Elements of Quantum Mechanics & Atomic Spectra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MODERN DEVELOPMENT of MAGNETIC RESONANCE Abstracts 2020 KAZAN * RUSSIA
MODERN DEVELOPMENT OF MAGNETIC RESONANCE abstracts 2020 KAZAN * RUSSIA OF MA NT GN E E M T P IC O L R E E V S E O N D A N N R C E E D O M K 20 AZAN 20 MODERN DEVELOPMENT OF MAGNETIC RESONANCE ABSTRACTS OF THE INTERNATIONAL CONFERENCE AND WORKSHOP “DIAMOND-BASED QUANTUM SYSTEMS FOR SENSING AND QUANTUM INFORMATION” Editors: ALEXEY A. KALACHEV KEV M. SALIKHOV KAZAN, SEPTEMBER 28–OCTOBER 2, 2020 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. © 2020 Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan © 2020 Igor A. Aksenov, graphic design Printed in Russian Federation Published by Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan www.kfti.knc.ru v CHAIRMEN Alexey A. Kalachev Kev M. Salikhov PROGRAM COMMITTEE Kev Salikhov, chairman (Russia) Vadim Atsarkin (Russia) Elena Bagryanskaya (Russia) Pavel Baranov (Russia) Marina Bennati (Germany) Robert Bittl (Germany) Bernhard Blümich (Germany) Michael Bowman (USA) Gerd Buntkowsky (Germany) Sergei Demishev (Russia) Sabine Van Doorslaer (Belgium) Rushana Eremina (Russia) Jack Freed (USA) Philip Hemmer (USA) Konstantin Ivanov (Russia) Alexey Kalachev (Russia) Vladislav Kataev (Germany) Walter Kockenberger (Great Britain) Wolfgang Lubitz (Germany) Anders Lund (Sweden) Sergei Nikitin (Russia) Klaus Möbius (Germany) Hitoshi Ohta (Japan) Igor Ovchinnikov (Russia) Vladimir Skirda (Russia) Alexander Smirnov( Russia) Graham Smith (Great Britain) Mark Smith (Great Britain) Murat Tagirov (Russia) Takeji Takui (Japan) Valery Tarasov (Russia) Violeta Voronkova (Russia) vi LOCAL ORGANIZING COMMITTEE Kalachev A.A., chairman Kupriyanova O.O. -
4 Muon Capture on the Deuteron 7 4.1 Theoretical Framework
February 8, 2008 Muon Capture on the Deuteron The MuSun Experiment MuSun Collaboration model-independent connection via EFT http://www.npl.uiuc.edu/exp/musun V.A. Andreeva, R.M. Careye, V.A. Ganzhaa, A. Gardestigh, T. Gorringed, F.E. Grayg, D.W. Hertzogb, M. Hildebrandtc, P. Kammelb, B. Kiburgb, S. Knaackb, P.A. Kravtsova, A.G. Krivshicha, K. Kuboderah, B. Laussc, M. Levchenkoa, K.R. Lynche, E.M. Maeva, O.E. Maeva, F. Mulhauserb, F. Myhrerh, C. Petitjeanc, G.E. Petrova, R. Prieelsf , G.N. Schapkina, G.G. Semenchuka, M.A. Sorokaa, V. Tishchenkod, A.A. Vasilyeva, A.A. Vorobyova, M.E. Vznuzdaeva, P. Winterb aPetersburg Nuclear Physics Institute, Gatchina 188350, Russia bUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA cPaul Scherrer Institute, CH-5232 Villigen PSI, Switzerland dUniversity of Kentucky, Lexington, KY 40506, USA eBoston University, Boston, MA 02215, USA f Universit´eCatholique de Louvain, B-1348 Louvain-la-Neuve, Belgium gRegis University, Denver, CO 80221, USA hUniversity of South Carolina, Columbia, SC 29208, USA Co-spokespersons underlined. 1 Abstract: We propose to measure the rate Λd for muon capture on the deuteron to better than 1.5% precision. This process is the simplest weak interaction process on a nucleus that can both be calculated and measured to a high degree of precision. The measurement will provide a benchmark result, far more precise than any current experimental information on weak interaction processes in the two-nucleon system. Moreover, it can impact our understanding of fundamental reactions of astrophysical interest, like solar pp fusion and the ν + d reactions observed by the Sudbury Neutrino Observatory. -
Chapter 12: Phenomena
Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and if so what type of particles as well as the speed of the particle. What patterns do you see in the results that were collected? K Wavelength of Light Where Particles Ejected Speed of Exp. Intensity Directed at Sample Ejected Particle Ejected Particle -7 - 4 푚 1 5.4×10 m Medium Yes e 4.9×10 푠 -8 - 6 푚 2 3.3×10 m High Yes e 3.5×10 푠 3 2.0 m High No N/A N/A 4 3.3×10-8 m Low Yes e- 3.5×106 푚 Electromagnetic 푠 Radiation 5 2.0 m Medium No N/A N/A Ejected Particle -12 - 8 푚 6 6.1×10 m High Yes e 2.7×10 푠 7 5.5×104 m High No N/A N/A Fe Wavelength of Light Where Particles Ejected Speed of Exp. Intensity Directed at Sample Ejected Particle Ejected Particle 1 5.4×10-7 m Medium No N/A N/A -11 - 8 푚 2 3.4×10 m High Yes e 1.1×10 푠 3 3.9×103 m Medium No N/A N/A -8 - 6 푚 4 2.4×10 m High Yes e 4.1×10 푠 5 3.9×103 m Low No N/A N/A -7 - 5 푚 6 2.6×10 m Low Yes e 1.1×10 푠 -11 - 8 푚 7 3.4×10 m Low Yes e 1.1×10 푠 Chapter 12: Quantum Mechanics and Atomic Theory Chapter 12: Quantum Mechanics and Atomic Theory o Electromagnetic Radiation o Quantum Theory o Particle in a Box Big Idea: The structure of atoms o The Hydrogen Atom must be explained o Quantum Numbers using quantum o Orbitals mechanics, a theory in o Many-Electron Atoms which the properties of particles and waves o Periodic Trends merge together. -
