Introduction to Java Programming Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Performance Paradox of the JVM: Why More Hardware Means More
Expert Tip The Performance Paradox of the JVM: Why More Hardware Means More As computer hardware gets cheaper and faster, administrators managing Java based servers are frequently encountering serious problems when managing their runtime environments. JVM handles the task of garbage collection for the developer - cleaning up the space a developer has allocated for objects once an instance no longer has any references pointing to it. Some garbage collection is done quickly and invisibly. But certain sanitation tasks, which fortunately occur with minimal frequency, take significantly longer, causing the JVM to pause, and raising the ire of end users and administrators alike. Read this TheServerSide.com Expert Tip to better understand the JVM performance problem, how the JVM manages memory and how best to approach JVM Performance. Sponsored By: TheServerSide.com Expert Tip The Performance Paradox of the JVM: Why More Hardware Means More Expert Tip The Performance Paradox of the JVM: Why More Hardware Means More Table of Contents The Performance Paradox of the JVM: Why More Hardware Means More Failures Resources from Azul Systems Sponsored By: Page 2 of 8 TheServerSide.com Expert Tip The Performance Paradox of the JVM: Why More Hardware Means More The Performance Paradox of the JVM: Why More Hardware Means More Failures By Cameron McKenzie The Problem of the Unpredictable Pause As computer hardware gets cheaper and faster, administrators managing Java based servers are frequently encountering serious problems when managing their runtime environments. While our servers are getting decked out with faster and faster hardware, the Java Virtual Machines (JVMs) that are running on them can't effectively leverage the extra hardware without hitting a wall and temporarily freezing. -
Java (Programming Langua a (Programming Language)
Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform. -
The Java® Language Specification Java SE 8 Edition
The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators -
Bibliography of Concrete Abstractions: an Introduction To
Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html Bibliography [1] Harold Abelson, Gerald J. Sussman, and friends. Computer Exercises to Accom- pany Structure and Interpretation of Computer Programs. New York: McGraw- Hill, 1988. [2] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Com- puter Programs. Cambridge, MA: The MIT Press and New York: McGraw-Hill, 2nd edition, 1996. [3] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science.New York: Computer Science Press, 1992. [4] Ronald E. Anderson, Deborah G. Johnson, Donald Gotterbarn, and Judith Perville. Using the new ACM code of ethics in decision making. Communica- tions of the ACM, 36(2):98±107, February 1993. [5] Ken Arnold and James Gosling. The Java Programming Language. Reading, MA: Addison-Wesley, 2nd edition, 1998. [6] Henk Barendregt. The impact of the lambda calculus in logic and computer science. The Bulletin of Symbolic Logic, 3(2):181±215, June 1997. [7] Grady Booch. Object-oriented Analysis and Design with Applications.Menlo Park, CA: Benjamin/Cummings, 2nd edition, 1994. [8] Charles L. Bouton. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3:35±39, 1901. Series 2. [9] Mary Campione and Kathy Walrath. The Java Tutorial: Object-Oriented Pro- gramming for the Internet. Reading, MA: Addison-Wesley, 2nd edition, 1998. Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight 649 650 Bibliography [10] Canadian Broadcasting Company. Quirks and quarks. Radio program, Decem- ber 19, 1992. Included chocolate bar puzzle posed by Dr. -
Apache Harmony Project Tim Ellison Geir Magnusson Jr
The Apache Harmony Project Tim Ellison Geir Magnusson Jr. Apache Harmony Project http://harmony.apache.org TS-7820 2007 JavaOneSM Conference | Session TS-7820 | Goal of This Talk In the next 45 minutes you will... Learn about the motivations, current status, and future plans of the Apache Harmony project 2007 JavaOneSM Conference | Session TS-7820 | 2 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 3 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 4 Apache Harmony In the Beginning May 2005—founded in the Apache Incubator Primary Goals 1. Compatible, independent implementation of Java™ Platform, Standard Edition (Java SE platform) under the Apache License 2. Community-developed, modular architecture allowing sharing and independent innovation 3. Protect IP rights of ecosystem 2007 JavaOneSM Conference | Session TS-7820 | 5 Apache Harmony Early history: 2005 Broad community discussion • Technical issues • Legal and IP issues • Project governance issues Goal: Consolidation and Consensus 2007 JavaOneSM Conference | Session TS-7820 | 6 Early History Early history: 2005/2006 Initial Code Contributions • Three Virtual machines ● JCHEVM, BootVM, DRLVM • Class Libraries ● Core classes, VM interface, test cases ● Security, beans, regex, Swing, AWT ● RMI and math 2007 JavaOneSM Conference | Session TS-7820 | -
Solution Brief JVM Performance Monitoring
