Dark Data in Insurance | Accenture

Total Page:16

File Type:pdf, Size:1020Kb

Dark Data in Insurance | Accenture SHINING A LIGHT ON DARK DATA A new approach to data extraction, ingestion and analysis for the insurance industry A perspective from Financial Services Technology Advisory Automation is here to stay. Businesses are no longer just talking about automation or experimenting with automation; they are embedding automation as part of their long-term strategic objectives. It is estimated that spending on automation Once unlocked, Dark Data not only permits (artificial intelligence and cognitive computing) greater benefits from automation, it also feeds will more than double from today’s levels to and enriches the models and analytics that create $97.9 billion in 2023.1 For insurers, looking ahead sales opportunities, measure risk, and drive the big question is how to automate at scale. business decisions. This creates a secondary value stream that can differentiate a business in the One of the great benefits of automation is in data-driven financial services market—particularly helping companies realize Straight-Through in the information-intensive insurance sector. It Processing (STP). This is key to streamlining also creates the opportunity to reassign people end-to-end processes, such as claims processing, resources to higher value activities and initiatives by reducing human intervention. Historically, STP that support the insurer’s growth agenda. has been considered an unrealistic objective, with businesses opting for human-in-the-loop and In this paper, we will explain the challenges partial process automation. This is due primarily posed by Dark Data and present insurance- to the limiting factor of “Dark Data”: data that industry-specific solutions. Subsequent papers the business possesses but cannot access, like will look at solutions applicable to the banking photographs and handwritten documents. With and capital markets sectors. new approaches to data extraction, and by leveraging a suite of powerful technologies like artificial intelligence, we are now in a position to unlock Dark Data and allow businesses to pursue STP, realizing the power of automation. 2 SHINING A LIGHT ON DARK DATA STRAIGHT-THROUGH PROCESSING IN INSURANCE The benefits of intelligent automation have For example, leading segment software become particularly clear in the insurance provider UI Path, Inc., suggests targeting only industry. The availability of technology that 70 percent of a process for automation, stating can cut costs, reduce error rates, improve that it is usually necessary to “leave some customer experience and speed of service, steps of a process to human intervention.”2 support compliance, and reduce monotonous tasks for human operators—while avoiding While partial process automation can simplify the prohibitive cost of legacy system changes deployment, the manual interventions and or migrations—has made intelligent automation handoffs required introduce waste into the a “must-have” in the toolbox of any insurer. process (in terms of time, cost, and accuracy), eroding the business case for automation Traditionally, insurers have automated technology. Only when a process is automated individual, simple, stable processes with straight-through are the full benefits of the predictable inputs and predictable outputs technology realized. By automating entire to avoid the complexity of automating across processes end-to-end and providing a no-touch the lifecycle of an account, policy, or claim. or low-touch approach to operations, handoffs However, this approach has necessitated are eradicated, further diminishing the risk of the inclusion of partial process automation, error, reducing handling time, and, as there will no with handoffs between human operators longer be time spent ingesting or creating manual and robots through various mechanisms. handoffs, creating efficiencies in processing capacity and significant improvements in the customer experience. Figure 1. Straight-Through Processing Benefits in Claims Oa fficiency Pr Automa enefit ample Accenture’ xperience, non-cor C H F Adjuster 0%-6 6000 , F E FTE C Supervisor versight. 0% F A C H Super T s T A T A T A % 25 40 30 30 N oce 60 50 activities 75 16 40 60 70 70 40 50 FTE Actual STP Actual STP Actual STP reinve Le Le Le Pactices Pactices Pactices 0M USD NC Activities C Activities FTE S Accentur ea A NEW APPROACH TO DATA EXTRACTION, INGESTION AND ANALYSIS FOR THE INSURANCE INDUSTRY 3 THE DARK DATA CHALLENGE In insurance, automation clearly provides great efficiency gains when it is used to realize STP. I Oa s Yet many insurers (and vendors) shy from targeting no-touch automations. One of the primary roadblocks is the issue of “Dark Data.” Up to 75% of a corporation’s data may be Dark Data.3 20% 45% 66% Dark Data is data that an organization has but handwritten unstructured quality cannot make use of. This includes both data that is not currently accessible to human or automated operators, as well as data that is I r O s accessible, is used by humans, but cannot be directly interrogated