An Invitation to Quantum Complexity Theory the Study of What We Can’T Do with Computers We Don’T Have NP- Scott Aaronson (MIT) Complete QIP08, New Delhi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Computing Overview
Quantum Computing at Microsoft Stephen Jordan • As of November 2018: 60 entries, 392 references • Major new primitives discovered only every few years. Simulation is a killer app for quantum computing with a solid theoretical foundation. Chemistry Materials Nuclear and Particle Physics Image: David Parker, U. Birmingham Image: CERN Many problems are out of reach even for exascale supercomputers but doable on quantum computers. Understanding biological Nitrogen fixation Intractable on classical supercomputers But a 200-qubit quantum computer will let us understand it Finding the ground state of Ferredoxin 퐹푒2푆2 Classical algorithm Quantum algorithm 2012 Quantum algorithm 2015 ! ~3000 ~1 INTRACTABLE YEARS DAY Research on quantum algorithms and software is essential! Quantum algorithm in high level language (Q#) Compiler Machine level instructions Microsoft Quantum Development Kit Quantum Visual Studio Local and cloud Extensive libraries, programming integration and quantum samples, and language debugging simulation documentation Developing quantum applications 1. Find quantum algorithm with quantum speedup 2. Confirm quantum speedup after implementing all oracles 3. Optimize code until runtime is short enough 4. Embed into specific hardware estimate runtime Simulating Quantum Field Theories: Classically Feynman diagrams Lattice methods Image: Encyclopedia of Physics Image: R. Babich et al. Break down at strong Good for binding energies. coupling or high precision Sign problem: real time dynamics, high fermion density. There’s room for exponential -
Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts. -
Simulating Quantum Field Theory with a Quantum Computer
Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers. -
Complexity Theory Lecture 9 Co-NP Co-NP-Complete
Complexity Theory 1 Complexity Theory 2 co-NP Complexity Theory Lecture 9 As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form: ′ L = x y y <p( x ) R (x, y) { |∀ | | | | → } Anuj Dawar University of Cambridge Computer Laboratory NP – the collection of languages with succinct certificates of Easter Term 2010 membership. co-NP – the collection of languages with succinct certificates of http://www.cl.cam.ac.uk/teaching/0910/Complexity/ disqualification. Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 3 Complexity Theory 4 NP co-NP co-NP-complete P VAL – the collection of Boolean expressions that are valid is co-NP-complete. Any language L that is the complement of an NP-complete language is co-NP-complete. Any of the situations is consistent with our present state of ¯ knowledge: Any reduction of a language L1 to L2 is also a reduction of L1–the complement of L1–to L¯2–the complement of L2. P = NP = co-NP • There is an easy reduction from the complement of SAT to VAL, P = NP co-NP = NP = co-NP • ∩ namely the map that takes an expression to its negation. P = NP co-NP = NP = co-NP • ∩ VAL P P = NP = co-NP ∈ ⇒ P = NP co-NP = NP = co-NP • ∩ VAL NP NP = co-NP ∈ ⇒ Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 5 Complexity Theory 6 Prime Numbers Primality Consider the decision problem PRIME: Another way of putting this is that Composite is in NP. -
If Np Languages Are Hard on the Worst-Case, Then It Is Easy to Find Their Hard Instances
IF NP LANGUAGES ARE HARD ON THE WORST-CASE, THEN IT IS EASY TO FIND THEIR HARD INSTANCES Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma Abstract. We prove that if NP 6⊆ BPP, i.e., if SAT is worst-case hard, then for every probabilistic polynomial-time algorithm trying to decide SAT, there exists some polynomially samplable distribution that is hard for it. That is, the algorithm often errs on inputs from this distribution. This is the ¯rst worst-case to average-case reduction for NP of any kind. We stress however, that this does not mean that there exists one ¯xed samplable distribution that is hard for all probabilistic polynomial-time algorithms, which is a pre-requisite assumption needed for one-way func- tions and cryptography (even if not a su±cient assumption). Neverthe- less, we do show that there is a ¯xed distribution on instances of NP- complete languages, that is samplable in quasi-polynomial time and is hard for all probabilistic polynomial-time algorithms (unless NP is easy in the worst case). Our results are based on the following lemma that may be of independent interest: Given the description of an e±cient (probabilistic) algorithm that fails to solve SAT in the worst case, we can e±ciently generate at most three Boolean formulae (of increasing lengths) such that the algorithm errs on at least one of them. Keywords. Average-case complexity, Worst-case to average-case re- ductions, Foundations of cryptography, Pseudo classes Subject classi¯cation. 