The Statistical Interpretation of Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

The Statistical Interpretation of Quantum Mechanics REVIEWS OF MODERN PHYSICS VOLUME 42, NUMBER 4 O C T 0 B E R 19 7 0 The Statistical Interpretation of Quantum M echanics L. E. BALLENTINE Department of Physics, Simon Fraser University, Burnaby, B.C., Canada The Statistical Interpretation of quantum theory is formulated for the purpose of providing a sound interpretation using a minimum of assumptions. Several arguments are advanced in favor of considering the quantum state description to apply only to an ensemble of similarity prepared systems, rather than supposing, as is often done, that it exhaustively represents an individual physical system. Most of the problems associated with the quantum theory of measurement are artifacts of the attempt to maintain the latter interpretation. The introduction of hidden variables to determine the outcome of individual events is fully compatible with the statistical predictions of quantum theory. However, a theorem due to Bell seems to require that any such hidden-variable theory which reproduces all of quantum mechanics exactly (i.e., not merely in some limiting case) must possess a rather pathological character with respect to correlated, but spacially separated, systems. CONTENTS pretive attempts is promised for a later volume. 1. Introduction.................................................................................. 358 • • • pBut] even the cautious word ‘attempts’ may be 1.0 Preface and Outline............................................................. 358 too positive a description for what are only pro­ 1.1 Mathematical Formalism of Quantum Theory............ 359 grams • • • that are not yet clear even in outline.” 1.2 Correspondence Rules......................................................... 360 1.3 Statistical Interpretation................................ 360 If, as appears to be the case, the latter remarks by 2. The Theorem of Einstein, Podolsky, and Rosen...................362 2.1 A Thought Experiment and the Theorem..................... 362 Peierls refer to the models known as hidden-variable 2.2 Discussion of the EPR Theorem...................................... 364 theories (see Sec. 6), we agree that these should be 3. The Uncertainty Principle......................................................... 364 3.1 Derivation.................................................................................364 treated as new theories, and that they are not new 3.2 Relation to Experiments.................................................... 365 interpretations of quantum mechanics “any more than 3.3 Angular and Energy-Time Relations.............................. 367 quantum mechanics is a new interpretation of classical 4. The Theory of Measurement.................................................... 367 4.1 Analysis of the Measurement Process............................ 368 physics.” However we shall show, contrary to the view 4.2 The Difficulties of the “Orthodox” Interpretation.... 368 expressed by Peierls, that the Copenhagen interpreta­ 4.3 Other Approaches to the Problem of Measurement. 370 tion contains assumptions which are not “essential 4.4 Conclusion—Theory of Measurement............................ 371 5. Joint Probability Distributions................................................ 372 parts of the structure of quantum mechanics,” and that 6. Hidden Variables......................................................................... 374 one such assumption is at the root of most of the 6.1 Von Neumann’s Theorem.................................................. 374 6.2 Bell’s Rebuttal...................................................................... 376 controversy surrounding “the interpretation of quantum 6.3 Bell’s Theorem.......................................... 377 mechanics.” It is the assumption that the quantum 6.4 Suggested Experiments....................................................... 378 state description is the most complete possible descrip­ 7. Concluding Remarks................................................................... 378 References..................................................................................... 