by systems and automation technologies. All forms of Dark Data can present roadblocks to STP. 25% 69% 41% Consider the example of a photograph that handwritten unstructured quality shows the scene of a car accident, as well as capturing the license plate, color, and severity Source: Based upon Accenture’s experience and work of damage to the vehicle. There may be a street in this area sign in the image indicating the location of the accident, and the image may show whether it Dark Data in insurance can take many is day or night, and whether the road is wet or forms, including: dry. This information on its own could be enough for an insurance company to open a claim Structured Documents and produce an initial estimate of damages, determine whether to dispute the claim, and Structured forms are used in insurance assess the probability of fraud. However, because to gather information in a way that is easy for that data is locked inside a photograph and is people to digest and identify key information. not presented in a structured format, it is not This information is often presented in tables or captured by the business; the image is indexed boxes with single-word descriptors as the only for future reference and the data is left on the reference for what is contained in that field. shelf forever. 4 SHINING A LIGHT ON DARK DATA Unstructured Data Because critical elements of information about people, property, and policies are locked inside Unstructured data is everywhere in the data that cannot be readily accessed by bots insurance industry. Photographs, witness or systems, automation primarily takes place statements, legal documents, and medical downstream from where the data first touches records presented as part of an insurance the organization. Automation is implemented claim, file notes, or even transcripts of call only once a human operator has had the chance center conversations all constitute unstructured to touch the data and transform it into a structured data. This data generally presents itself as format. That time spent manipulating and written blocks of text with no clear indication interpreting data increases the risk of manual of where certain key information is held. error and erodes any benefit that the downstream automation can produce. • Handwritten Documents. Of the structured forms received, businesses can expect that Businesses have employed several methods between 20 and 25 percent will be handwritten. to work around the blockage caused by Dark Data, Handwriting has posed one of the greatest including the implementation of bots triggered by challenges to optical character recognition manually produced, templated emails, portals (OCR) technology for many years, with or applications for customers to fill in as their complexity driven by the fact that every person first point-of-contact, or complex and convoluted has their own style of handwriting. As a result, business rules to extract and route information. writing rules to differentiate one person’s “o” Each method has substantial downsides; from another person’s “0” has been impossible for example, manual triggers produce waste to date. and run the risk of potential errors, portals • Emails. Emails are one of the highest volume require a change in customer behavior that types of communication in every business, may be unwelcome and unwanted, and business used both internally for day-to-day process rules are often imperfect and inflexible, creating management, and externally for communications errors and more manual work to fix. with customers. The time spent manually reading, classifying, routing, recording, and Businesses often turn to human workers to unlock extracting information from emails is extensive. their Dark Data because there is no single tool or vendor in the marketplace that can solve for • Voice. The conversations that agents and all types of Dark Data. For example, many vendors call center operators have with customers offer OCR, but few can accurately extract text are important. Not only do they help build from low quality, unstructured, or handwritten a relationship, but they also involve the oral documents. Similarly, many offer transcription transmission of a significant amount of data. services, but few can offer highly accurate, fully Commonly, call center operators, claims automated, speaker-specific transcription and handlers, or other employees make short-hand associated call center analytics. And many offer notes in customer files denoting what has image recognition, but few can offer the flexibility been discussed on a call, but this high-level required to solve specific business problems. information only skims the surface of the Finding a tool that works well for a given problem data available during these calls. is hard; finding a tool that works well for every • Images. Images and videos represent the next problem has, up to now, been impossible. generation of largely untapped data sources. Due to the challenges presented by Dark Data, insurers have largely shied away from pursuing the generation and receipt of image-based data.
