Wonders of the Deep Sky

Total Page:16

File Type:pdf, Size:1020Kb

Wonders of the Deep Sky A Digital Supplement to Astronomy Insights Astronomy Magazine © 2020 Kalmbach Media WONDERS OF THE DEEP SKY March 2020 • Astronomy.com The Draco Trio NGC 147 NGC 205 BERNHARD HUBL ADAMBLOCK/NOAO/AURA/NSF OF ALL THE WONDERS OF THE DEEP SKY, NGC 205, however, is nearly three times perhaps those most often overlooked by amateur astronomers are larger (19.5' by 12.5'). M32 lies 0.4° due south of the heart of elliptical galaxies. And while it’s true you won’t see spiral arms, M31. It also glows at magnitude 8.1 and star-forming regions, or dust lanes, being patient and picking out spans 11' by 7.3'. I’ll forgive you if you the details that are there definitely will make you a better observer. choose not to spend too much time observing this pair. After all, M31 is hard To help you with that goal, I’ve find magnitude 9.2 NGC 185, which is a to beat. selected 22 of these seldom-observed dwarf spheroidal galaxy. It touts a higher Now we come to a deep-sky object objects visible during fall and spring surface brightness than its companion, that’s a perfect target for a clear evenings from northern latitudes. The although it’s a bit larger, measuring 14' by Halloween night: Mirach’s Ghost (NGC winter and summer skies contain few 12'. A 12-inch telescope reveals an oval 404) in Andromeda. Amateur astrono- ellipticals because of the presence of the halo with a bright core that spans two- mers call it that because it lies only 6.8' Milky Way, which effectively blocks our thirds of the galaxy’s diameter. from 2nd-magnitude Mirach (Beta [β] view of any that lie behind it. I’ve listed Our next targets are easy to find. Just Andromedae). As you might imagine, a them in order of their right ascensions, locate the Andromeda Galaxy, and look magnitude 10.3 galaxy next to a star that so those appearing later in the story also 0.6° northwest of its core. Magnitude 8.1 bright is pretty difficult to see. This rise later at night. Note that the positions NGC 205 shines as brightly as M31’s S0-type galaxy — one that has the disk of any of these objects in Virgo are plot- other easy-to-see companion, M32. shape of a spiral galaxy but no spiral The sky’s ted on the chart on pages 54-55. In the fall The first object on our list, NGC 147 in Cassiopeia, is a satellite galaxy of the Andromeda Galaxy (M31), but not one of the two bright ones nearest it. To find NGC 147, move 1.9° west from magni- BEST tude 4.5 Omicron (ο) Cassiopeiae. Look carefully for this challenging object. At magnitude 9.5, it seems bright for a galaxy, but that light is spread over an area 15' by 9.4'. NGC 147 is a dwarf elliptical without much apparent struc- ELLIPTICAL ture. When you do see it, you’ll notice an Discover a world of massive star cities oval halo a bit brighter than the back- galaxies ground glow. The galaxy is ever-so- lurking in the skies of fall and spring. slightly brighter toward the center, so that isn’t a foreground star. NGC 404 BY MICHAEL E. BAKICH DIETMAR HAGER Not quite 1° east of NGC 147, you’ll ANTHONY AYIOMAMITIS 2 ASTRONOMY INSIGHTS • MARCH 2020 The Draco Trio NGC 147 NGC 205 BERNHARD HUBL ADAMBLOCK/NOAO/AURA/NSF OF ALL THE WONDERS OF THE DEEP SKY, NGC 205, however, is nearly three times perhaps those most often overlooked by amateur astronomers are larger (19.5' by 12.5'). M32 lies 0.4° due south of the heart of elliptical galaxies. And while it’s true you won’t see spiral arms, M31. It also glows at magnitude 8.1 and star-forming regions, or dust lanes, being patient and picking out spans 11' by 7.3'. I’ll forgive you if you the details that are there definitely will make you a better observer. choose not to spend too much time observing this pair. After all, M31 is hard To help you with that goal, I’ve find magnitude 9.2 NGC 185, which is a to beat. selected 22 of these seldom-observed dwarf spheroidal galaxy. It touts a higher Now we come to a deep-sky object objects visible during fall and spring surface brightness than its companion, that’s a perfect target for a clear evenings from northern latitudes. The although it’s a bit larger, measuring 14' by Halloween night: Mirach’s Ghost (NGC winter and summer skies contain few 12'. A 12-inch telescope reveals an oval 404) in Andromeda. Amateur astrono- ellipticals because of the presence of the halo