380 tion of an individual physical system. An interpretation which is more nearly minimal in the INTRODUCTION sense of including all verifiable predictions of quantum theory, but without the contestable features of the 1.0 Preface and Outline Copenhagen interpretation, we shall call the Statistical Interpretation. The distinction between these inter­ This article is not a historical review of how the pretations (which share many features in common) quantum theory and its statistical interpretation came will be made in the following sections. Suffice it to say, to be. That task has been admirably carried out by for now, that if we identify the Copenhagen Inter­ Max Jammer (1966) in his book The Conceptual pretation with the opinions of Bohr, then the Statistical Development of Quantum Mechanics, and also by van Interpretation is rather like those of Einstein. Contrary der Waerden (1967). Our point of departure can to what seems to be a widespread misunderstanding, conveniently be introduced by considering the follow­ Einstein’s interpretation corresponds very closely with ing statement made by Peierls (1967) in a review of the one which is almost universally used by physicists Jammer’s book: in practice; the additional assumptions of the Copen­ “Chapter 7 • • • is headed ‘The Copenhagen Inter­ hagen interpretation playing no real role in the applica­ pretation.’ • • • the phrase suggests that this is only one tions of quantum theory. of several conceivable interpretations of the same The outline of this paper is as follows. First we give a theory, whereas most physicists are today convinced brief summary of the mathematical formalism of that the uncertainty relations and the ideas of comple­ quantum theory in order to distinguish the formalism, mentarity are essential parts of the structure of quan­ which we accept, from the physical interpretation, tum mechanics • • •. A discussion of alternative inter­ which we shall examine critically. We then consider L. E. B allentine Statistical Interpretation of Quantum Mechanics 359 different interpretations, and expound the Statistical Here the numbers rn are the eigenvalues of R, and the Interpretation in detail. parameter a labels the degenerate eigenvectors which The Secs. 2, 3, and 4 could be prefaced by Appendix belong to the same eigenvalue of R. The sums become *xi of Popper (1959) on the proper use of imaginary integrals in the case of continuous spectra. Equation experiments, in which he points out that Gedanken (1.1) is equivalent to the statement that an observable experiments can be used to criticize a theory but not to must possess a complete orthogonal set of eigenvectors. justify or prove a theory. Our discussions of the Gedanken experiment of Einstein, Podolsky, and Rosen, of the F2 A state is represented by a state operator (also uncertainty principle, and of the measurement process called a statistical operator or density matrix) which are undertaken to criticize the assumption that a state must be self-adjoint, nonnegative definite, and of unit vector provides a complete description of an individual trace. This implies that any state operator may be system. Although arguments of this type can refute the diagonalized in terms of its eigenvalues and eigenvectors, hypothesis being criticized, they cannot, of course, p — ^L,Pn | 4*11) (<t>n I y (1.3a) “prove” the Statistical Interpretation but can only n illustrate its advantages. with Sections 5 and 6 deal with two concepts (joint 0<P„<1 (1.3b) probability distributions for position and momentum, and II and hidden variables) which have often been thought H-* 3s 3s (1.3c) to be incompatible with quantum theory. That belief, however, was based in an essential way upon the above This state operator formalism ’ Ms is reviewed by Fano hypothesis which we criticize and reject. It turns out (1957). that, within certain limits, the formalism of quantum theory can be extended (not modified) to include these F3 A pure state can be defined by the condition p2=p. concepts within the Statistical Interpretation. It follows that for a pure state there is exactly one Finally we summarize our conclusions. nonzero eigenvalue of p, say, p»=l, pn' = 0 for n ^n '. (1.4) 1.1 Mathematical Formalism of Quantum Theory In this case we have Quantum theory, and indeed any theory, can be divided [[see Prugovecki (1967), or Tisza (1963)] P^ i I? (1.5) into: and so a pure state may be represented by a vector in (a) A mathematical formalism consisting of a set of the Hilbert space. A general state which is not pure is primitive concepts, relations between these concepts commonly called a mixed state. (either postulated or obtainable by given rules of F4 The average value of an observable R in the state deduction), and a dynamical law. p is given by (b) Correspondence rules which relate the theoretical (R )= Tr(ptf), (1.6) concepts of (a) to the world of experience. where Tr means the trace of the operator in parentheses. This division is not absolute—'dearly one must have For a pure state represented by the normalized vector a formalism in order to make correspondence rules, but \xp), (1.6) reduces to (R)= (p | R | p). By introducing unless one has at least some partial idea of corre­ the characteristic function (e^'R)j we can obtain the spondence rules, one would not know what one was entire statistical distribution of the observable R in the talking about while constructing the formalism—