Recommended publications
  • Phase Relations of Purkinje Cells in the Rabbit Flocculus During Compensatory Eye Movements
    JOURNALOFNEUROPHYSIOLOGY Vol. 74, No. 5, November 1995. Printed in U.S.A. Phase Relations of Purkinje Cells in the Rabbit Flocculus During Compensatory Eye Movements C. I. DE ZEEUW, D. R. WYLIE, J. S. STAHL, AND J. I. SIMPSON Department of Physiology and Neuroscience, New York University Medical Center, New York 1OOM; and Department of Anatomy, Erasmus University Rotterdam, 3000 DR Rotterdam, Postbus 1738, The Netherlands SUMMARY AND CONCLUSIONS 17 cases (14%) showed CS modulation. In the majority (15 of 1. Purkinje cells in the rabbit flocculus that respond best to 17) of these cases, the CS activity increased with contralateral rotation about the vertical axis (VA) project to flocculus-receiving head rotation; these modulations occurred predominantly at the neurons (FRNs) in the medial vestibular nucleus. During sinusoi- higher stimulus velocities. dal rotation, the phase of FRNs leads that of medial vestibular 7. On the basis of the finding that FRNs of the medial vestibular nucleus neurons not receiving floccular inhibition (non-FRNs) . If nucleus lead non-FRNs, we predicted that floccular VA Purkinje the FRN phase lead is produced by signals from the ~~OCCU~US,then cells would in turn lead FRNs. This prediction is confirmed in the the Purkinje cells should functionally lead the FRNs. In the present present study. The data are therefore consistent with the hypothesis study we recorded from VA Purkinje cells in the flocculi of awake, that the phase-leading characteristics of FRN modulation could pigmented rabbits during compensatory eye movements to deter- come about by summation of VA Purkinje cell activity with that mine whether Purkinje cells have the appropriate firing rate phases of cells whose phase would otherwise be identical to that of non- to explain the phase-leading characteristics of the FRNs.
    [Show full text]
  • Dark Data and Its Future Prospects
    International Journal of Engineering Technology Science and Research IJETSR www.ijetsr.com ISSN 2394 – 3386 Volume 5, Issue 1 January 2018 Dark Data and Its Future Prospects Sarang Saxena St. Joseph’s Degree & Pg College ABSTRACT Dark data is data which is acquired through various computer network operations but not used in any manner to derive insights or for decision making. The ability of an organisation to collect data can exceed the throughput at which it can analyse the data. In some cases the organisation may not even be aware that the data is being collected. It’s data that is ever present, unknown and unmanaged. For example, a company may collect data on how users use its products, internal statistics about software development processes, and website visits. However, a large portion of the collected data is never even analysed. In recent times, there are certain businesses which have realised the importance of such data and are working towards finding techniques, methods, processes and developing software so that such data is properly utilized Through this paper I’m trying to find the scope and importance of dark data, its importance in the future, its implications on the smaller firms and organisations in need of relevant and accurate data which is difficult to find but is hoarded by giant firms who do not intend to reveal such information as a part of their practice or have no idea that the data even exists, the amount of data generatedby organisations and the percentage of which is actually utilised, the businesses formed around mining dark data and analysing it, the effects of dark data, the dangers and limitations of dark data.
    [Show full text]
  • Dark Data As the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer
    Delft University of Technology Dark Data as the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer Schembera, Björn; Duran, Juan Manuel DOI 10.1007/s13347-019-00346-x Publication date 2019 Document Version Final published version Published in Philosophy & Technology Citation (APA) Schembera, B., & Duran, J. M. (2019). Dark Data as the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer. Philosophy & Technology, 33(1), 93-115. https://doi.org/10.1007/s13347-019-00346-x Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Philosophy & Technology https://doi.org/10.1007/s13347-019-00346-x RESEARCH ARTICLE Dark Data as the New Challenge for Big Data Science and the Introduction of the Scientific Data Officer Bjorn¨ Schembera1 · Juan M. Duran´ 2 Received: 25 June 2018 / Accepted: 1 March 2019 / © The Author(s) 2019 Abstract Many studies in big data focus on the uses of data available to researchers, leaving without treatment data that is on the servers but of which researchers are unaware.
    [Show full text]
  • An Intelligent Navigator for Large-Scale Dark Structured Data
    CognitiveDB: An Intelligent Navigator for Large-scale Dark Structured Data Michael Gubanov, Manju Priya, Maksim Podkorytov Department of Computer Science University of Texas at San Antonio {mikhail.gubanov, maksim.podkorytov}@utsa.edu, [email protected] ABSTRACT Consider a data scientist who is trying to predict hard Volume and Variety of Big data [Stonebraker, 2012] are sig- cider sales in the regions of interest to be able to restock nificant impediments for anyone who wants to quickly un- accordingly for the next season. Since consumption of hard derstand what information is inside a large-scale dataset. cider is correlated with weather, access to the complete weather Such data is often informally referred to as 'dark' due to data per region would improve prediction accuracy. How- the difficulties of understanding its contents. For example, ever, such a dataset is not available internally, hence, the there are millions of structured tables available on the Web, data scientist is considering enriching existing data with de- but finding a specific table or summarizing all Web tables tailed weather data from an external data source (e.g. the to understand what information is available is infeasible or Web). However, the cost to do ETL (Extract-Transform- very difficult because of the scale involved. Load) from a large-scale external data source like the Web Here we present and demonstrate CognitiveDB, an intel- in order to integrate weather data is expected to be high, ligent cognitive data management system that can quickly therefore the data scientist never acquires the missing data summarize the contents of an unexplored large-scale struc- pieces and does not take weather into account.