with a bright core that spans two- mers call it that because it lies only 6.8' Milky Way, which effectively blocks our thirds of the galaxy’s diameter. from 2nd-magnitude Mirach (Beta [β] view of any that lie behind it. I’ve listed Our next targets are easy to find. Just Andromedae). As you might imagine, a them in order of their right ascensions, locate the Andromeda Galaxy, and look magnitude 10.3 galaxy next to a star that so those appearing later in the story also 0.6° northwest of its core. Magnitude 8.1 bright is pretty difficult to see. This rise later at night. Note that the positions NGC 205 shines as brightly as M31’s S0-type galaxy — one that has the disk of any of these objects in Virgo are plot- other easy-to-see companion, M32. shape of a spiral galaxy but no spiral The sky’s ted on the chart on pages 54-55. In the fall The first object on our list, NGC 147 in Cassiopeia, is a satellite galaxy of the Andromeda Galaxy (M31), but not one of the two bright ones nearest it. To find NGC 147, move 1.9° west from magni- BEST tude 4.5 Omicron (ο) Cassiopeiae. Look carefully for this challenging object. At magnitude 9.5, it seems bright for a galaxy, but that light is spread over an area 15' by 9.4'. NGC 147 is a dwarf elliptical without much apparent struc- ELLIPTICAL ture. When you do see it, you’ll notice an Discover a world of massive star cities oval halo a bit brighter than the back- galaxies ground glow. The galaxy is ever-so- lurking in the skies of fall and spring. slightly brighter toward the center, so that isn’t a foreground star. NGC 404 BY MICHAEL E. BAKICH DIETMAR HAGER Not quite 1° east of NGC 147, you’ll ANTHONY AYIOMAMITIS WWW.ASTRONOMY.COM 3 region surrounded by a halo with an (lens-shaped) galaxy, rather than a strict edge that’s difficult to define. Although elliptical. Cranking up the power will M105 appears circular at low magnifi- reveal M86’s starlike core. cations, crank up the power past 250x Staying in Virgo, we can find another and you’ll see that it’s a fat oval about 4' of Messier’s ellipticals, M49, which glows across, orienting northeast to southwest. at magnitude 8.4 and measures 8.1' by If you’ve located M105, you probably 7.1'. Its oval shape is easy to see. The core have seen magnitude 9.9 NGC 3384, occupies the central two-thirds of this For the last 60 years, Celestron has made which sits a mere 7' to its east-northeast. object, and a fainter outer region envel- astronomy easier and more accessible. Through any size telescope, you’ll see ops it. Because this galaxy is relatively Now, we’ve revolutionized the hobby again with NGC 3384 as an oval twice as long as it bright, you can crank up the power and a groundbreaking manual telescope that uses is wide (5.4' by 2.7') oriented northeast- reveal this outer halo. patent-pending technology and your smartphone southwest. The central region is large Our next target, also located in Virgo, to calculate its position. A Lost in Space Algorithm and bright, and the outer halo appears is one of the best known ellipticals in the (LISA) like the ones satellites use in orbit helps the faint even through large scopes. sky: M87. To astronomers, M87 is a StarSense Explorer app match star patterns overhead to For our next elliptical, magnitude 9.7 treasure-trove of science. It’s a colossal its internal database—in real time as you move the telescope. M60 NGC 4125, head north from Leo to object with a mass in excess of 3 trillion ADAM BLOCK/MOUNT LEMMON SKYCENTER/UNIVERSITY OF ARIZONA No motors. No alignment. Just StarSense Explorer, your Draco. NGC 4125 forms an equilateral Suns and a diameter that may reach half smartphone, and the night sky. triangle (extending northward) with the a million light-years. M87 also possesses hazy nature and oblong shape (7.2' by top stars in the bowl of the Big Dipper, a huge array of globular clusters, perhaps 4.7'). Step up to an 11-inch scope, and Follow the onscreen arrows and simple instructions. Within minutes, Dubhe and Megrez (Alpha [α] and Delta numbering in the tens of thousands. you’ll see much more detail. Regions out- you’ll perfectly center target after target with pinpoint accuracy. When the [δ] Ursae Majoris, respectively). The gal- Visually, however, you could do better. side this galaxy’s core show a threefold bullseye turns green, it’s ready to view in one of two included eyepieces.