Recommended publications
  • Einstein's Interpretation of Quantum Mechanics L
    Einstein's Interpretation of Quantum Mechanics L. E. Ballentine Citation: American Journal of Physics 40, 1763(1972); doi: 10.1119/1.1987060 View online: https://doi.org/10.1119/1.1987060 View Table of Contents: http://aapt.scitation.org/toc/ajp/40/12 Published by the American Association of Physics Teachers Articles you may be interested in Einstein’s opposition to the quantum theory American Journal of Physics 58, 673 (1990); 10.1119/1.16399 Probability theory in quantum mechanics American Journal of Physics 54, 883 (1986); 10.1119/1.14783 The Shaky Game: Einstein, Realism and the Quantum Theory American Journal of Physics 56, 571 (1988); 10.1119/1.15540 QUANTUM MEASUREMENTS American Journal of Physics 85, 5 (2017); 10.1119/1.4967925 Einstein’s boxes American Journal of Physics 73, 164 (2005); 10.1119/1.1811620 Development of concepts in the history of quantum theory American Journal of Physics 43, 389 (1975); 10.1119/1.9833 an Association of Physics Teachers Explore the AAPT Career Center - access hundreds of physics education and other STEM teaching jobs at two-year and four-year colleges and universities. http://jobs.aapt.org December 1972 Einstein’s Interpretation of Quantum Mechanics L. E. BALLENTINE his own interpretation of the theory are less well Physics Department known. Indeed, Heisenberg’s essay “The Develop­ Simon Fraser University ment of the Interpretation of the Quantum Burnaby, B.C., Canada Theory,”2 in which he replied in detail to many (Received 23 May 1972; revised 27 June 1972) critics of the Copenhagen interpretation, takes no account of Einstein’s specific arguments.
    [Show full text]
  • Quantum Trajectory Distribution for Weak Measurement of A
    Quantum Trajectory Distribution for Weak Measurement of a Superconducting Qubit: Experiment meets Theory Parveen Kumar,1, ∗ Suman Kundu,2, † Madhavi Chand,2, ‡ R. Vijayaraghavan,2, § and Apoorva Patel1, ¶ 1Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India 2Department of Condensed Matter Physics and Materials Science, Tata Institue of Fundamental Research, Mumbai 400005, India (Dated: April 11, 2018) Quantum measurements are described as instantaneous projections in textbooks. They can be stretched out in time using weak measurements, whereby one can observe the evolution of a quantum state as it heads towards one of the eigenstates of the measured operator. This evolution can be understood as a continuous nonlinear stochastic process, generating an ensemble of quantum trajectories, consisting of noisy fluctuations on top of geodesics that attract the quantum state towards the measured operator eigenstates. The rate of evolution is specific to each system-apparatus pair, and the Born rule constraint requires the magnitudes of the noise and the attraction to be precisely related. We experimentally observe the entire quantum trajectory distribution for weak measurements of a superconducting qubit in circuit QED architecture, quantify it, and demonstrate that it agrees very well with the predictions of a single-parameter white-noise stochastic process. This characterisation of quantum trajectories is a powerful clue to unraveling the dynamics of quantum measurement, beyond the conventional axiomatic quantum
    [Show full text]
  • Tsekov, R., Heifetz, E., & Cohen, E
    Tsekov, R., Heifetz, E., & Cohen, E. (2017). Derivation of the local- mean stochastic quantum force. Fluctuation and Noise Letters, 16(3), [1750028]. https://doi.org/10.1142/S0219477517500286 Peer reviewed version Link to published version (if available): 10.1142/S0219477517500286 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via World Scientific at http://www.worldscientific.com/doi/abs/10.1142/S0219477517500286. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Derivation of the Local-Mean Stochastic Quantum Force Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria Eyal Heifetz Department of Geosciences, Tel-Aviv University, Tel-Aviv, Israel Eliahu Cohen H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K (Dated: May 16, 2017) Abstract We regard the non-relativistic Schr¨odinger equation as an ensemble mean representation of the stochastic motion of a single particle in a vacuum, subject to an undefined stochastic quantum force. The local mean of the quantum force is found to be proportional to the third spatial derivative of the probability density function, while its associated pressure is proportional to the second spatial derivative. The latter arises from the single particle diluted gas pressure, and this observation allows to interpret the quantum Bohm potential as the energy required to put a particle in a bath of fluctuating vacuum at constant entropy and volume.
