Explaining the Implied Volatility Skew from the Rational Speculation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module 6 Option Strategies.Pdf
zerodha.com/varsity TABLE OF CONTENTS 1 Orientation 1 1.1 Setting the context 1 1.2 What should you know? 3 2 Bull Call Spread 6 2.1 Background 6 2.2 Strategy notes 8 2.3 Strike selection 14 3 Bull Put spread 22 3.1 Why Bull Put Spread? 22 3.2 Strategy notes 23 3.3 Other strike combinations 28 4 Call ratio back spread 32 4.1 Background 32 4.2 Strategy notes 33 4.3 Strategy generalization 38 4.4 Welcome back the Greeks 39 5 Bear call ladder 46 5.1 Background 46 5.2 Strategy notes 46 5.3 Strategy generalization 52 5.4 Effect of Greeks 54 6 Synthetic long & arbitrage 57 6.1 Background 57 zerodha.com/varsity 6.2 Strategy notes 58 6.3 The Fish market Arbitrage 62 6.4 The options arbitrage 65 7 Bear put spread 70 7.1 Spreads versus naked positions 70 7.2 Strategy notes 71 7.3 Strategy critical levels 75 7.4 Quick notes on Delta 76 7.5 Strike selection and effect of volatility 78 8 Bear call spread 83 8.1 Choosing Calls over Puts 83 8.2 Strategy notes 84 8.3 Strategy generalization 88 8.4 Strike selection and impact of volatility 88 9 Put ratio back spread 94 9.1 Background 94 9.2 Strategy notes 95 9.3 Strategy generalization 99 9.4 Delta, strike selection, and effect of volatility 100 10 The long straddle 104 10.1 The directional dilemma 104 10.2 Long straddle 105 10.3 Volatility matters 109 10.4 What can go wrong with the straddle? 111 zerodha.com/varsity 11 The short straddle 113 11.1 Context 113 11.2 The short straddle 114 11.3 Case study 116 11.4 The Greeks 119 12 The long & short straddle 121 12.1 Background 121 12.2 Strategy notes 122 12..3 Delta and Vega 128 12.4 Short strangle 129 13 Max pain & PCR ratio 130 13.1 My experience with option theory 130 13.2 Max pain theory 130 13.3 Max pain calculation 132 13.4 A few modifications 137 13.5 The put call ratio 138 13.6 Final thoughts 140 zerodha.com/varsity CHAPTER 1 Orientation 1.1 – Setting the context Before we start this module on Option Strategy, I would like to share with you a Behavioral Finance article I read couple of years ago. -
Term Structure Models of Commodity Prices
TERM STRUCTURE MODELS OF COMMODITY PRICES Cahier de recherche du Cereg n°2003–9 Delphine LAUTIER ABSTRACT. This review article describes the main contributions in the literature on term structure models of commodity prices. A first section is devoted to the theoretical analysis of the term structure. It confines itself primarily to the traditional theories of commodity prices and to their explanation of the relationship between spot and futures prices. The normal backwardation and storage theories are however a bit limited when the whole term structure is taken into account. As a result, there is a need for an extension of the analysis for long-term horizon, which constitutes the second point of the section. Finally, a dynamic analysis of the term structure is presented. Section two is centred on term structure models of commodity prices. The presentation shows that these models differ on the nature and the number of factors used to describe uncertainty. Four different factors are generally used: the spot price, the convenience yield, the interest rate, and the long-term price. Section three reviews the main empirical results obtained with term structure models. First of all, simulations highlight the influence of the assumptions concerning the stochastic process retained for the state variables and the number of state variables. Then, the method usually employed for the estimation of the parameters is explained. Lastly, the models’ performances, namely their ability to reproduce the term structure of commodity prices, are presented. Section four exposes the two main applications of term structure models: hedging and valuation. Section five resumes the broad trends in the literature on commodity pricing during the 1990s and early 2000s, and proposes futures directions for research. -
Risk and Return in Yield Curve Arbitrage
Norwegian School of Economics Bergen, Fall 2020 Risk and Return in Yield Curve Arbitrage A Survey of the USD and EUR Interest Rate Swap Markets Brage Ager-Wick and Ngan Luong Supervisor: Petter Bjerksund Master’s Thesis, Financial Economics NORWEGIAN SCHOOL OF ECONOMICS This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible – through the approval of this thesis – for the theories and methods used, or results and conclusions drawn in this work. Acknowledgements We would like to thank Petter Bjerksund for his patient guidance and valuable insights. The empirical work for this thesis was conducted in . -scripts can be shared upon request. 2 Abstract This thesis extends the research of Duarte, Longstaff and Yu (2007) by looking at the risk and return characteristics of yield curve arbitrage. Like in Duarte et al., return indexes are created by implementing a particular version of the strategy on historical data. We extend the analysis to include both USD and EUR swap markets. The sample period is from 2006-2020, which is more recent than in Duarte et al. (1988-2004). While the USD strategy produces risk-adjusted excess returns of over five percent per year, the EUR strategy underperforms, which we argue is a result of the term structure model not being well suited to describe the abnormal shape of the EUR swap curve that manifests over much of the sample period. For both USD and EUR, performance is much better over the first half of the sample (2006-2012) than over the second half (2013-2020), which coincides with a fall in swap rate volatility. -
