jordan & Evermann 1900 [ref. 2446] if figured specimen is identifiable. •Valid as Goodea atripinnis Jordan 1880 -- (Espinosa Pérez et al. 1993:41 [ref. 22290], Nelson et al. 2004:107 [ref. 27807], Miller 2006:281 [ref. 28615], Scharpf 2007:28 [ref. 30398], Miranda et al. 2010:185 [ref. 31345], Page et al. 2013:104 [ref. 32708]). Current status: Valid as Goodea atripinnis Jordan 1880. Goodeidae: Goodeinae.
    [Show full text]
  • Part B: for Private and Commercial Use
    RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta
    [Show full text]
  • The Danish Fish Fauna During the Warm Atlantic Period (Ca
    Atlantic period fish fauna and climate change 1 International Council for the CM 2007/E:03 Exploration of the Sea Theme Session on Marine Biodiversity: A fish and fisheries perspective The Danish fish fauna during the warm Atlantic period (ca. 7,000- 3,900 BC): forerunner of future changes? Inge B. Enghoff1, Brian R. MacKenzie2*, Einar Eg Nielsen3 1Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, DK- 2100 Copenhagen Ø, Denmark; email: [email protected] 2Technical University of Denmark, Danish Institute for Fisheries Research, Department of Marine Ecology and Aquaculture, Kavalergården 6, DK-2920 Charlottenlund, Denmark; email: [email protected] 3Technical University of Denmark, Danish Institute for Fisheries Research, Department of Inland Fisheries, DK-8600 Silkeborg, Denmark; email: [email protected] *corresponding author Citation note: This paper has been accepted for publication in Fisheries Research. Please see doi:10.1016/j.fishres.2007.03.004 and refer to the Fisheries Research article for citation purposes. Abstract: Vast amounts of fish bone lie preserved in Denmark’s soil as remains of prehistoric fishing. Fishing was particularly important during the Atlantic period (ca. 7,000-3,900 BC, i.e., part of the Mesolithic Stone Age). At this time, sea temperature and salinity were higher in waters around Denmark than today. Analyses of more than 100,000 fish bones from various settlements from this period document which fish species were common in coastal Danish waters at this time. This study provides a basis for comparing the fish fauna in the warm Stone Age sea with the tendencies seen and predicted today as a result of rising sea temperatures.
    [Show full text]
  • Conservation of Freshwater Live-Bearing Fishes: Development
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 7-6-2018 Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids Yue Liu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Aquaculture and Fisheries Commons, Biotechnology Commons, and the Cell Biology Commons Recommended Citation Liu, Yue, "Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids" (2018). LSU Doctoral Dissertations. 4675. https://digitalcommons.lsu.edu/gradschool_dissertations/4675 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CONSERVATION OF FRESHWATER LIVE-BEARING FISHES: DEVELOPMENT OF GERMPLASM REPOSITORIES FOR GOODEIDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Renewable Natural Resources by Yue Liu B.S., Jiujiang University, 2010 M.Agric., Shanghai Ocean University, 2013 August 2018 For my maternal grandparents, Wenzhi Zhang and Xianrang Zhang, who raised me up in my childhood For my parents, who support me with all their love For Youjin and Jenna, who are the meaning of my life ii Acknowledgments I want to thank my advisor Dr. Terrence Tiersch, who has been the most important person in my PhD study.
    [Show full text]