Dna Barcoding of Echinoderms: Species

Total Page:16

File Type:pdf, Size:1020Kb

Dna Barcoding of Echinoderms: Species DNA BARCODING OF ECHINODERMS: SPECIES DIVERSITY AND PATTERNS OF MOLECULAR EVOLUTION A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ERIN A. CORSTORPHINE In partial fulfillment of requirements for the degree of Master of Science April, 2010 © Erin A. Corstorphine, 2010 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-64608-3 Our Trie Notre reference ISBN: 978-0-494-64608-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. ••I Canada ABSTRACT DNA BARCODING OF ECHINODERMS: SPECIES DIVERSITY AND PATTERNS OF MOLECULAR EVOLUTION Erin A. Corstorphine Advisor: University of Guelph, 2010 Professor P.D.N. Hebert This thesis investigates species diversity and patterns of molecular evolution in the phylum Echinodermata. The first chapter tests and confirms the utility of DNA barcoding for species identification in 131 species of echinoderms. The impact of larval development and dispersal on intraspecific divergence is examined for trans-oceanic and putative cryptic species. The second chapter investigates the association between rates of molecular evolution and developmental mode by employing phylogenetically independent comparisons between species with contrasting modes of larval development (e.g., planktotrophy vs. maternal brood-protection). The results show that species with nonpelagic development have accelerated rates of evolution when compared to those with pelagic development. However, further investigation is required to determine the factors responsible for this trend. These results suggest that reproductive mode is an important factor in the establishment and maintenance of patterns and rates of genetic divergence in echinoderms. ACKNOWLEDGEMENTS This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) graduate student scholarship to myself, and a NSERC research grant to my advisor Paul Hebert. I would like to thank members of my advisory committee (Teri Crease, Andreas Heyland and Paul Hebert) for their guidance and support. In particular I am deeply grateful to Paul Hebert for providing me with the opportunity to pursue my academic goals and for providing encouragement throughout my degree. My time in the field at Churchill, St. Andrews and Bamfield, provided me with greater perspective on my work and equipped me with valuable field experience. For that, I am also thankful. I would also like to acknowledge by defense committee (Teri Crease, Elizabeth Boulding, Paul Hebert and Pat Wright) for providing thoughtful comments and revisions for the finished thesis. I would like to thank everyone who made this research possible by either contributing specimens or aiding in field collections including: Christina Carr, Sandra McCubbin, Robert Frank, Victoria Frank, Jeremy deWaard, Tanya Brown, Tom Sheldon, Jim Boutillier, Claudia Hand, Katy Hind, and Bridgette Clarkston. In particular, I would like to thank Christy, for being my partner in the field. Learning to drive boats, fishing for dogfish, scouring the barren intertidal in Churchill, digging for critters while up to our knees in mud, not to mention, the countless hours processing, photographing and organizing specimens; none of this would have been the same without you. To Bob and Victoria, thank you for teaching me the art of drysuit diving, for providing me with equipment, great company, lobster dinners and of course, comic relief. i I am particularly grateful to Kelly Sendall for providing access to the extensive echinoderm collection at the Royal British Columbia Museum and to Phil Lambert for his taxonomic advice. I would also like to thank my external collaborators: Peter Smith, Doug Eernisse, Megumi Strathmann and Chris Mah for including me in their work and providing me with opportunities to further my knowledge and involvement in echinoderm research. A heartfelt thanks to my labmates: Beth, Christy, John, Kevin, Taika and Vazrick, for providing advice on all aspects of the graduate student experience and for keeping things interesting. In particular, thank you to Beth and Christy for helping me with lab techniques, clarifying concepts and providing helpful comments on early renditions of this thesis. Thank you to the many staff at the Biodiversity Institute of Ontario, for providing support at all stages of the process. A special thank you to Natalia Ivanova for aid with laboratory protocols, Luiqiong Lu for speedy processing, Dirk Steinke for helpful advice, Alex Borisenko and Jayme Sones for support with specimen collections and Susan Mannhardt for her support in all aspects of the administrative process. I thank all my friends, near and far, for their encouragement and friendship. I would especially like to thank Mike for helping me take the leap and for providing unwavering encouragement and support - you were always there when I needed you most, whether I needed to ramble off ideas, vent my frustrations, cry in despair or celebrate even the smallest of achievements. Thank you. Finally I would like to thank my mom (Norma), dad (Wayne), sister (Lindsay), brother (Jamie), grandfather (Ed) and extended family, including all the Fitz's, for their love and support. ii TABLE OF CONTENTS LIST OF TABLES vi LIST OF FIGURES vii LIST OF APPENDICES viii GENERAL INTRODUCTION 1 Marine biodiversity and consequences of larval dispersal 1 Present study 2 CHAPTER 1: Exploring Canadian echinoderm biodiversity through DNA barcoding 4 Abstract 4 Introduction 5 Methods 9 Specimen collection and taxonomy 9 DNA extraction, COI amplification and sequencing 10 Sequence analysis 12 Species delineation 12 Results 13 Sequence recovery 13 Taxonomic issues 14 Genetic distances within and among taxa 16 Divergence across oceans 18 Discussion 18 Species delineation 19 in Intraspecific divergence between allopatric populations 19 Intraspecific divergence in sympatry 21 Patterns of divergence in a species-rich genus 22 Effects of distribution on interpretation of barcode data 23 Future work 25 Conclusion 27 CHAPTER 2: Patterns of molecular evolution in the COI gene in the Echinodermata 43 Abstract 43 Introduction 44 Methods 48 Taxon choice, developmental mode and independent comparisons 48 Sequence acquisition 49 Nucleotide diversity 49 Relative rate tests 50 Tests for lineage-specific selection 50 Meta-analysis 52 Results 52 Nucleotide diversity 52 Relative rate tests 52 Lineage-specific selection 53 Discussion 53 Possible explanations for elevated rates in nonpelagic lineages 54 IV Study design 57 Future work 58 Conclusion 59 GENERAL DISCUSSION 68 Summary of results 68 DNA barcoding: applications and patterns of diversity 69 Implications of rate heterogeneity 71 REFERENCES 72 APPENDICES 93 v LIST OF TABLES CHAPTER 1 Table 1: Primer combinations, length and location of amplicon and primer references 28 Table 2: Echinoderm species with maximum intraspecific distance > 2% 29 Table 3: Echinoderm species sampled from at least two of Canada's three oceans 30 CHAPTER 2 Table 1: List of phylogenetically independent comparisons for pelagic and nonpelagic lineages 61 Table 2: Nucleotide diversity estimates 62 Table 3: Results of relative rate tests 63 Table 4: Ratios of rates of nonsynonymous (dN) to synonymous (dS) substitutions 64 VI LIST OF FIGURES CHAPTER 1 Figure 1: Map of Canada indicating collection locations and sample sizes 31 Figure 2: Class-level neighbour-joining trees indicating number of species and sample sizes 32 Figure 3: Frequency distribution for intra- and interspecific pairwise comparisons 37 Figure 4: Neighbour-joining tree for Henricia 38 Figure 5: Neighbour-joining trees and collection maps for three species with variable intraspecific divergence associated with geographic separation 40 Figure 6: Neighbour-joining trees and collection maps for
Recommended publications
  • Adhesion in Echinoderms
    Adhesion in echinoderms PATRICK FLAMMANG* Laboratoire de Biologie marine, Universite' de Mons-Hainaut, Mons, Belgium Final manuscript acceptance: August 1995 KEYWORDS: Adhesive properties, podia, larvae, Cuvierian tubules, Echinodermata. CONTENTS 1 Introduction 2 The podia 2.1 Diversity 2.2 Basic structure and function 2.3 Adhesivity 3 Other attachment mechanisms of echinoderms 3.1 Larval and postlarval adhesive structures 3.2 Cuvierian tubules 4 Comparison with other marine invertebrates 5 Conclusions and prospects Acknowledgements References 1 INTRODUCTION Marine organisms have developed a wide range of mechanisms allowing them to attach to or manipulate a substratum (Nachtigall 1974). Among 1 these mechanisms, one can distinguish between mechanical attachments (e.g. hooks or suckers) and chemical attachments (with adhesive sub- stances). The phylum Echinodermata is quite exceptional in that all its species, *Senior research assistant, National Fund for Scientific Research, Belgium. I whatever their life style, use attachment mechanisms. These mechanisms allow some of them to move, others to feed, and others to burrow in par- ticulate substrata. In echinoderms, adhesivity is usually the function of specialized structures, the podia or tube-feet. These podia are the exter- nal appendages of the arnbulacral system and are also probably the most advanced hydraulic structures in the animal kingdom. 2 THE PODIA From their presumed origin as simple respiratory evaginations of the am- bulacral system (Nichols 1962), podia have diversified into the wide range of specialized structures found in extant echinoderms. This mor- phological diversity of form reflects the variety of functions that podia perform (Lawrence 1987). Indeed, they take part in locomotion, burrow- ing, feeding, sensory perception and respiration.