CAIA® Level I Workbook
CAIA® Level I Workbook Practice questions, exercises, and keywords to test your knowledge SEPTEMBER 2021 CAIA Level I Workbook, September 2021 CAIA Level I Workbook Table of Contents Preface ........................................................................................................................................... 3 Workbook ...................................................................................................................................................................... 3 September 2021 Level I Study Guide ....................................................................................................................... 3 Errata Sheet .................................................................................................................................................................... 3 The Level II Examination and Completion of the Program ................................................................................. 3 Review Questions & Answers ................................................................................................. 4 Chapter 1 What is an Alternative Investment? ......................................................................................... 4 Chapter 2 The Environment of Alternative Investments ........................................................................... 6 Chapter 3 Quantitative Foundations ........................................................................................................ 8 Chapter 4 Statistical Foundations ...........................................................................................................10 -
Volatility Risk Premium: New Dimensions
Deutsche Bank Markets Research Europe Derivatives Strategy Date 20 April 2017 Derivatives Spotlight Caio Natividade Volatility Risk Premium: New [email protected] Dimensions Silvia Stanescu [email protected] Vivek Anand Today's Derivatives Spotlight delves into systematic options research. It is the first in a series of collaborative reports between our derivatives and [email protected] quantitative research teams that aim to systematically identify and capture value across global volatility markets. Paul Ward, Ph.D [email protected] This edition zooms into the volatility risk premia (VRP), one of the key sources of return in options markets. VRP strategies are popular across the investor Simon Carter community, but suffer from structural shortcomings. This report looks to [email protected] improve on those. Going beyond traditional methods, we introduce a P-distribution that best Pam Finelli represents our projected future returns and associated probabilities, based on [email protected] their drivers. Other topics are also highlighted as we construct our P- distribution, namely a new multivariate volatility risk factor model, our Global Spyros Mesomeris, Ph.D Sentiment Indicator, and the treatment of event-based versus non-event based [email protected] returns. +44 20 754 52198 We formulate a strategy which should improve the way in which the VRP is harnessed. It utilizes alternative delta hedging methods and timing. Risk Statement: while this report does not explicitly recommend specific options, we note that there are risks to trading derivatives. The loss from long options positions is limited to the net premium paid, but the loss from short option positions can be unlimited. -
EC3070 FINANCIAL DERIVATIVES GLOSSARY Ask Price the Bid Price
EC3070 FINANCIAL DERIVATIVES GLOSSARY Ask price The bid price. Arbitrage An arbitrage is a financial strategy yielding a riskless profit and requiring no investment. It commonly amounts to the successive purchase and sale, or vice versa, of an asset at differing prices in different markets. i.e. it involves buying cheap and selling dear or selling dear and buying cheap. Bid A bid is a proposal to buy. A typical convention for vocalising a bid is “p for n”: p being the proposed unit price and n being the number of units or contracts demanded. Backwardation Backwardation describes a situation where the amount of money required for the future delivery of an item is lower than the amount required for immediate delivery. Backwardation is a signal that the item in question is in short supply. The opposite market condition to backwardation is known as contango, which is when the spot price is lower than the futures price. In fact, there is some ambiguity in the usage of the term. According to the definition above, backwardation is when Fτ|0 <S0, where Fτ|0 is the current price for a delivery at time τ and S0 is the current spot price. In an alternative definition, backwardation exists when Fτ|0 <E(Fτ|t) with 0 <t<τ, which is when the expected future price at a later date exceeds the futures price settled at time t = 0. In modern usage, this is called normal backwardation. Buyer A buyer is a long position holder who has agreed to accept the delivery of a commodity at some future date. -
