Title:On the Possibilities of Distinguishing Dirac from Majorana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identical Particles
8.06 Spring 2016 Lecture Notes 4. Identical particles Aram Harrow Last updated: May 19, 2016 Contents 1 Fermions and Bosons 1 1.1 Introduction and two-particle systems .......................... 1 1.2 N particles ......................................... 3 1.3 Non-interacting particles .................................. 5 1.4 Non-zero temperature ................................... 7 1.5 Composite particles .................................... 7 1.6 Emergence of distinguishability .............................. 9 2 Degenerate Fermi gas 10 2.1 Electrons in a box ..................................... 10 2.2 White dwarves ....................................... 12 2.3 Electrons in a periodic potential ............................. 16 3 Charged particles in a magnetic field 21 3.1 The Pauli Hamiltonian ................................... 21 3.2 Landau levels ........................................ 23 3.3 The de Haas-van Alphen effect .............................. 24 3.4 Integer Quantum Hall Effect ............................... 27 3.5 Aharonov-Bohm Effect ................................... 33 1 Fermions and Bosons 1.1 Introduction and two-particle systems Previously we have discussed multiple-particle systems using the tensor-product formalism (cf. Section 1.2 of Chapter 3 of these notes). But this applies only to distinguishable particles. In reality, all known particles are indistinguishable. In the coming lectures, we will explore the mathematical and physical consequences of this. First, consider classical many-particle systems. If a single particle has state described by position and momentum (~r; p~), then the state of N distinguishable particles can be written as (~r1; p~1; ~r2; p~2;:::; ~rN ; p~N ). The notation (·; ·;:::; ·) denotes an ordered list, in which different posi tions have different meanings; e.g. in general (~r1; p~1; ~r2; p~2)6 = (~r2; p~2; ~r1; p~1). 1 To describe indistinguishable particles, we can use set notation. -
Magnetic Materials I
5 Magnetic materials I Magnetic materials I ● Diamagnetism ● Paramagnetism Diamagnetism - susceptibility All materials can be classified in terms of their magnetic behavior falling into one of several categories depending on their bulk magnetic susceptibility χ. without spin M⃗ 1 χ= in general the susceptibility is a position dependent tensor M⃗ (⃗r )= ⃗r ×J⃗ (⃗r ) H⃗ 2 ] In some materials the magnetization is m / not a linear function of field strength. In A [ such cases the differential susceptibility M is introduced: d M⃗ χ = d d H⃗ We usually talk about isothermal χ susceptibility: ∂ M⃗ χ = T ( ∂ ⃗ ) H T Theoreticians define magnetization as: ∂ F⃗ H[A/m] M=− F=U−TS - Helmholtz free energy [4] ( ∂ H⃗ ) T N dU =T dS− p dV +∑ μi dni i=1 N N dF =T dS − p dV +∑ μi dni−T dS−S dT =−S dT − p dV +∑ μi dni i=1 i=1 Diamagnetism - susceptibility It is customary to define susceptibility in relation to volume, mass or mole: M⃗ (M⃗ /ρ) m3 (M⃗ /mol) m3 χ= [dimensionless] , χρ= , χ = H⃗ H⃗ [ kg ] mol H⃗ [ mol ] 1emu=1×10−3 A⋅m2 The general classification of materials according to their magnetic properties μ<1 <0 diamagnetic* χ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ B=μ H =μr μ0 H B=μo (H +M ) μ>1 >0 paramagnetic** ⃗ ⃗ ⃗ χ μr μ0 H =μo( H + M ) → μ r=1+χ μ≫1 χ≫1 ferromagnetic*** *dia /daɪə mæ ɡˈ n ɛ t ɪ k/ -Greek: “from, through, across” - repelled by magnets. We have from L2: 1 2 the force is directed antiparallel to the gradient of B2 F = V ∇ B i.e. -
5.1 Two-Particle Systems
5.1 Two-Particle Systems We encountered a two-particle system in dealing with the addition of angular momentum. Let's treat such systems in a more formal way. The w.f. for a two-particle system must depend on the spatial coordinates of both particles as @Ψ well as t: Ψ(r1; r2; t), satisfying i~ @t = HΨ, ~2 2 ~2 2 where H = + V (r1; r2; t), −2m1r1 − 2m2r2 and d3r d3r Ψ(r ; r ; t) 2 = 1. 1 2 j 1 2 j R Iff V is independent of time, then we can separate the time and spatial variables, obtaining Ψ(r1; r2; t) = (r1; r2) exp( iEt=~), − where E is the total energy of the system. Let us now make a very fundamental assumption: that each particle occupies a one-particle e.s. [Note that this is often a poor approximation for the true many-body w.f.] The joint e.f. can then be written as the product of two one-particle e.f.'s: (r1; r2) = a(r1) b(r2). Suppose furthermore that the two particles are indistinguishable. Then, the above w.f. is not really adequate since you can't actually tell whether it's particle 1 in state a or particle 2. This indeterminacy is correctly reflected if we replace the above w.f. by (r ; r ) = a(r ) (r ) (r ) a(r ). 1 2 1 b 2 b 1 2 The `plus-or-minus' sign reflects that there are two distinct ways to accomplish this. Thus we are naturally led to consider two kinds of identical particles, which we have come to call `bosons' (+) and `fermions' ( ). -