    [Show full text]
  • Psolus Phantapus
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Psolus phantapus (Psolus) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Holothuroidea (Sea Cucumbers) Order: Dendrochirotida (Sea Cucumbers) Family: Psolidae (Sea Cucumbers) General comments: none No Species Conservation Range Maps Available for Psolus SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Psolus is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Psolus phantapus is highly vulnerable to climate change. Understudied rare taxa: Recently documented or poorly surveyed rare species for which risk of extirpation is potentially high (e.g. few known occurrences) but insufficient data exist to conclusively assess distribution and status. *criteria only qualifies for Priority 3 level SGCN* Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement
    [Show full text]
  • The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific
    ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME I Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 . for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I wish to place restriction on access to this thesis as follows: Access not to be permitted for a period of 3 years. After this period has elapsed I understand that James Cook. University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All uses consulting this thesis will have to sign the following statement: 'In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' David G.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Spawning of the Sea Cucumber <I>Cucumaria Frondosa</I> in the St
    12 SPC Beche-de-mer Information Bulletin #7 June 1995 Spawning of the sea cucumber Cucumaria by Jean-Francois Hamel & Annie Mercier frondosa in the St Lawrence Estuary, Québec, Canada eastern Canada Jean-Francois Hamel (Société d’Exploration et de Valorisation de l’Environnement (SEVE), 90 Notre-Dame Est, Rimouski (Québec), Canada G5L 1Z6) and Annie Mercier (Département d’océanographie, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski (Québec), Canada G5L 3A1) present in the following article their work about the spawning of Cucumaria frondosa in the Lower St Lawrence Estuary, eastern Canada. Abstract Our work presents data on spawning of the commercial sea cucumber Cucumaria frondosa from the Lower St Lawrence Estuary, eastern Canada. The rapidly rising concentration of chlorophyll a in early spring 1992 and 1993 appeared as the spawning cue for male and female individuals during the large-scale monitoring. A closer look at the spawning cue on a scale of hours revealed that males spawned first, as the chlorophyll a concentration decreased and as the temperature increased rapidly, during the low tide at sun rise. Spawning in females occurred shortly thereafter and seemed to be triggered by the presence of sperm in the water column. Those results demonstrate that the correlation between spawning and environmental factors is often more complex than that suggested by large-scale monitoring. Introduction present study, we carefully monitored the spawning period from beginning to end during two years, Cucumaria frondosa, the species chosen for this collecting samples at close intervals and making experiment, is a commonly occurring coastal, large correlations with environmental conditions.
    [Show full text]
  • Observations on the Gorgonian Coral Primnoa Pacifica at the Knight Inlet Sill, British Columbia 2008 to 2013
    Observations on the Gorgonian Coral Primnoa pacifica at the Knight Inlet sill, British Columbia 2008 to 2013 By Neil McDaniel1 and Doug Swanston2 May 1, 2013 Background The fjords of British Columbia are glacially-carved troughs that snake their way through the coastal mountains, attaining depths as great as 760 m. Knight Inlet is especially long, extending 120 km northeast from an entrance located 240 km northwest of Vancouver, near the north end of Vancouver Island. Despite a maximum depth of 540 m it has a relatively shallow sill lying between Hoeya Head and Prominent Point with a maximum depth of only 65 m. Due to the shallow nature of the sill, tidal currents frequently exceed 0.5 m/second. ____________________ 1 [email protected] 2 [email protected] 1 The site has been of particular interest to oceanographers as the classical shape of this sill results in the presence of internal gravity waves and other interesting hydraulic phenomena (Thompson, 1981). As a result, university and federal government scientists have undertaken a number of oceanographic surveys of these features. In the early 1980s researchers surveying the depths of Knight Inlet with the submersible Pisces IV encountered large fans of gorgonian coral on the flanks of the sill at depths of 65 to 200 m (Tunnicliffe and Syvitski, 1983). Boulders of various sizes were found scattered over the sill, many colonized by impressive fans of Primnoa, the largest 3 m across. The fact that this gorgonian coral was present was noteworthy, but the scientists observed something else extremely curious. Behind some of the boulders were long drag marks, evidence that when the coral fan on a particular boulder became big enough it acted like a sail in the tidal currents.