Smile Arbitrage: Analysis and Valuing
UNIVERSITY OF ST. GALLEN Master program in banking and finance MBF SMILE ARBITRAGE: ANALYSIS AND VALUING Master’s Thesis Author: Alaa El Din Hammam Supervisor: Prof. Dr. Karl Frauendorfer Dietikon, 15th May 2009 Author: Alaa El Din Hammam Title of thesis: SMILE ARBITRAGE: ANALYSIS AND VALUING Date: 15th May 2009 Supervisor: Prof. Dr. Karl Frauendorfer Abstract The thesis studies the implied volatility, how it is recognized, modeled, and the ways used by practitioners in order to benefit from an arbitrage opportunity when compared to the realized volatility. Prediction power of implied volatility is exam- ined and findings of previous studies are supported, that it has the best prediction power of all existing volatility models. When regressed on implied volatility, real- ized volatility shows a high beta of 0.88, which contradicts previous studies that found lower betas. Moment swaps are discussed and the ways to use them in the context of volatility trading, the payoff of variance swaps shows a significant neg- ative variance premium which supports previous findings. An algorithm to find a fair value of a structured product aiming to profit from skew arbitrage is presented and the trade is found to be profitable in some circumstances. Different suggestions to implement moment swaps in the context of portfolio optimization are discussed. Keywords: Implied volatility, realized volatility, moment swaps, variance swaps, dispersion trading, skew trading, derivatives, volatility models Language: English Contents Abbreviations and Acronyms i 1 Introduction 1 1.1 Initial situation . 1 1.2 Motivation and goals of the thesis . 2 1.3 Structure of the thesis . 3 2 Volatility 5 2.1 Volatility in the Black-Scholes world . -
A Brief Analysis of Option Implied Volatility and Strategies
Economics World, July-Aug. 2018, Vol. 6, No. 4, 331-336 doi: 10.17265/2328-7144/2018.04.009 D DAVID PUBLISHING A Brief Analysis of Option Implied Volatility and Strategies Zhou Heng University of Adelaide, Adelaide, Australia With the implementation of reform of financial system and the opening-up of financial market in China, knowing and properly utilizing financial derivatives becomes an inevitable road. The phenomenon of B-S-M option pricing model underpricing deep-in/out option prices is called volatility smile. The substantial reasons are conflicts between model’s presumptions and reality; moreover, the market trading mechanism brings extra uncertainties and risks to option writers when doing delta hedging. Implied volatility research and random volatility research have been modifying B-S-M model. Giving a practical case may let reader have an intuitive and in-depth understanding. Keywords: financial derivatives, option pricing, option strategies Introduction Since the first standardized “exchanged-traded” forward contracts were successfully traded in 1864, more and more financial institutions and companies were starting to use financial derivatives not only for generating revenue, but also aiming for controlling the risk exposure. Currently, derivatives can be divided into four categories which are forwards, options, futures, and swaps. This essay will mainly focus on options and further discussing what causes the option’s implied volatility and how to utilize implied volatility in a practical way. Causing the Implied Volatility Implied volatility plays an important role in valuing an option, and it is derived from Black-Scholes option pricing model. Several theories explained the reason. Market Trading Mechanism Basically, deep-out of money options have less probability to get valuable comparing with less deep-out of money options and at-the money options at expiration date. -
Applications of Realized Volatility, Local Volatility and Implied Volatility Surface in Accuracy Enhancement of Derivative Pricing Model
APPLICATIONS OF REALIZED VOLATILITY, LOCAL VOLATILITY AND IMPLIED VOLATILITY SURFACE IN ACCURACY ENHANCEMENT OF DERIVATIVE PRICING MODEL by Keyang Yan B. E. in Financial Engineering, South-Central University for Nationalities, 2015 and Feifan Zhang B. Comm. in Information Management, Guangdong University of Finance, 2016 B. E. in Finance, Guangdong University of Finance, 2016 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN FINANCE In the Master of Science in Finance Program of the Faculty of Business Administration © Keyang Yan, Feifan Zhang, 2017 SIMON FRASER UNIVERSITY Term Fall 2017 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Keyang Yan, Feifan Zhang Degree: Master of Science in Finance Title of Project: Applications of Realized Volatility, Local Volatility and Implied Volatility Surface in Accuracy Enhancement of Derivative Pricing Model Supervisory Committee: Associate Professor Christina Atanasova _____ Professor Andrey Pavlov ____________ Date Approved: ___________________________________________ ii Abstract In this research paper, a pricing method on derivatives, here taking European options on Dow Jones index as an example, is put forth with higher level of precision. This method is able to price options with a narrower deviation scope from intrinsic value of options. The finding of this pricing method starts with testing the features of implied volatility surface. Two of three axles in constructed three-dimensional surface are respectively dynamic strike price at a given time point and the decreasing time to maturity within the life duration of one strike-specified option. -