Introduction to Chemistry
Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable. -
7. Examples of Magnetic Energy Diagrams. P.1. April 16, 2002 7
7. Examples of Magnetic Energy Diagrams. There are several very important cases of electron spin magnetic energy diagrams to examine in detail, because they appear repeatedly in many photochemical systems. The fundamental magnetic energy diagrams are those for a single electron spin at zero and high field and two correlated electron spins at zero and high field. The word correlated will be defined more precisely later, but for now we use it in the sense that the electron spins are correlated by electron exchange interactions and are thereby required to maintain a strict phase relationship. Under these circumstances, the terms singlet and triplet are meaningful in discussing magnetic resonance and chemical reactivity. From these fundamental cases the magnetic energy diagram for coupling of a single electron spin with a nuclear spin (we shall consider only couplings with nuclei with spin 1/2) at zero and high field and the coupling of two correlated electron spins with a nuclear spin are readily derived and extended to the more complicated (and more realistic) cases of couplings of electron spins to more than one nucleus or to magnetic moments generated from other sources (spin orbit coupling, spin lattice coupling, spin photon coupling, etc.). Magentic Energy Diagram for A Single Electron Spin and Two Coupled Electron Spins. Zero Field. Figure 14 displays the magnetic energy level diagram for the two fundamental cases of : (1) a single electron spin, a doublet or D state and (2) two correlated electron spins, which may be a triplet, T, or singlet, S state. In zero field (ignoring the electron exchange interaction and only considering the magnetic interactions) all of the magnetic energy levels are degenerate because there is no preferred orientation of the angular momentum and therefore no preferred orientation of the magnetic moment due to spin. -
Andreev Bound States in the Kondo Quantum Dots Coupled to Superconducting Leads
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 20 (2008) 415225 (6pp) doi:10.1088/0953-8984/20/41/415225 Andreev bound states in the Kondo quantum dots coupled to superconducting leads Jong Soo Lim and Mahn-Soo Choi Department of Physics, Korea University, Seoul 136-713, Korea E-mail: [email protected] Received 26 May 2008, in final form 4 August 2008 Published 22 September 2008 Online at stacks.iop.org/JPhysCM/20/415225 Abstract We have studied the Kondo quantum dot coupled to two superconducting leads and investigated the subgap Andreev states using the NRG method. Contrary to the recent NCA results (Clerk and Ambegaokar 2000 Phys. Rev. B 61 9109; Sellier et al 2005 Phys. Rev. B 72 174502), we observe Andreev states both below and above the Fermi level. (Some figures in this article are in colour only in the electronic version) 1. Introduction Using the non-crossing approximation (NCA), Clerk and Ambegaokar [8] investigated the close relation between the 0– When a localized spin (in an impurity or a quantum dot) is π transition in IS(φ) and the Andreev states. They found that coupled to BCS-type s-wave superconductors [1], two strong there is only one subgap Andreev state and that the Andreev correlation effects compete with each other. On the one hand, state is located below (above) the Fermi energy EF in the the superconductivity tends to keep the conduction electrons doublet (singlet) state. They provided an intuitively appealing in singlet pairs [1], leaving the local spin unscreened. -
Isotopic Fractionation of Carbon, Deuterium, and Nitrogen: a Full Chemical Study?