Solution Brief Monitoring the Health & Performance of Java Virtual Machines (JVM) Total Performance Visibility JVM: The Cornerstone of Java Enterprise Applications The Java Virtual Machine (JVM) forms the core of the Java application architecture. It plays the crucial role of interpreting and translating Java byte code into operations on the host platform. Since Java middleware (application servers such as Tomcat, JBoss EAP, JBoss AS, WildFly, WebSphere, and WebLogic) runs on the JVM, a performance issue at the JVM level has a major impact on business services supported by it. Monitoring of the JVM must be an integral part of any Java application performance monitoring strategy. IT Ops and DevOps teams use JVM Key Benefits performance metrics to troubleshoot server-side bottlenecks. Developers and architects can also benefit from JVM monitoring by uncovering code- Proactively detect and resolve level issues. Java application problems to ensure high service uptime and business continuity Key JVM Performance Questions to Answer Troubleshoot faster: Real-time • Is there any runaway thread hogging the CPU? Which line of code is it alerts pinpoint the exact line executing, in which class, and which method? of code that is impacting Java • Is the JVM heap and non-heap memory sized correctly? applications • Are there any out-of-memory-exceptions or memory leaks? In-depth analytics enable architects to optimize Java • When does garbage collection happen, and how much memory is applications to scale and support freed up each time? additional users • Are there any thread deadlocks happening that are causing Single pane of glass to monitor application processing to be hung? everything Java—from application server, JVM and database, all the way down to server and storage End-to-End JVM Monitoring with eG Enterprise infrastructure eG Enterprise is a comprehensive performance monitoring, diagnosis and reporting solution for Java application infrastructures. -
A Study of Cache Performance in Java Virtual Machines, the University of Texas at Austin, 2002
Cache Performance in Java Virtual Machines: A Study of Constituent Phases Anand S. Rajan, Juan Rubio and Lizy K. John Laboratory for Computer Architecture Department of Electrical & Computer Engineering The University of Texas at Austin (arajan, jrubio,[email protected]) Abstract This paper studies the cache performance of Java programs in the interpreted and just-in- time (JIT) modes by analyzing memory reference traces of the SPECjvm98 applications with the Latte JVM. Specifically, we study the cache performance of the different components of the JVM (class loader, the execution engine and the garbage collector). Poor data cache performance in JITs is caused by code installation, and the data write miss rate can be as high as 70% in the execution engine. In addition, this code installation also causes deterioration in performance of the instruction cache during execution of translated code. We also believe that there is considerable interference between data accesses of the garbage collector and that of the compiler-translator execution engine of the JIT mode. We observe that the miss percentages in the garbage collection phase are of the order of 60% for the JIT mode; we believe that interference between data accesses of the garbage collector and the JIT execution engine lead to further deterioration of the data cache performance wherever the contribution of the garbage collector is significant. We observe that an increase in cache sizes does not substantially improve performance in the case of data cache writes, which is identified to be the principal performance bottleneck in JITs. 1 1. Introduction Java[1] is a widely used programming language due to the machine independent nature of bytecodes. -
Java and C I CSE 351 Autumn 2016
L26: JVM CSE351, Spring 2018 Java Virtual Machine CSE 351 Spring 2018 Model of a Computer “Showing the Weather” Pencil and Crayon on Paper Matai Feldacker-Grossman, Age 4 May 22, 2018 L26: JVM CSE351, Spring 2018 Roadmap C: Java: Memory & data Integers & floats car *c = malloc(sizeof(car)); Car c = new Car(); x86 assembly c->miles = 100; c.setMiles(100); c->gals = 17; c.setGals(17); Procedures & stacks float mpg = get_mpg(c); float mpg = Executables free(c); c.getMPG(); Arrays & structs Memory & caches Assembly get_mpg: Processes language: pushq %rbp Virtual memory movq %rsp, %rbp ... Memory allocation popq %rbp Java vs. C ret OS: Machine 0111010000011000 code: 100011010000010000000010 1000100111000010 110000011111101000011111 Computer system: 2 L26: JVM CSE351, Spring 2018 Implementing Programming Languages Many choices in how to implement programming models We’ve talked about compilation, can also interpret Interpreting languages has a long history . Lisp, an early programming language, was interpreted Interpreters are still in common use: . Python, Javascript, Ruby, Matlab, PHP, Perl, … Interpreter Your source code implementation Your source code Binary executable Interpreter binary Hardware Hardware 3 L26: JVM CSE351, Spring 2018 An Interpreter is a Program Execute (something close to) the source code directly Simpler/no compiler – less translation More transparent to debug – less translation Easier to run on different architectures – runs in a simulated environment that exists only inside the interpreter process . Just port the interpreter (program), not the program-intepreted Slower and harder to optimize 4 L26: JVM CSE351, Spring 2018 Interpreter vs. Compiler An aspect of a language implementation . A language can have multiple implementations . Some might be compilers and other interpreters “Compiled languages” vs. -