Recommended publications
  • Unusual Orbits in the Andromeda Galaxy Post-16
    Unusual orbits in the Andromeda galaxy Post-16 Topics covered: spectra, Doppler effect, Newton’s law of gravitation, galaxy rotation curves, arc lengths, cosmological units, dark matter Teacher’s Notes In this activity students will use real scientific data to plot the rotation curve of M31 (Andromeda), our neighbouring spiral galaxy. They will use Kepler’s third law to predict the motion of stars around the centre of M31. They will then measure the wavelengths of hydrogen emission spectra taken at a range of radii. The Doppler equation will be used to determine whether these spectra come from the approaching or receding limb of the galaxy and the velocity of rotation at that point. They will plot a velocity vs radius graph and compare it with their predicted result. A flat rotation curve indicates the presence of dark matter within Andromeda. Equipment: calculator, ruler, graph paper (if needed) Questions to ask the class before the activity: What is the Universe composed of? Answer: energy, luminous matter, dark matter, dark energy. What is a spectrum and how so we get spectral lines? Answer: a ‘fingerprint’ of an object made of light. The spectrum of visible light is composed of the colours of the rainbow. Absorption lines arise from electrons absorbing photons of light and jumping an energy level or levels; emission lines occur when electrons fall down to a lower energy level and emit a photon in the process. What can a spectrum tell us? Answer: the composition of an object such as a star, its temperature, its pressure, the abundance of elements in the star, its motion (velocity).
    [Show full text]
  • Winter Messier List Observing Club
    Winter Messier List Observing Club Raleigh Astronomy Club Version 1.1 24 November 2012 Introduction Welcome to the Winter Messier List Observing Club. The objects on this list represent many of the most prominent deep sky objects (Globular Clusters, Open Clusters, Nebula, Galaxies) visible from mid-northern latitudes. The Messier list of objects was compiled in the 1700’s by the French comet hunter Charles Messier and his associates as a list of objects to not confuse with their primary goal of discovering new comets. What they really produced, was a list of many of the best deep sky objects for astronomers to enjoy. Observing the Messier List is an excellent way for beginning astronomers to learn the night sky. This club is intended for those who wish to tour the Messier objects while adding more structure to their observing activities. Club members who wish to work their way through the Messier objects, a season at a time, will find this list to be a helpful guide. Two certificate levels are offered, Silver and Gold. The Silver certificate is earned by viewing and logging all objects on the list while using Go-To or Digital Setting Circles to help locate the Messier objects. The Gold certificate is earned by those who view and log all the objects while only using charts and star hopping to locate them. Anyone who intends to use their RAC list results as a stepping-stone to the Astronomlcal League Messier certificate, MUST work to the Gold certificate rules. Rules To earn the Winter Messier List certificate, you must: 1.