    [Show full text]
  • Understanding the Born Rule in Weak Measurements
    Understanding the Born Rule in Weak Measurements Apoorva Patel Centre for High Energy Physics, Indian Institute of Science, Bangalore 31 July 2017, Open Quantum Systems 2017, ICTS-TIFR N. Gisin, Phys. Rev. Lett. 52 (1984) 1657 A. Patel and P. Kumar, Phys Rev. A (to appear), arXiv:1509.08253 S. Kundu, T. Roy, R. Vijayaraghavan, P. Kumar and A. Patel (in progress) 31 July 2017, Open Quantum Systems 2017, A. Patel (CHEP, IISc) Weak Measurements and Born Rule / 29 Abstract Projective measurement is used as a fundamental axiom in quantum mechanics, even though it is discontinuous and cannot predict which measured operator eigenstate will be observed in which experimental run. The probabilistic Born rule gives it an ensemble interpretation, predicting proportions of various outcomes over many experimental runs. Understanding gradual weak measurements requires replacing this scenario with a dynamical evolution equation for the collapse of the quantum state in individual experimental runs. We revisit the framework to model quantum measurement as a continuous nonlinear stochastic process. It combines attraction towards the measured operator eigenstates with white noise, and for a specific ratio of the two reproduces the Born rule. This fluctuation-dissipation relation implies that the quantum state collapse involves the system-apparatus interaction only, and the Born rule is a consequence of the noise contributed by the apparatus. The ensemble of the quantum trajectories is predicted by the stochastic process in terms of a single evolution parameter, and matches well with the weak measurement results for superconducting transmon qubits. 31 July 2017, Open Quantum Systems 2017, A. Patel (CHEP, IISc) Weak Measurements and Born Rule / 29 Axioms of Quantum Dynamics (1) Unitary evolution (Schr¨odinger): d d i dt |ψi = H|ψi , i dt ρ =[H,ρ] .
    [Show full text]
  • A Simple Approach to Measurement in Quantum Mechanics
    A Simple Approach To Measurement in Quantum Mechanics Anthony Rizzi Institute for Advanced Physics, [email protected] Abstract: A simple way, accessible to undergraduates, is given to understand measurements in quantum mechanics. The ensemble interpretation of quantum mechanics is natural and provides this simple access to the measurement problem. This paper explains measurement in terms of this relatively young interpretation, first made rigorous by L. Ballentine starting in the 1970’s. Its facility is demonstrated through a detailed explication of the Wigner Friend argument using the Stern-Gerlach experiment. Following a recent textbook, this approach is developed further through analysis of free particle states as well as the Schrödinger cat paradox. Some pitfalls of the Copenhagen interpretation are drawn out. Introduction The measurement problem in quantum mechanics confounds students and experts. arXiv:quant-ph/ 09 Feb 2020 The problem arose near the founding of the formal discipline of quantum mechanics with especially the debates between Einstein and Bohr. There is much notable history, but since I do not aim to give an exhaustive history, only the necessary points of an outline, I only note the following points. Einstein held, among other things, the most basic form of ensemble interpretation saying: “The attempt to conceive the quantum-theoretical description as the complete description of the individual systems leads to unnatural theoretical interpretations, which become immediately unnecessary if one accepts the interpretation that the description refers to ensembles of systems and not to individual systems.”1 Heisenberg and Bohr, both working in Copenhagen, Denmark, made a working model of measurement which developed into the somewhat ill defined Copenhagen interpretation.