On Wave Equations for the Majorana Particle in (3+1) and (1+1) Dimensions
On wave equations for the Majorana particle in (3+1) and (1+1) dimensions Salvatore De Vincenzo1, ∗ 1Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47145, Caracas 1041-A, Venezuela.y (Dated: January 19, 2021) In general, the relativistic wave equation considered to mathematically describe the so-called Majorana particle is the Dirac equation with a real Lorentz scalar potential plus the so-called Majorana condition. Certainly, depending on the representation that one uses, the resulting dierential equation changes. It could be a real or a complex system of coupled equations, or it could even be a single complex equation for a single component of the entire wave function. Any of these equations or sys- tems of equations could be referred to as a Majorana equation or Majorana system of equations because it can be used to describe the Majorana particle. For example, in the Weyl representation, in (3+1) dimensions, we can have two non-equivalent explicitly covariant complex rst-order equations; in contrast, in (1+1) dimensions, we have a complex system of coupled equations. In any case, whichever equation or system of equations is used, the wave function that describes the Majorana particle in (3+1) or (1+1) dimensions is determined by four or two real quantities. The aim of this paper is to study and discuss all these issues from an algebraic point of view, highlighting the similarities and dierences that arise between these equations in the cases of (3+1) and (1+1) dimensions in the Dirac, Weyl, and Majorana represen- tations. -
Identical Particles in Classical Physics One Can Distinguish Between
Identical particles In classical physics one can distinguish between identical particles in such a way as to leave the dynamics unaltered. Therefore, the exchange of particles of identical particles leads to di®erent con¯gurations. In quantum mechanics, i.e., in nature at the microscopic levels identical particles are indistinguishable. A proton that arrives from a supernova explosion is the same as the proton in your glass of water.1 Messiah and Greenberg2 state the principle of indistinguishability as \states that di®er only by a permutation of identical particles cannot be distinguished by any obser- vation whatsoever." If we denote the operator which interchanges particles i and j by the permutation operator Pij we have ^ y ^ hªjOjªi = hªjPij OPijjÃi ^ which implies that Pij commutes with an arbitrary observable O. In particular, it commutes with the Hamiltonian. All operators are permutation invariant. Law of nature: The wave function of a collection of identical half-odd-integer spin particles is completely antisymmetric while that of integer spin particles or bosons is completely symmetric3. De¯ning the permutation operator4 by Pij ª(1; 2; ¢ ¢ ¢ ; i; ¢ ¢ ¢ ; j; ¢ ¢ ¢ N) = ª(1; 2; ¢ ¢ ¢ ; j; ¢ ¢ ¢ ; i; ¢ ¢ ¢ N) we have Pij ª(1; 2; ¢ ¢ ¢ ; i; ¢ ¢ ¢ ; j; ¢ ¢ ¢ N) = § ª(1; 2; ¢ ¢ ¢ ; i; ¢ ¢ ¢ ; j; ¢ ¢ ¢ N) where the upper sign refers to bosons and the lower to fermions. Emphasize that the symmetry requirements only apply to identical particles. For the hydrogen molecule if I and II represent the coordinates and spins of the two protons and 1 and 2 of the two electrons we have ª(I;II; 1; 2) = ¡ ª(II;I; 1; 2) = ¡ ª(I;II; 2; 1) = ª(II;I; 2; 1) 1On the other hand, the elements on earth came from some star/supernova in the distant past. -
The Conventionality of Parastatistics