    [Show full text]
  • An Epidemiology of Big Data
    Syracuse University SURFACE Dissertations - ALL SURFACE May 2014 An Epidemiology of Big Data John Mark Young Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Social and Behavioral Sciences Commons Recommended Citation Young, John Mark, "An Epidemiology of Big Data" (2014). Dissertations - ALL. 105. https://surface.syr.edu/etd/105 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT Federal legislation designed to transform the U.S. healthcare system and the emergence of mobile technology are among the common drivers that have contributed to a data explosion, with industry analysts and stakeholders proclaiming this decade the big data decade in healthcare (Horowitz, 2012). But a precise definition of big data is hazy (Dumbill, 2013). Instead, the healthcare industry mainly relies on metaphors, buzzwords, and slogans that fail to provide information about big data’s content, value, or purposes for existence (Burns, 2011). Bollier and Firestone (2010) even suggests “big data does not really exist in healthcare” (p. 29). While federal policymakers and other healthcare stakeholders struggle with the adoption of Meaningful Use Standards, International Classification of Diseases-10 (ICD-10), and electronic health record interoperability standards, big data in healthcare remains a widely misunderstood
    [Show full text]
  • Neuronal Couplings Between Retinal Ganglion Cells Inferred by Efficient Inverse Statistical Physics Methods
    Supporting Information Appendix for Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods S. Cocco, S. Leibler, R. Monasson Table of contents: 1. Inference of couplings and of their accuracy within the inverse Ising model (page 2) 2. Limitations of the Ising model: higher-order correlations and couplings (page 7) 3. Algorithm for the Inverse Integrate-and-Fire Problem (page 11) 4. On Cross-correlograms: Analysis of Data, Relationship with Couplings, and Simulations (page 14) 5. Correspondence between Integrate-and-Fire and Ising Inverse Models (page 23) 6. Spatial features of the inferred couplings (page 28) 7. On states and the large-N limit in the inverse Ising model (page 36) 8. Bibliography and footnotes (page 39) Supporting Information Appendix, Section 1: Inference of couplings and of their accuracy within the inverse Ising model I. INFERENCE AND MINIMIZATION OF THE ISING ENTROPY A multi-electrode recording provides the firing times of N recorded cells during a time interval of duration T . In the Ising inverse approach the recording interval is divided into time windows (time-bins) of width ∆t and the data are encoded in T/∆t configurations s = (s1,s2,...,sN ) of the N binary variables si, (i = 1,...,N) called spins (by τ analogy with magnetic systems described by the Ising model). The value of each spin variable is: si = 1, if the cell i is active in the time-bin τ (τ = 1,...,B = T/∆t), si = 0 otherwise. Let pi be the probability that the cell i is active in a given time-bin, and pij be the joint probability that the cells i and j are both active in the same bin.
    [Show full text]
  • IDC Futurescape: Worldwide Data, Integration, and Analytics 2020 Predictions
    IDC FutureScape IDC FutureScape: Worldwide Data, Integration, and Analytics 2020 Predictions Dan Vesset Carl W. Olofson Stewart Bond Maureen Fleming Marci Maddox Lynne Schneider Neil Ward-Dutton Christopher Lee Marshall Jennifer Hamel Shintaro Kusachi Chandana Gopal IDC FUTURESCAPE FIGURE FIGURE 1 IDC FutureScape: Worldwide Data, Integration, and Analytics 2020 Top 10 Predictions Note: Marker number refers only to the order the prediction appears in the document and does not indicate rank or importance, unless otherwise noted in the Executive Summary. Source: IDC, 2019 October 2019, IDC #US44802519 EXECUTIVE SUMMARY When almost 100 CEOs were asked by IDC in a study in August 2019 about the importance of various strategic areas to their organization over the next five years, fully 80% of respondents (second only to focus on digital trust) mentioned data (or more specifically, using data in advanced decision models to affect performance and competitive advantage). And these executives are not simply paying homage to the current trendy topics. According to IDC's Worldwide Big Data and Analytics Tracker and Spending Guide, enterprises worldwide spent $169 billion on BDA software, hardware, and services in 2018. However, most enterprises don't know if they are getting value or how much value they are getting out of data and analytics. Most are not tapping into dark data that is created by sits unused nor are most enterprises even attempting to get a return on their data asset externally. Most have subpar data literacy and incomplete data intelligence. Many are planning under the assumptions of huge potential benefits of artificial intelligence (AI), but lack foundational data, integration, and analytics capabilities that are prerequisites for moving along the AI-based automation evolution path.