    [Show full text]
  • Jhep01(2021)118
    Published for SISSA by Springer Received: July 7, 2020 Revised: October 31, 2020 Accepted: December 3, 2020 Published: January 20, 2021 JHEP01(2021)118 The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral Henry Maxfield and Gustavo J. Turiaci Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: [email protected], [email protected] Abstract: We propose that a class of new topologies, for which there is no classical solution, should be included in the path integral of three-dimensional pure gravity, and that their inclusion solves pathological negativities in the spectrum, replacing them with a nonperturbative shift of the BTZ extremality bound. We argue that a two dimensional calculation using a dimensionally reduced theory captures the leading effects in the near extremal limit. To make this argument, we study a closely related two-dimensional theory of Jackiw-Teitelboim gravity with dynamical defects. We show that this theory is equivalent to a matrix integral. Keywords: 2D Gravity, Black Holes, Conformal Field Theory, Nonperturbative Effects ArXiv ePrint: 2006.11317 Open Access, c The Authors. https://doi.org/10.1007/JHEP01(2021)118 Article funded by SCOAP3. Contents 1 Introduction2 1.1 The spectrum of 3D pure gravity2 1.2 3D gravity in the near-extremal limit5 1.3 JT gravity with defects6 1.4 Outline of paper7 JHEP01(2021)118 2 The path integral of 3D gravity7 2.1 Dimensional reduction7 2.2 The classical solutions: SL(2; Z) black holes.9 2.3 Kaluza-Klein
    [Show full text]
  • Quantum Mechanics II Course Topics
    Chem 7940 Quantum Mechanics II Spring 2013 Chemistry 7940 Quantum Mechanics II Spring 2013 Course topics Last revised: January 15, 2013 1. Density matrix • Pure vs mixed states. Ensemble interpretation. • Reduced density matrices. • Correlation & entanglement. Bell’s theorem. • Equations of motion. Analogy with classical mechanics. • Relaxation and decoherence. • Generalized measurements, quantum information theory, and all that. 2. Time-dependent phenomena • Evolution operator. Propagators and Green’s functions. • Three pictures: Schr¨odinger, Heisenberg, interaction. • 2-level system. Rotating wave approximation. Bloch equations. • Time-dependent perturbation theory. Harmonic perturbations. Resonant phenomena. Tran- sitions to a continuum. Fermi’s Golden rule. • Sudden approximation. • Adiabatic approximation. Geometric phases. • Perturbation theory for the density operator. Linear response. 3. Path integral formulation of quantum mechanics (brief) • Derivation of the sum-over-paths expression for the propagator. • Semiclassical limit of the path integral. • Path integral formulation of quantum statistical mechanics: polymer beads, and all that. 4. Molecule-field interactions • Brief review: Maxwell’s equations, scalar and vector potentials, gauge transformations, free field, and all that. • Derivation of Hamiltonian for charged particle in field. • Perturbation in dipole approximation. • A and B coefficients. Selection rules. Sum rules. • Electric quadrupole and magnetic dipole transitions. • High-order perturbation theory and multiphoton processes. • Nonlinear spectroscopy. • Electric and magnetic properties of molecules (brief). • Quantizing the EM field. Photons. Spontaneous emission revisited. 1 of 2 Chem 7940 Quantum Mechanics II Spring 2013 5. Quantum mechanics of the continuum: Scattering theory • Particle flux and scattering cross sections. • Green’s functions and the scattering problem. • Born approximation. • Partial wave analysis of wavefunction for central scattering potential.
    [Show full text]
  • What Is an Essentially Quantum Mechanical Effect?