    [Show full text]
  • (Echinodermata) Collected During the TALUD Cruises Off the Pacific Coast of Mexico, with the Description of Two New Species Revista Mexicana De Biodiversidad, Vol
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Massin, Claude; Hendrickx, Michel E. Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Revista Mexicana de Biodiversidad, vol. 82, núm. 2, junio, 2011, pp. 413-443 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42521043005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 413-443, 2011 Deep-water Holothuroidea (Echinodermata) collected during the TALUD cruises off the Pacific coast of Mexico, with the description of two new species Holothuroidea (Echinodermata) de mar profundo recolectadas durante las campañas TALUD frente a la costa del Pacífico mexicano, con la descripción de dos especies nuevas Claude Massin1 and Michel E. Hendrickx2* 1Department of Recent Invertebrates, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium. 2Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, PO Box 811, 82000 Mazatlán, Sinaloa, México. *Correspondent: [email protected] Abstract. Research cruises aboard the R/V “El Puma” were organized to collect deep-water benthic and pelagic specimens off the Pacific coast of Mexico. Seventy four specimens of Holothuroidea were collected off the Pacific coast of Mexico in depths of 377-2 200 m.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin Has 13 Original S.W
    ISSN 1025-4943 Issue 36 – March 2016 BECHE-DE-MER information bulletin Inside this issue Editorial Rotational zoning systems in multi- species sea cucumber fisheries This 36th issue of the SPC Beche-de-mer Information Bulletin has 13 original S.W. Purcell et al. p. 3 articles relating to the biodiversity of sea cucumbers in various areas of Field observations of sea cucumbers the western Indo-Pacific, aspects of their biology, and methods to better in Ari Atoll, and comparison with two nearby atolls in Maldives study and rear them. F. Ducarme p. 9 We open this issue with an article from Steven Purcell and coworkers Distribution of holothurians in the on the opportunity of using rotational zoning systems to manage shallow lagoons of two marine parks of Mauritius multispecies sea cucumber fisheries. These systems are used, with mixed C. Conand et al. p. 15 results, in developed countries for single-species fisheries but have not New addition to the holothurian fauna been tested for small-scale fisheries in the Pacific Island countries and of Pakistan: Holothuria (Lessonothuria) other developing areas. verrucosa (Selenka 1867), Holothuria cinerascens (Brandt, 1835) and The four articles that follow, deal with biodiversity. The first is from Frédéric Ohshimella ehrenbergii (Selenka, 1868) Ducarme, who presents the results of a survey conducted by an International Q. Ahmed et al. p. 20 Union for Conservation of Nature mission on the coral reefs close to Ari A checklist of the holothurians of Atoll in Maldives. This study increases the number of holothurian species the far eastern seas of Russia recorded in Maldives to 28.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Miller L. P. & M. W. Denny. (2011)
    Reference: Biol. Bull. 220: 209–223. (June 2011) © 2011 Marine Biological Laboratory Importance of Behavior and Morphological Traits for Controlling Body Temperature in Littorinid Snails LUKE P. MILLER1,* AND MARK W. DENNY Hopkins Marine Station, Stanford University, Pacific Grove, California 93950 Abstract. For organisms living in the intertidal zone, Introduction temperature is an important selective agent that can shape species distributions and drive phenotypic variation among Within the narrow band of habitat between the low and populations. Littorinid snails, which occupy the upper limits high tidemarks on seashores, the distribution of individual of rocky shores and estuaries worldwide, often experience species and the structure of ecological communities are extreme high temperatures and prolonged aerial emersion dictated by a variety of biotic and abiotic factors (Connell, during low tides, yet their robust physiology—coupled with 1961, 1972; Lewis, 1964; Paine, 1974; Dayton, 1975; morphological and behavioral traits—permits these gastro- Menge and Branch, 2001). Biological interactions such as pods to persist and exert strong grazing control over algal predation, competition, and facilitation play out on a back- communities. We use a mechanistic heat-budget model to ground of constantly shifting environmental conditions driven primarily by the action of tides and waves (Stephen- compare the effects of behavioral and morphological traits son and Stephenson, 1972; Denny, 2006; Denny et al., on the body temperatures of five species of littorinid snails 2009). Changes in important environmental parameters under natural weather conditions. Model predictions and such as light, temperature, and wave action can alter the field experiments indicate that, for all five species, the suitability of the habitat for a given species at both small relative contribution of shell color or sculpturing to temper- and large spatial scales (Wethey, 2002; Denny et al., 2004; ature regulation is small, on the order of 0.2–2 °C, while Harley, 2008).