A&A 576, A99 (2015) Astronomy DOI: 10.1051/0004-6361/201425113 & c ESO 2015 Astrophysics Isotopic fractionation of carbon, deuterium, and nitrogen: a full chemical study? E. Roueff1;2, J. C. Loison3, and K. M. Hickson3 1 LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR8112, Place Janssen, 92190 Meudon Cedex, France e-mail: [email protected] 2 Sorbonne Universités, UPMC Univ. Paris 6, 4 Place Jussieu, 75005 Paris, France 3 ISM, Université de Bordeaux – CNRS, UMR 5255, 351 cours de la Libération, 33405 Talence Cedex, France e-mail: [email protected] Received 6 October 2014 / Accepted 5 January 2015 ABSTRACT Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/15N ratio is difficult to measure directly for molecules con- taining carbon. Aims. Using a time-dependent gas-phase chemical model, we check the underlying hypothesis that the 13C/12C ratio of nitriles and isonitriles is equal to the elemental value. Methods. We built a chemical network that contains D, 13C, and 15N molecular species after a careful check of the possible fraction- ation reactions at work in the gas phase. Results. Model results obtained for two different physical conditions that correspond to a moderately dense cloud in an early evolu- tionary stage and a dense, depleted prestellar core tend to show that ammonia and its singly deuterated form are somewhat enriched 15 14 15 + in N, which agrees with observations. The N/ N ratio in N2H is found to be close to the elemental value, in contrast to previous 15 + models that obtain a significant enrichment, because we found that the fractionation reaction between N and N2H has a barrier in + 15 + + 15 + the entrance channel. -
Atomic Physicsphysics AAA Powerpointpowerpointpowerpoint Presentationpresentationpresentation Bybyby Paulpaulpaul E.E.E
ChapterChapter 38C38C -- AtomicAtomic PhysicsPhysics AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DiscussDiscuss thethe earlyearly modelsmodels ofof thethe atomatom leadingleading toto thethe BohrBohr theorytheory ofof thethe atom.atom. •• DemonstrateDemonstrate youryour understandingunderstanding ofof emissionemission andand absorptionabsorption spectraspectra andand predictpredict thethe wavelengthswavelengths oror frequenciesfrequencies ofof thethe BalmerBalmer,, LymanLyman,, andand PashenPashen spectralspectral series.series. •• CalculateCalculate thethe energyenergy emittedemitted oror absorbedabsorbed byby thethe hydrogenhydrogen atomatom whenwhen thethe electronelectron movesmoves toto aa higherhigher oror lowerlower energyenergy level.level. PropertiesProperties ofof AtomsAtoms ••• AtomsAtomsAtoms areareare stablestablestable andandand electricallyelectricallyelectrically neutral.neutral.neutral. ••• AtomsAtomsAtoms havehavehave chemicalchemicalchemical propertiespropertiesproperties whichwhichwhich allowallowallow themthemthem tototo combinecombinecombine withwithwith otherotherother atoms.atoms.atoms. ••• AtomsAtomsAtoms emitemitemit andandand absorbabsorbabsorb -
7 2 Singleionanisotropy
7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions Up to this point, we have been making two assumptions about the spin carriers in our molecules: 1. There is no coupling between the 2S+1Γ ground state and some excited state(s) arising from the same free-ion state through the spin-orbit coupling. 2. The 2S+1Γ ground state has no first-order angular momentum. Now, let’s look at how to treat molecules for which the first assumption is not true. In other words, molecules in which we can no longer neglect the coupling between the ground state and some excited state(s) arising from the same free-ion state through spin orbit coupling. For simplicity, we will assume that there is no exchange coupling between magnetic centers, so we are dealing with an isolated molecule with, for example, one paramagnetic metal ion. Recall: Lˆ lˆ is the total electronic orbital momentum operator = ∑ i i Sˆ sˆ is the total electronic spin momentum operator = ∑ i i where the sums run over the electrons of the open shells. *NOTE*: The excited states are assumed to be high enough in energy to be totally depopulated in the temperature range of interest. • This spin-orbit coupling between ground and unpopulated excited states may lead to two phenomena: 1. anisotropy of the g-factor 2. and, if the ground state has a larger spin multiplicity than a doublet (i.e., S > ½), zero-field splitting of the ground state energy levels. • Note that this spin-orbit coupling between the ground state and an unpopulated excited state can be described by λLˆ ⋅ Sˆ . -
22. Atomic Physics and Quantum Mechanics