    What is an Essentially Quantum Mechanical Effect? Osvaldo Pessoa Jr. [email protected] Mestrado em Ensino, História e Filosofia das Ciências Universidade Estadual de Feira de Santana / Universidade Federal da Bahia Abstract When asking whether consciousness is an “essentially quantum effect”, one must first lay down criteria for considering an effect quantum mechanical. After a brief survey of the interpretations of quantum theory, three such sufficient criteria are proposed and examined: wave-particle duality (or collapse), entanglement (“non-locality”), and quantum condensation (involving “identical” particles). A fourth criteria could involve the use of quantum field theories, but this problem is left open. If a quantum effect played an essential role in the brain, it would probably follow the first criterion, since the entanglement of many particles would be rapidly washed out by decoherence, and there is no strong evidence for the existence of biological condensates. 1. Prologue In the last decade, many thinkers have defended the view that the mind-brain problem can only be solved if one takes into account the quantum-mechanical nature of the brain (Hameroff & Penrose 1996). In opposition to them, many others have sustained the “astonishing hypothesis” that the mind results from the organization of matter and energy in the brain, in a way that does not involve any essentially quantum mechanical effect (Crick 1994; Grush & Churchland 1995). Without having to take sides here in this ultimately empirical question, I would like to examine the issue of what is the meaning of the notion of an “essentially quantum effect” (1). To simplify the discussion, let us adopt a physicalist (materialist) view of the mind-brain issue, although the consequences drawn here might be adapted to a dualist view.
    [Show full text]
  • Examining the Quantum Measurement Problem Through the Yoruba Philosophy of Ifa Divination
    O. RÚMILÀ NÍ ÓÒ WÀÁ BÁ NÍ : EXAMINING THE QUANTUM MEASUREMENT PROBLEM THROUGH THE YORUBA PHILOSOPHY OF IFA DIVINATION by Jacob Stanton, Sc.B. Advisor: Stephon Alexander Brown University May 2020 A thesis is submitted in fulfillment of the requirements for the degree of: BACHELOR OF SCIENCE i TABLE OF CONTENTS Page CHAPTER 1 Introduction to Quantum Mechanics .................... 1 1.1 Philosophy of Classical Physics........................ 1 1.2 Introduction to Quantum Mechanics: Wave Functions, Operators, and Uncertainty .................................. 3 1.3 Measurement ................................. 7 1.4 The Measurement Problem.......................... 8 1.5 Summary.................................... 11 2 Yoruba Philosophy ............................... 12 2.1 Introduction to Ifa Philosophy........................ 12 2.2 Ori: Destiny.................................. 13 2.3 Egun: Ancestors................................ 14 2.4 Divination: Measurement........................... 15 2.5 Summary.................................... 17 3 Hidden Variables a Solution to the Quantum Measurement Problem 18 3.1 Hidden Variable Theories........................... 18 3.2 Bell’s Inequalities............................... 19 3.3 De Broglie-Bohm Theory........................... 20 3.4 Summary.................................... 22 4 Quatum Measurement Through the Lens of Yoruba Philosophy . 23 4.1 Towards a Ifa interpretation of Quantum Mechanics............ 23 4.2 Conclusion................................... 27 ii REFERENCES .....................................
    [Show full text]
  • Trapped Ions and Laser Cooling Selected Publications of the Ion Storage Group of the Time and Frequency Division
    NATL INST Of STAND & TECH R.IC, A111D3 TSbMfiO NIST Technical Note 1353 NIST jpUBllCATlONS*;:; U.S. DEPARTMENT OF COMMERCE / National Institute of Standards and Technology Selected publications of the Edited by: James C. Bergquist Storage Group John J. Bollinger e and Frequency Division Wayne M. Itano J, Boulder, Colorado David J. Wineland /S & 3 '^1 Trapped Ions and Laser Cooling Selected publications of the Ion Storage Group of the Time and Frequency Division Edited by James C. Bergquist John J. Bollinger / ^ Wayne M. Itano , David J. Wineland"^ Time and Frequency Division Physics Laboratory National Institute of Standards and Technology Boulder, Colorado 80303-3328 Supported in part by U.S. Office of Naval Research 800 North Quincy Arlington, Virginia 22217 April 1992 *" *^TE3 o* U.S. DEPARTMENT OF COMMERCE, Barbara Hackman Franklin, Secretary TECHNOLOGY ADMINISTRATION, Robert M. White, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, John W. Lyons, Director National Institute of Standards and Technology Technical Note Natl. Inst. Stand. Technol., Tech. Note 1353, 204 pages (April 1992) CODEN:NTNOEF U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1992 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325 PREFACE This collection of papers represents the work of the Ion Storage Group, Time and Frequency Division, National Institute of Standards and Technology from October 1988 to February 1992. It follows the collections of papers contained in NBS Technical Note 1086, Trapped Ions and Laser Cooling (June 1985) and NIST Technical Note 1324 Trapped Ions and Laser Cooling II (September 1988). Although the primary goal of this work has been the development of techniques necessary for achieving high resolution spectroscopy, we have also been able to investigate related areas of research.