The Conventionality of Parastatistics David John Baker Hans Halvorson Noel Swanson∗ March 6, 2014 Abstract Nature seems to be such that we can describe it accurately with quantum theories of bosons and fermions alone, without resort to parastatistics. This has been seen as a deep mystery: paraparticles make perfect physical sense, so why don't we see them in nature? We consider one potential answer: every paraparticle theory is physically equivalent to some theory of bosons or fermions, making the absence of paraparticles in our theories a matter of convention rather than a mysterious empirical discovery. We argue that this equivalence thesis holds in all physically admissible quantum field theories falling under the domain of the rigorous Doplicher-Haag-Roberts approach to superselection rules. Inadmissible parastatistical theories are ruled out by a locality- inspired principle we call Charge Recombination. Contents 1 Introduction 2 2 Paraparticles in Quantum Theory 6 ∗This work is fully collaborative. Authors are listed in alphabetical order. 1 3 Theoretical Equivalence 11 3.1 Field systems in AQFT . 13 3.2 Equivalence of field systems . 17 4 A Brief History of the Equivalence Thesis 20 4.1 The Green Decomposition . 20 4.2 Klein Transformations . 21 4.3 The Argument of Dr¨uhl,Haag, and Roberts . 24 4.4 The Doplicher-Roberts Reconstruction Theorem . 26 5 Sharpening the Thesis 29 6 Discussion 36 6.1 Interpretations of QM . 44 6.2 Structuralism and Haecceities . 46 6.3 Paraquark Theories . 48 1 Introduction Our most fundamental theories of matter provide a highly accurate description of subatomic particles and their behavior. -
Talk M.Alouani
From atoms to solids to nanostructures Mebarek Alouani IPCMS, 23 rue du Loess, UMR 7504, Strasbourg, France European Summer Campus 2012: Physics at the nanoscale, Strasbourg, France, July 01–07, 2012 1/107 Course content I. Magnetic moment and magnetic field II. No magnetism in classical mechanics III. Where does magnetism come from? IV. Crystal field, superexchange, double exchange V. Free electron model: Spontaneous magnetization VI. The local spin density approximation of the DFT VI. Beyond the DFT: LDA+U VII. Spin-orbit effects: Magnetic anisotropy, XMCD VIII. Bibliography European Summer Campus 2012: Physics at the nanoscale, Strasbourg, France, July 01–07, 2012 2/107 Course content I. Magnetic moment and magnetic field II. No magnetism in classical mechanics III. Where does magnetism come from? IV. Crystal field, superexchange, double exchange V. Free electron model: Spontaneous magnetization VI. The local spin density approximation of the DFT VI. Beyond the DFT: LDA+U VII. Spin-orbit effects: Magnetic anisotropy, XMCD VIII. Bibliography European Summer Campus 2012: Physics at the nanoscale, Strasbourg, France, July 01–07, 2012 3/107 Magnetic moments In classical electrodynamics, the vector potential, in the magnetic dipole approximation, is given by: μ μ × rˆ Ar()= 0 4π r2 where the magnetic moment μ is defined as: 1 μ =×Id('rl ) 2 ∫ It is shown that the magnetic moment is proportional to the angular momentum μ = γ L (γ the gyromagnetic factor) The projection along the quantification axis z gives (/2Bohrmaμ = eh m gneton) μzB= −gmμ Be European Summer Campus 2012: Physics at the nanoscale, Strasbourg, France, July 01–07, 2012 4/107 Magnetization and Field The magnetization M is the magnetic moment per unit volume In free space B = μ0 H because there is no net magnetization. -
Majorana Neutrinos
Lecture III: Majorana neutrinos Petr Vogel, Caltech NLDBD school, October 31, 2017 Whatever processes cause 0νββ, its observation would imply the existence of a Majorana mass term and thus would represent ``New Physics’’: Schechter and Valle,82 – – (ν) e e R 0νββ νL W u d d u W By adding only Standard model interactions we obtain (ν)R → (ν)L Majorana mass term Hence observing the 0νββ decay guaranties that ν are massive Majorana particles. But the relation between the decay rate and neutrino mass might be complicated, not just as in the see-saw type I. The Black Box in the multiloop graph is an effective operator for neutrinoless double beta decay which arises from some underlying New Physics. It implies that neutrinoless double beta decay induces a non-zero effective Majorana mass for the electron neutrino, no matter which is the mechanism of the decay. However, the diagram is almost certainly not the only one that generates a non-zero effective Majorana mass for the electron neutrino. Duerr, Lindner and Merle in arXiv:1105.0901 have shown that 25 evaluation of the graph, using T1/2 > 10 years implies that -28 δmν = 5x10 eV. This is clearly much too small given what we know from oscillation data. Therefore, other operators must give leading contribution to the neutrino masses. Petr Vogel: QM of Majorana particles Weyl, Dirac and Majorana relativistic equations: µ Free fermions obey the Dirac equation: (γ pµ m) =0 − µ 01 0 ~ 10 Lets use the following(γ p representationµ γm0 =) 0 =01 of~ the= 0γ matrices:− 1 γ5 = 0 1 − B 10C B ~ 0 C B 0 1 C B C B C B C µ @ A @ A @ − A 01(γ pµ m0) =0~ 10 γ0 = 0 1 ~ −= 0 − 1 γ5 = 0 1 B 10C B ~ 0 C B 0 1 C B C B C B C 01 @ A 0 @ ~ A 10@ − A γ0 = 0 The 1Dirac~ equations= 0 − can 1be thenγ5 rewritten= 0 as 1two coupled B 10C B ~ 0 C B 0 1 C B two-componentC B equationsC B C @ A @ A @ − A m +(E ~p ~ ) + =0 − − − (E + ~p ~ ) m + =0 − − Here ψ- = (1 - γ5)/2 Ψ = ψL, and ψ+ = (1 + γ5)/2 Ψ = ψR are the chiral projections. -