68Q10 (Modes of computation (nondetermin- istic, parallel, interactive, probabilistic, etc.) 68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.) 68Q17 Compu- tational di±culty of problems (lower bounds, completeness, di±culty of approximation, etc.) 94A60 Cryptography 2 Gutfreund, Shaltiel & Ta-Shma 1. -
EXPSPACE-Hardness of Behavioural Equivalences of Succinct One
EXPSPACE-hardness of behavioural equivalences of succinct one-counter nets Petr Janˇcar1 Petr Osiˇcka1 Zdenˇek Sawa2 1Dept of Comp. Sci., Faculty of Science, Palack´yUniv. Olomouc, Czech Rep. [email protected], [email protected] 2Dept of Comp. Sci., FEI, Techn. Univ. Ostrava, Czech Rep. [email protected] Abstract We note that the remarkable EXPSPACE-hardness result in [G¨oller, Haase, Ouaknine, Worrell, ICALP 2010] ([GHOW10] for short) allows us to answer an open complexity ques- tion for simulation preorder of succinct one counter nets (i.e., one counter automata with no zero tests where counter increments and decrements are integers written in binary). This problem, as well as bisimulation equivalence, turn out to be EXPSPACE-complete. The technique of [GHOW10] was referred to by Hunter [RP 2015] for deriving EXPSPACE-hardness of reachability games on succinct one-counter nets. We first give a direct self-contained EXPSPACE-hardness proof for such reachability games (by adjust- ing a known PSPACE-hardness proof for emptiness of alternating finite automata with one-letter alphabet); then we reduce reachability games to (bi)simulation games by using a standard “defender-choice” technique. 1 Introduction arXiv:1801.01073v1 [cs.LO] 3 Jan 2018 We concentrate on our contribution, without giving a broader overview of the area here. A remarkable result by G¨oller, Haase, Ouaknine, Worrell [2] shows that model checking a fixed CTL formula on succinct one-counter automata (where counter increments and decre- ments are integers written in binary) is EXPSPACE-hard. Their proof is interesting and nontrivial, and uses two involved results from complexity theory. -
Quantum Clustering Algorithms
Quantum Clustering Algorithms Esma A¨ımeur [email protected] Gilles Brassard [email protected] S´ebastien Gambs [email protected] Universit´ede Montr´eal, D´epartement d’informatique et de recherche op´erationnelle C.P. 6128, Succursale Centre-Ville, Montr´eal (Qu´ebec), H3C 3J7 Canada Abstract Multidisciplinary by nature, Quantum Information By the term “quantization”, we refer to the Processing (QIP) is at the crossroads of computer process of using quantum mechanics in order science, mathematics, physics and engineering. It con- to improve a classical algorithm, usually by cerns the implications of quantum mechanics for infor- making it go faster. In this paper, we initiate mation processing purposes (Nielsen & Chuang, 2000). the idea of quantizing clustering algorithms Quantum information is very different from its classi- by using variations on a celebrated quantum cal counterpart: it cannot be measured reliably and it algorithm due to Grover. After having intro- is disturbed by observation, but it can exist in a super- duced this novel approach to unsupervised position of classical states. Classical and quantum learning, we illustrate it with a quantized information can be used together to realize wonders version of three standard algorithms: divisive that are out of reach of classical information processing clustering, k-medians and an algorithm for alone, such as being able to factorize efficiently large the construction of a neighbourhood graph. numbers, with dramatic cryptographic consequences We obtain a significant speedup compared to (Shor, 1997), search in a unstructured database with a the classical approach. quadratic speedup compared to the best possible clas- sical algorithms (Grover, 1997) and allow two people to communicate in perfect secrecy under the nose of an 1. -
Week 1: an Overview of Circuit Complexity 1 Welcome 2
Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes). -
Dspace 6.X Documentation
DSpace 6.x Documentation DSpace 6.x Documentation Author: The DSpace Developer Team Date: 27 June 2018 URL: https://wiki.duraspace.org/display/DSDOC6x Page 1 of 924 DSpace 6.x Documentation Table of Contents 1 Introduction ___________________________________________________________________________ 7 1.1 Release Notes ____________________________________________________________________ 8 1.1.1 6.3 Release Notes ___________________________________________________________ 8 1.1.2 6.2 Release Notes __________________________________________________________ 11 1.1.3 6.1 Release Notes _________________________________________________________ 12 1.1.4 6.0 Release Notes __________________________________________________________ 14 1.2 Functional Overview _______________________________________________________________ 22 1.2.1 Online access to your digital assets ____________________________________________ 23 1.2.2 Metadata Management ______________________________________________________ 25 1.2.3 Licensing _________________________________________________________________ 27 1.2.4 Persistent URLs and Identifiers _______________________________________________ 28 1.2.5 Getting content into DSpace __________________________________________________ 30 1.2.6 Getting content out of DSpace ________________________________________________ 33 1.2.7 User Management __________________________________________________________ 35 1.2.8 Access Control ____________________________________________________________ 36 1.2.9 Usage Metrics _____________________________________________________________ -
Quantum Computing: Principles and Applications
Journal of International Technology and Information Management Volume 29 Issue 2 Article 3 2020 Quantum Computing: Principles and Applications Yoshito Kanamori University of Alaska Anchorage, [email protected] Seong-Moo Yoo University of Alabama in Huntsville, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Communication Technology and New Media Commons, Computer and Systems Architecture Commons, Information Security Commons, Management Information Systems Commons, Science and Technology Studies Commons, Technology and Innovation Commons, and the Theory and Algorithms Commons Recommended Citation Kanamori, Yoshito and Yoo, Seong-Moo (2020) "Quantum Computing: Principles and Applications," Journal of International Technology and Information Management: Vol. 29 : Iss. 2 , Article 3. Available at: https://scholarworks.lib.csusb.edu/jitim/vol29/iss2/3 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Journal of International Technology and Information Management Volume 29, Number 2 2020 Quantum Computing: Principles and Applications Yoshito Kanamori (University of Alaska Anchorage) Seong-Moo Yoo (University of Alabama in Huntsville) ABSTRACT The development of quantum computers over the past few years is one of the most significant advancements in the history of quantum computing. D-Wave quantum computer has been available for more than eight years. IBM has made its quantum computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA have been heavily investing in the development of quantum computers and their applications. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
Arxiv:1506.08857V1 [Quant-Ph] 29 Jun 2015
Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices Dardo Goyeneche National Quantum Information Center of Gda´nsk,81-824 Sopot, Poland and Faculty of Applied Physics and Mathematics, Technical University of Gda´nsk,80-233 Gda´nsk,Poland Daniel Alsina Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. Jos´e I. Latorre Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. and Center for Theoretical Physics, MIT, USA Arnau Riera ICFO-Institut de Ciencies Fotoniques, Castelldefels (Barcelona), Spain Karol Zyczkowski_ Institute of Physics, Jagiellonian University, Krak´ow,Poland and Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland (Dated: June 29, 2015) Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity. I. INTRODUCTION entropy S(ρ) = −Tr(ρ log ρ) ; (1) A complete characterization, classification and it is possible to show [1, 2] that the average entropy quantification of entanglement for quantum states re- of the reduced state σ = TrN=2j ih j to N=2 qubits mains an unfinished long-term goal in Quantum Infor- reads: N mation theory.