22. Atomic Physics and Quantum Mechanics S. Teitel April 14, 2009 Most of what you have been learning this semester and last has been 19th century physics. Indeed, Maxwell's theory of electromagnetism, combined with Newton's laws of mechanics, seemed at that time to express virtually a complete \solution" to all known physical problems. However, already by the 1890's physicists were grappling with certain experimental observations that did not seem to fit these existing theories. To explain these puzzling phenomena, the early part of the 20th century witnessed revolutionary new ideas that changed forever our notions about the physical nature of matter and the theories needed to explain how matter behaves. In this lecture we hope to give the briefest introduction to some of these ideas. 1 Photons You have already heard in lecture 20 about the photoelectric effect, in which light shining on the surface of a metal results in the emission of electrons from that surface. To explain the observed energies of these emitted elec- trons, Einstein proposed in 1905 that the light (which Maxwell beautifully explained as an electromagnetic wave) should be viewed as made up of dis- crete particles. These particles were called photons. The energy of a photon corresponding to a light wave of frequency f is given by, E = hf ; where h = 6:626×10−34 J · s is a new fundamental constant of nature known as Planck's constant. The total energy of a light wave, consisting of some particular number n of photons, should therefore be quantized in integer multiples of the energy of the individual photon, Etotal = nhf. -
Atomic Theory - Review Sheet
Atomic Theory - Review Sheet You should understand the contribution of each scientist. I don't expect you to memorize dates, but I do want to know what each scientist contributed to the theory. Democretus - 400 B.C. - theory that matter is made of atoms Boyle 1622 -1691 - defined element Lavoisier 1743-1797 - pioneer of modern chemistry (careful and controlled experiments) - conservation of mass (understand his experiment and compare to the lab "Does mass change in a chemical reaction?") Proust 1799 - law of constant composition (or definite proportions) - understand this law and relate it to the Hydrogen and Oxygen generation lab Dalton 1808 - Understand the meaning of each part of Dalton's atomic theory. - You don't have to memorize the five parts, just understand what they mean. - You should know which parts we now know are not true (according to modern atomic theory). Black Box Model Crookes 1870 - Crookes tube - Know how this is constructed (Know how cathode rays are generated and what they are.) J.J. Thomsen - 1890 - How did he expand on Crookes' experiment? - discovered the electron - negative particles in all of matter (all atoms) - must also be positive parts Lord Kelvin - near Thomsen's time Plum Pudding Model - plum pudding model Henri Becquerel - 1896 - discovered radioactivity of uranium Marie Curie - 1905 - received Nobel prize (shared with her husband Pierre Curie and Henri Bequerel) for her work in studying radiation. - Name the three kinds of radiation and describe each type. Rutheford - 1910 - Understand the gold foil experiment - How was it set up? - What did it show? - Discovered the proton Hard Nucleus Model - new model of atom (positively charged, very dense nucleus) Niels Bohr - 1913 - Bohr model of the atom - electrons in specific orbits with specific energies James Chadwick - 1932 - discovered the electron Modern version of atom - 1950 Bohr Model - similar nucleus (protons + neutrons) - electrons in orbitals not orbits Bohr Model Understand isotopes, atomic mass, mass #, atomic #, ions (with neutrons) Nature of light - wavelength vs. -
Chapter 11: Modernatomictheory 105
CHAPTER 11 Modern Atomic Theory INTRODUCTION It is difficult to form a mental image of atoms because we can’t see them. Scientists have produced models that account for the behavior of atoms by making observations about the properties of atoms. So we know quite a bit about these tiny particles which make up matter even though we cannot see them. In this chapter you will learn how chemists believe atoms are structured. CHAPTER DISCUSSION This is yet another chapter in which models play a significant role. Recall that we like models to be simple, but we also need models to explain the questions we want to answer. For example, Dalton’s model of the atom has the advantage of being quite simple and is useful when considering molecular- level views of solids, liquids, and gases and in representing chemical equations. However, it cannot explain fundamental questions such as why atoms “stick” together to form molecules. Scientists such as Thomson and Rutherford expanded the model of the atom to include subatomic particles. The model is more complicated than Dalton’s, but it begins to explain chemical reactivity (electrons are involved) and formulas for ionic compounds. But questions still abound. For example, why are there similarities in reactivities of elements (periodic trends)? To begin our understanding of modern atomic theory, let’s first discuss some observations. For example, you have undoubtedly seen a fireworks display, either in person or on television. Where do the colors come from? How do we get so many different colors? It turns out that different salts, when heated, give off different colors.