    [Show full text]
  • Population-Based Linkage of Big Data in Dental Research
    International Journal of Environmental Research and Public Health Review Population-Based Linkage of Big Data in Dental Research Tim Joda 1,*, Tuomas Waltimo 2, Christiane Pauli-Magnus 3, Nicole Probst-Hensch 4 and Nicola U. Zitzmann 1 1 Department of Reconstructive Dentistry, University Center for Dental Medicine Basel, 4056 Basel, Switzerland; [email protected] 2 Department of Oral Health & Medicine Dentistry, University Center for Dental Medicine Basel, 4056 Basel, Switzerland; [email protected] 3 Department of Clinical Research & Clinical Trial Unit, Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; [email protected] 4 Department of Epidemiology & Public Health, Swiss Tropical & Public Health Institute Basel, University of Basel, 4051 Basel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +4161-267-2631 Received: 19 October 2018; Accepted: 23 October 2018; Published: 25 October 2018 Abstract: Population-based linkage of patient-level information opens new strategies for dental research to identify unknown correlations of diseases, prognostic factors, novel treatment concepts and evaluate healthcare systems. As clinical trials have become more complex and inefficient, register-based controlled (clinical) trials (RC(C)T) are a promising approach in dental research. RC(C)Ts provide comprehensive information on hard-to-reach populations, allow observations with minimal loss to follow-up, but require large sample sizes with generating high level of external validity. Collecting data is only valuable if this is done systematically according to harmonized and inter-linkable standards involving a universally accepted general patient consent. Secure data anonymization is crucial, but potential re-identification of individuals poses several challenges.
    [Show full text]
  • Industrial Statistics
    Industrial Statistics Ronald Christensen and Aparna V. Huzurbazar Department of Mathematics and Statistics University of New Mexico Copyright c 2002, 2021 v To Walt and Ed Contents Preface xiii 0.1 Standards xiii 0.2 Six-Sigma xiii 0.3 Lean xiv 0.4 This Book xiv 0.4.1 Computing xv 1 Introduction1 1.1 Four Principles for Quality1 1.1.1 Institute and Maintain Leadership for Quality Improvement2 1.1.2 Create Cooperation3 1.1.3 Train, Retrain, and Educate5 1.1.4 Insist on Action5 1.2 Some Technical Matters5 1.3 The Shewhart Cycle: PDSA6 1.4 Benchmarking7 1.5 Exercises7 2 Basic Tools 9 2.1 Data Collection9 2.2 Pareto and Other Charts 11 2.3 Histograms 13 2.3.1 Stem and Leaf Displays 16 2.3.2 Dot Plots 18 2.4 Box Plots 19 2.5 Cause and Effect Diagrams 19 2.6 Flow Charts 20 3 Probability 23 3.1 Introduction 23 3.2 Something about counting 25 3.3 Working with Random Variables 26 3.3.1 Probability Distributions, Expected Values 27 3.3.2 Independence, Covariance, Correlation 28 3.3.3 Expected values and variances for sample means 30 3.4 Binomial Distribution 32 3.5 Poisson distribution 34 3.6 Normal Distribution 34 vii viii CONTENTS 4 Control Charts 37 4.1 Individuals Chart 38 4.2 Means Charts and Dispersion Charts 40 4.2.1 Process Capability 46 4.2.1.1 Six-Sigma 47 4.3 Attribute Charts 48 4.4 Control Chart Summary 53 4.5 Average Run Lengths 54 4.6 Discussion 55 4.7 Testing Mean Shifts from a Target 56 4.7.1 Exponentially Weighted Moving Average Charts 56 4.7.1.1 Derivations of results 58 4.7.2 CUSUM charts 60 4.8 Computing 61 4.8.1 Minitab 61
    [Show full text]
  • Anomalies and Error Sources
    NICMOS 4 Anomalies and Error Sources In This Chapter... NICMOS Dark Current and Bias / 4-4 Bars / 4-19 Detector Nonlinearity Issues / 4-20 Flatfielding / 4-22 Pixel Defects and Bad Imaging Regions / 4-24 Effects of Overexposure / 4-28 Cosmic Rays of Unusual Size / 4-34 Scattered Earthlight / 4-36 The previous chapter described the basic stages of NICMOS pipeline processing. As with any instrument, however, high quality data reduction does not end with the standard pipeline processing. NICMOS data are subject to a variety of anomalies, artifacts, and instabilities which complicate the task of data reduction and analysis. Most of these can be handled with careful post-facto recalibration and processing, which usually yield excellent, scientific grade data reductions. Careful NICMOS data processing usually requires a certain amount of "hands-on" interaction from the user, who must inspect for data anomalies and treat them accordingly during the reduction procedures. This chapter describes the most common problems affecting NICMOS data at the level of frame-by-frame processing. In some cases, recognizing and treating problems with NICMOS data requires a moderately in-depth understanding of the details of instrumental behavior; problems with dark and bias subtraction are a good example. Where appropriate, this chapter offers a fairly detailed discussion of the relevant workings of the instrument, but the reader should consult the NICMOS Instrument Handbook for further details. Each section of this chapter deals with a different aspect of NICMOS data processing, roughly following the order of the processing steps in the standard STSDAS pipeline. Various potential problems are described and illustrated.