    [Show full text]
  • Methodology of the Pacific Marine Ecological Classification System and Its Application to the Northern and Southern Shelf Bioregions
    Canadian Science Advisory Secretariat (CSAS) Research Document 2016/035 Pacific Region Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions Emily Rubidge1, Katie S. P. Gale1, Janelle M. R. Curtis2, Erin McClelland3, Laura Feyrer4, Karin Bodtker5, Carrie Robb5 1Institute of Ocean Sciences Fisheries & Oceans Canada P.O. Box 6000 Sidney, BC V8L 4B2 2Pacific Biological Station Fisheries & Oceans Canada 3190 Hammond Bay Rd Nanaimo, BC V9T 1K6 3EKM Scientific Consulting 4BC Ministry of Environment P.O. Box 9335 STN PROV GOVT Victoria, BC V8W 9M1 5Living Oceans Society 204-343 Railway St. Vancouver, BC V6A 1A4 May 2016 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044 Correct citation for this publication: Rubidge, E., Gale, K.S.P., Curtis, J.M.R., McClelland, E., Feyrer, L., Bodtker, K., and Robb, C. 2016. Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions.
    [Show full text]
  • Patrones Filogeográficos De Dos Moluscos Intermareales a Lo Largo De Un Gradiente Biogeográfico En La Costa Norte Del Perú
    PATRONES FILOGEOGRÁFICOS DE DOS MOLUSCOS INTERMAREALES A LO LARGO DE UN GRADIENTE BIOGEOGRÁFICO EN LA COSTA NORTE DEL PERÚ TESIS PARA OPTAR EL GRADO DE MAESTRO EN CIENCIAS DEL MAR BACH. SERGIO BARAHONA PADILLA LIMA – PERÚ 2017 ASESOR DE LA TESIS Aldo Santiago Pacheco Velásquez PhD. en Ciencias Naturales Profesor invitado de la Maestría en Ciencias del Mar de la Universidad Peruana Cayetano Heredia Laboratorio CENSOR, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Chile CO-ASESORA DE LA TESIS Ximena Vélez Zuazo PhD. en Ecología y Evolución Directora del Programa Marino de Monitoreo y Evaluación de la Biodiversidad (BMAP) del Instituto Smithsonian de Biología de la Conservación, Perú JURADO EVALUADOR DE LA TESIS Dr. Dimitri Gutiérrez Aguilar (Presidente) Dr. Pedro Tapia Ormeño (Secretario) Dr. Jorge Rodríguez Bailón (Vocal) DEDICATORIA Esta tesis está dedicada a mi amada familia, a mis dos padres y a mi hermana, quienes estuvieron, están y estarán siempre allí, apoyándome y dándome ánimos para seguir adelante en esta ardua pero satisfactoria labor que es la investigación. AGRADECIMIENTOS La presente tesis fue financiada por la beca de estudios de posgrado otorgada por FONDECYT (Fondo Nacional de Desarrollo Científica, Tecnológico y e Innovación Tecnológica), CIENCIACTIVA y el Consejo Nacional de Ciencia y Tecnología (CONCYTEC) del Ministerio de Educación del Perú, en el marco del programa de posgrado de Ciencias del Mar de la Universidad Peruana Cayetano Heredia. A mi asesor, Aldo Pacheco Velásquez, por su paciencia y significativos aportes de conocimiento que permitieron atacar la tesis desde varias perspectivas. A mi co- asesora Ximena Vélez-Zuazo, a quien considero una hermana mayor, por el constante ánimo y soporte durante la ejecución de la tesis.
    [Show full text]