    [Show full text]
  • Quantum Mechanics II Spring 2005
    Chem 794 Quantum Mechanics II Spring 2005 Chemistry 794 Quantum Mechanics II Spring 2005 Course outline 1. Density matrix • Pure vs mixed states. Ensemble interpretation. • Reduced density matrices. Entanglement. • Equations of motion. Analogy with classical mechanics. • Relaxation and decoherence. 2. Time-dependent phenomena • Evolution operator. Propagator and Green’s functions. • Three pictures: Schr¨odinger, Heisenberg, interaction. • 2-level system. Rotating wave approximation. Bloch equations. • Time-dependent perturbation theory. Harmonic perturbations. Resonant phenom- ena. Transitions to continuum; Golden rule. • Sudden approximation. • Adiabatic approximation. • Perturbation theory for density operator. Linear response. 3. Path integral formulation of quantum mechanics 4. Molecule-field interactions • Maxwell’s equations, scalar and vector potentials, gauge transformations, free field, and all that. • Hamiltonian for charged particle in field. • Perturbation in dipole approximation. • A and B coefficients. Selection rules. Sum rules. • Electric quadrupole and magnetic dipole transitions. • High-order perturbation theory and multiphoton processes. • Nonlinear spectroscopy. • Electric properties of molecules. Polarizability. • Magnetic properties of molecules. Magnetic susceptibility. Diamagnetism & para- magnetism. 5. Scattering Theory • Particle flux and scattering cross sections. G.S. Ezra 1 Cornell University Chem 794 Quantum Mechanics II Spring 2005 • Green’s functions and scattering problem. • Born approximation. • Partial wave
    [Show full text]
  • An Alternative Interpretation of Statistical Mechanics
    An Alternative Interpretation of Statistical Mechanics C.D. McCoy∗y 26 September 2016 Abstract Abstract: I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures are complete statistical mechanical states. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the ob- servables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates necessarily have representational significance in the theory is there- fore dispensable, a consequence which reveals interesting possibilities for investigating inter-theoretic explanations of the foundational questions of statistical mechanics. Word Count: 9753 1 Introduction Commonly lamented in the literature on the foundations of statistical mechanics is the lack of a canon- ical formalism on which to base foundational discussions. Unlike in non-relativistic quantum mechan- ics, general relativity, or classical mechanics, “what we find in [statistical mechanics] is a plethora of different approaches and schools, each with its own programme and mathematical apparatus, none of which has a legitimate claim to be more fundamental than its competitors” (Frigg, 2008, 101). Because of this, “the philosophical foundations of thermodynamics and statistical mechanics can seem a bewil- dering labyrinth” writes Callender (2011, 83), and, indeed, it seems to many workers in the field that “consequently we have no choice but to dwell on its history” (Uffink, 2007, 923) when investigating the foundations of the theory. While that history has indeed witnessed many approaches to the foundations of statistical mechanics, a common theme emerges in a considerable number of the debates, a theme emphasized throughout Sklar’s panoptic survey of the field, Physics and Chance.
    [Show full text]