    [Show full text]
  • Visual Analytics on Biomedical Dark Data
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2020 Visual Analytics on Biomedical Dark Data Shashwat Aggarwal a, Ramesh Singh b a University of Delhi a National Informatics Center 1. INTRODUCTION In today’s data centralized world, the practice of data visualization has become an indispensable tool in numerous domains such as Research, Marketing, Journalism, Biology etc. Data visualization is the art of efficiently organizing and presenting data in a graphically appealing format. It speeds up the process of decision making and pattern recognition, thereby enabling decision makers to make informed decisions. With the rise in technology, the data has been exploding exponentially, and the world’s scientific knowledge is accessible with ease. There is an enormous amount of data available in the form of scientific articles, government reports, natural language, and images that in total contributes to around 80% of overall data generated as shown in an excerpt from The Digital Universe [1] in Figure 1. However, most of the data lack structure and cannot be easily categorized and imported into regular databases. This type of data is often termed as Dark Data. Data visualization techniques proffer a potential solution to overcome the problem of handling and analyzing overwhelming amounts of such information. It enables the decision maker to look at data differently and more imaginatively. It promotes creative data exploration by allowing quick comprehension of information, the discovery of emerging trends, identification of relationships and patterns etc. Figure 1. Worldwide growth of corporate data categorized by structured and unstructured/dark data over the past decade. 1 © 2020 by the author(s).
    [Show full text]
  • Data Science by Analyticbridge
    Data Science by AnalyticBridge Vincent Granville, Ph.D. Founder, Data Wizard, Managing Partner www.AnalyticBridge.com - www.DataScienceCentral.com Download the most recent version at http://bit.ly/oB0zxn This version was released on 01/03/2013 (123 pages – Gartner’s contribution updated) Previous release was on 06/05/2012 (123 pages) Published by AnalyticBridge. Connect with the Author: . AnalyticBridge – www.analyticbridge.com/profile/VincentGranville . LinkedIn – www.linkedin.com/in/vincentg . Facebook – www.facebook.com/analyticbridge . Twitter – www.twitter.com/analyticbridge . GooglePlus – https://plus.google.com/116460988472927384512 . Quora – www.quora.com/Vincent-Granville 1 Content Introduction Part I - Data Science Recipes 1. New random number generator: simple, strong and fast 2. Lifetime value of an e-mail blast: much longer than you think 3. Two great ideas to create a much better search engine 4. Identifying the number of clusters: finally a solution 5. Online advertising: a solution to optimize ad relevancy 6. Example of architecture for AaaS (Analytics as a Service) 7. Why and how to build a data dictionary for big data sets 8. Hidden decision trees: a modern scoring methodology 9. Scorecards: Logistic, Ridge and Logic Regression 10. Iterative Algorithm for Linear Regression 11. Approximate Solutions to Linear Regression Problems 12. Theorems for Traders 13. Preserving metric and score consistency over time and across clients 14. Advertising: reach and frequency mathematical formulas 15. Real Life Example of Text Mining to Detect Fraudulent Buyers 16. Discount optimization problem in retail analytics 17. Sales forecasts: how to improve accuracy while simplifying models? 18. How could Amazon increase sales by redefining relevancy? 19.
    [Show full text]