Copyrighted Material
k Trim Size: 6in x 9in Sinclair583516 bindex.tex V1 - 05/04/2020 9:51 P.M. Page 219 INDEX Bid-ask spreads (total cost component), 200 A Bitcoin, 172–173, 172f Acceleration, 60 Black-Scholes-Merton (BSM) Adjustment repair, 86 assumptions/equation/model, 2–4, 6, Alpha decay, 15–16 Anchoring, 19 108, 113, 115, 183, 192 Arbitrage counterparty risk, 178–179 Black-Scholes-Merton (BSM) PDE, 5, 116 Arbitrage pricing theory (APT), 63 Bonds, 49–50 Bonferroni’s correction, usage, 23 k ASPX option profits, taxation, 187 219 k Asymmetric implied volatility skew, 191 Broken wing butterflies/condors, 99–100 ATM, 104, 106t, 123, 131t, 137 Butterflies, 95–100, 96f, 98t At-the-money covered call, delta level, 135 BXMD/BXM/BXY, 133, 134t Autocorrelation, 73f, 91 Availability heuristic, 19 C Average return, calculation, 24 Calendar spread, 100–102 Calls, 55f, 129–136, 129f, 132f, 142 B call spread, 130f, 131t, 142f, 143t Back-tested rules, performer sample, 23 implied volatility, level (example), 140t Backwardation, 61, 62 put-call parity/relationship, 95, 115, 116 Badly priced butterfly, returns (summary strike call, 118f, 120f statistics), 98t Capital asset pricing model (CAPM), Badly priced condor, returns (summary development, 63 statistics), 98t Cash flows, taxation rate, 6 Bankruptcy, risk (increase),COPYRIGHTED66 Catastrophe MATERIAL theory, 20 Bayesian model, usage, 30 Chicago Board Options Exchange (CBOE), 16, Behavioral biases, inefficiency, 67–68 36, 45–46, 133, 134f Behavioral finance, 16–21 CNDR index, 45, 45f Best, defining (possibility), 121 Commissions (total cost component), 200 Beta, 67–68, 68t, 82, 196 Commodities, 47–49, 48t, 49t BFLY index, 45, 46f Condors, 95–100, 96f, 97f, 98t, 104t Biases, 18–20, 23, 30, 113 Confidence, 61–62, 71–75, 80 k k Trim Size: 6in x 9in Sinclair583516 bindex.tex V1 - 05/04/2020 9:51 P.M. -
Essays in Risk Management for Crude Oil Markets
Essays in Risk Management for Crude Oil Markets by Abdullah Al Mansour A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Applied Economics Waterloo, Ontario, Canada, 2012 c Abdullah Al Mansour 2012 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract This thesis consists of three essays on risk management in crude oil markets. In the first essay, the valuation of an oil sands project is studied using real options approach. Oil sands production consumes substantial amount of natural gas during extracting and upgrading. Natural gas prices are known to be stochastic and highly volatile which introduces a risk factor that needs to be taken into account. The essay studies the impact of this risk factor on the value of an oil sands project and its optimal operation. The essay takes into account the co-movement between crude oil and natural gas markets and, accordingly, proposes two models: one incorporates a long-run link between the two markets while the other has no such link. The valuation problem is solved using the Least Square Monte Carlo (LSMC) method proposed by Longstaff and Schwartz (2001) for valuing American options. The valuation results show that incorporating a long-run relationship between the two markets is a very crucial decision in the value of the project and in its optimal operation. -
Momentum Strategies in Commodity Futures Markets
EDHEC RISK AND ASSET MANAGEMENT RESEARCH CENTRE 393-400 promenade des Anglais 06202 Nice Cedex 3 Tel.: +33 (0)4 93 18 32 53 E-mail: [email protected] Web: www.edhec-risk.com Momentum Strategies in Commodity Futures Markets Joëlle Miffre Associate Professor of Finance, EDHEC Business School Georgios Rallis Cass Business School, Ph.D. Student ABSTRACT The article tests for the presence of short-term continuation and long-term reversal in commodity futures prices. While contrarian strategies do not work, the article identifies 13 profitable momentum strategies that generate 9.38% average return a year. A closer analysis of the constituents of the long-short portfolios reveals that the momentum strategies buy backwardated contracts and sell contangoed contracts. The correlation between the momentum returns and the returns of traditional asset classes is also found to be low, making the commodity-based relative-strength portfolios excellent candidates for inclusion in well-diversified portfolios. Keywords: Commodity futures, Momentum, Backwardation, Contango, Diversification JEL classification codes: G13, G14 Author for correspondence: Joëlle Miffre, Associate Professor of Finance, EDHEC Business School, 393 Promenade des Anglais, 06202, Nice, France, Tel: +33 (0)4 93 18 32 55, e-mail: [email protected] A version of this paper is forthcoming in the Journal of Banking and Finance. The authors would like to thank Chris Brooks and two anonymous referees for helpful comments. EDHEC is one of the top five business schools in France owing to the high quality of its academic staff (104 permanent lecturers from France and abroad) and its privileged relationship with professionals that the school has been developing since its establishment in 1906.