    [Show full text]
  • 198 7Apj. . .312L. .11J the Astrophysical Journal, 312:L11-L15
    .11J The Astrophysical Journal, 312:L11-L15,1987 January 1 .312L. © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 7ApJ. 198 INTERSTELLAR DUST IN SHAPLEY-AMES ELLIPTICAL GALAXIES M. Jura and D. W. Kim Department of Astronomy, University of California, Los Angeles AND G. R. Knapp and P. Guhathakurta Princeton University Observatory Received 1986 August 11; accepted 1986 September 30 ABSTRACT We have co-added the IRAS survey data at the positions of the brightest elliptical galaxies in the Revised Shapley-Ames Catalog to increase the sensitivity over that of the IRAS Point Source Catalog. More than half of 7 8 the galaxies (with Bj< \\ mag) are detected at 100 /xm with flux levels indicating, typically, 10 or 10 M0 of cold interstellar matter. The presence of cold gas in ellipticals thus appears to be the rule rather than the exception. Subject headings: galaxies: general — infrared: sources I. INTRODUCTION infrared emission from the elliptical galaxy in the line of sight. The traditional view of early-type galaxies is that they are Our criteria for a real detection are as follows: essentially free of interstellar matter. However, with advances 1. The optical position of the galaxy and the position of the in instrumental sensitivity, it has become possible to observe IRAS source agree to better than V. (The agreement is usually 21 cm emission (Knapp, Turner, and Cunniffe 1985; Wardle much better than T.) and Knapp 1986), optical dust patches (Sadler and Gerhard 2. The flux is at least 3 times the r.m.s. noise.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Arxiv:0807.0009V2
    Draft version October 29, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE RESOLVED PROPERTIES OF EXTRAGALACTIC GIANT MOLECULAR CLOUDS Alberto D. Bolatto1, Adam K. Leroy2, Erik Rosolowsky3,4, Fabian Walter2, & Leo Blitz5 Draft version October 29, 2018 ABSTRACT We use high spatial resolution observations of CO to systematically measure the resolved size-line width, luminosity-line width, luminosity-size, and the mass-luminosity relations of Giant Molecular Clouds (GMCs) in a variety of extragalactic systems. Although the data are heterogeneous we analyze them in a consistent manner to remove the biases introduced by limited sensitivity and resolution, thus obtaining reliable sizes, velocity dispersions, and luminosities. We compare the results obtained in dwarf galaxies with those from the Local Group spiral galaxies. We find that extragalactic GMC properties measured across a wide range of environments are very much compatible with those in the Galaxy. The property that shows the largest variability is their resolved brightness temperature, although even that is similar to the average Galactic value in most sources. We use these results to investigate metallicity trends in the cloud average column density and virial CO-to-H2 factor. We find that these measurements do not accord with simple predictions from photoionization-regulated star formation theory, although this could be due to the fact that we do not sample small enough spatial scales or the full gravitational potential of the molecular cloud. We also find that the virial CO-to-H2 conversion factor in CO-bright GMCs is very similar to Galactic, and that the excursions do not show a measurable metallicity trend.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • April Constellations of the Month
    April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis.
    [Show full text]
  • Long-Period Variables in NGC 147 and NGC 185⋆
    A&A 532, A78 (2011) Astronomy DOI: 10.1051/0004-6361/201116951 & c ESO 2011 Astrophysics Long-period variables in NGC 147 and NGC 185 D. Lorenz1, T. Lebzelter1,W.Nowotny1, J. Telting2, F. Kerschbaum1,H.Olofsson3,4, and H. E. Schwarz 1 University of Vienna, Department of Astronomy, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain 3 Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden 4 Onsala Space Observatory, 43992 Onsala, Sweden Received 24 March 2011 / Accepted 25 May 2011 ABSTRACT Context. Previous studies on the stellar content of the two nearby dwarf galaxies NGC 147 and NGC 185 reveal a rich population of late-type giants in both systems, including a large number of carbon-rich objects. These stars are known to show pronounced photo- metric variability, which can be used for a more detailed characterisation of these highly evolved stars. Owing to their well-studied parameters, these Local Group members are ideal candidates for comparative studies. Aims. Through photometric monitoring, we attempt to provide a catalogue of long-period variables (LPVs), including Mira variables, semi-regular variables, and even irregular variables in NGC 147 and NGC 185. We investigate the light variations and compare the characteristics of these two LPV populations with the results found for other galaxies, such as the LMC. Methods. We carried out time-series photometry in the i-band of the two target galaxies with the Nordic Optical Telescope (NOT), covering a time span of ≈2.5 years.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]