Java Virtual Machine Is a Virtual Machine, an Abstract Computer That Has Its Own ISA, Own Memory, Stack, Heap, Etc
Java Virtual Machine i Java Virtual Machine About the Tutorial Java Virtual Machine is a virtual machine, an abstract computer that has its own ISA, own memory, stack, heap, etc. It is an engine that manages system memory and drives Java code or applications in run-time environment. It runs on the host Operating system and places its demands for resources to it. Audience This tutorial is designed for software professionals who want to run their Java code and other applications on any operating system or device, and to optimize and manage program memory. Prerequisites Before you start to learn this tutorial, we assume that you have a basic understanding of Java Programming. If you are new to these concepts, we suggest you to go through the Java programming tutorial first to get a hold on the topics mentioned in this tutorial. Copyright & Disclaimer Copyright 2019 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] ii Java Virtual Machine Table of Contents About the Tutorial .......................................................................................................................................... -
Java Virtual Machine Guide
Java Platform, Standard Edition Java Virtual Machine Guide Release 14 F23572-02 May 2021 Java Platform, Standard Edition Java Virtual Machine Guide, Release 14 F23572-02 Copyright © 1993, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition -
UV Mapping Textures to Shapes
Exploring JavaFX 8 Stephen Chin (@steveonjava) Java Technology Ambassador JavaOne Content Chair ♯jdt2014_A3 1 JavaFX Platform Immersive Application Experience • Cross-platform Animation, Video, Charting • Integrate Java, JavaScript, and HTML5 in the same application • New graphics stack takes advantage of hardware acceleration for 2D and 3D applications • Bidirectional integration with Swing applications using JFXPanel and SwingNode 2 How to Get JavaFX . Step 1: Download Java 8 3 How to Develop JavaFX Use Your Favorite IDE 4 Architecture of JavaFX 8 JavaFX Public API Quantum Toolkit Glass Media Web Prism WinTk Engine Engine Java2D Open GL D3D Java Virtual Machine 5 Package Your Application Applets, Web Start, and Native Packaging Good Better Best 6 New Features in JavaFX 8 7 Controls DatePicker . Allows selection of dates and ranges . Can use custom formats and calendars . Supports Cascading Style Sheets 9 TreeTableView . Combines a TreeView and a TableView . Optional menu for hiding and showing columns . Root can be hidden . Supports multiple selection . Supports CSS 10 New Modena UI Theme 11 12 Build Applications Visually JavaFX Scene Builder 2 13 14 Displaying HTML in JavaFX public class WebViewTest extends Application { public static void main(String[] args) { launch(WebViewTest.class, args); } @Override public void start(Stage stage) { WebView webView = new WebView(); webView.getEngine().load("http://google.com"); Scene scene = new Scene(webView); stage.setScene(scene); stage.setTitle("Web Test"); stage.show(); }} 15 Displaying HTML in JavaFX 16 Calling Javascript from JavaFX String script = "alert('We have got a message, Houston!');”; eng.executeScript(script); 17 JavaScript to Java Type Conversion JavaScript Java null null undefined “undefined” number java.lang.Number (Integer or Double) string java.lang.String boolean java.lang.Boolean object netscape.javascript.JSObject 18 Responding to Browser Events . -
Tutorial I: STM in Managed Runtimes
Schedule of IISWC Tutorials and Workshops Morning Session, September 29 (Saturday) Tutorial I: STM in Managed Runtimes The influential article "The Landscape of Parallel Computing Research: A View From Berkeley” suggests the only path toward significantly faster CPUs is chip multiprocessing. Programmers will simply have to adapt by writing concurrent code, regardless of any consequential problems with threads. An important trend in application development is that new applications are being developed based on a Managed Runtime Environment (MRTE) such as Java or .NET. These languages provide features such as garbage collection and dynamic class loading that require a managed runtime system (i.e. the Java Virtual Machine (JVM) for Java and .NET for C#). Software transactional memory (STM) promises to alleviate the difficulty of programming using conventional mechanisms such as locks in a threaded environment. In this tutorial we will describe the various mechanisms that are available for software developers to implement transactional applications in Managed Runtimes. We will then use a case study to delve into the workload characteristics when run under a Software Transactional memory system. The case study will be based on workloads and a runtime developed using the Apache Harmony Environment and the High Performance McRT (Multicore Runtime) STM. Apache Harmony (http://harmony.apache.org) is the open source Java SE implementation done under Apache License v2. McRT STM is a high performance runtime environment. The workloads we will characterize and demonstrate include simple micros as well as large multithreaded Java applications. Speakers: Suresh Srinivas is a Principal Engineer in the Software Solutions Group within Intel Corporation where he is currently focused on new technology development using open source technologies.