Majorana Equation and Its Consequences in Physics
Majorana equation and its consequences in physics and philosophy Daniel Parrochia Abstract There will be nothing in this text about Majorana’s famous disappear- ance or about the romantic mythology that surrounds him (see [13]). No more on the sociological considerations of the author (see [22]) or on its presumed "transverse" epistemology (see [30]). We focus here on the work of the physicist, and more partic- ularly on his 1937 article on the symmetrical theory of the electron and the positron, probably one of the most important theory for contemporary thought. We recall the context of this article (Dirac’s relativistic electron wave equation) and analyze how Majorana deduces his own equation from a very general variational principle. After having rewritten Majorana’s equation in a more contemporary language, we study its implications in condensed matter physics and their possible applications in quantum computing. Finally, we describe some of the consequences of Majorana’s approach to philosophy. Physics and Astonomy Classification Scheme (2010): 01.65.+g, 01.70.+w. key-words Dirac, Majorana, neutrinos, quasi-particules, supraconduction, quantum computer. 1 Introduction arXiv:1907.11169v1 [physics.hist-ph] 20 Jun 2019 One of the most beautiful jewels in theoretical physics is the Dirac relativistic electron wave equation (see [3] and [4]), at the origin of the notion of antimatter in the end of the 1920s. This discovery has no doubt been often commented upon and the Dirac 1 equation itself has been the subject of a large literature in the scientific field (see [?]). However, as we know, there is another deduction of this equation presented by the Italian physicist Ettore Majorana in 1937, that has the distinction of leading to purely real solutions where the particles are their own symmetrical. -
Spontaneous Symmetry Breaking and Mass Generation As Built-In Phenomena in Logarithmic Nonlinear Quantum Theory
Vol. 42 (2011) ACTA PHYSICA POLONICA B No 2 SPONTANEOUS SYMMETRY BREAKING AND MASS GENERATION AS BUILT-IN PHENOMENA IN LOGARITHMIC NONLINEAR QUANTUM THEORY Konstantin G. Zloshchastiev Department of Physics and Center for Theoretical Physics University of the Witwatersrand Johannesburg, 2050, South Africa (Received September 29, 2010; revised version received November 3, 2010; final version received December 7, 2010) Our primary task is to demonstrate that the logarithmic nonlinearity in the quantum wave equation can cause the spontaneous symmetry break- ing and mass generation phenomena on its own, at least in principle. To achieve this goal, we view the physical vacuum as a kind of the funda- mental Bose–Einstein condensate embedded into the fictitious Euclidean space. The relation of such description to that of the physical (relativis- tic) observer is established via the fluid/gravity correspondence map, the related issues, such as the induced gravity and scalar field, relativistic pos- tulates, Mach’s principle and cosmology, are discussed. For estimate the values of the generated masses of the otherwise massless particles such as the photon, we propose few simple models which take into account small vacuum fluctuations. It turns out that the photon’s mass can be naturally expressed in terms of the elementary electrical charge and the extensive length parameter of the nonlinearity. Finally, we outline the topological properties of the logarithmic theory and corresponding solitonic solutions. DOI:10.5506/APhysPolB.42.261 PACS numbers: 11.15.Ex, 11.30.Qc, 04.60.Bc, 03.65.Pm 1. Introduction Current observational data in astrophysics are probing a regime of de- partures from classical relativity with sensitivities that are relevant for the study of the quantum-gravity problem [1,2]. -
International Centre for Theoretical Physics
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS OUTLINE OF A NONLINEAR, RELATIVISTIC QUANTUM MECHANICS OF EXTENDED PARTICLES Eckehard W. Mielke INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1981 MIRAMARE-TRIESTE IC/81/9 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization 3TERKATIOHAL CENTRE FOR THEORETICAL PHTSICS OUTLINE OF A NONLINEAR, KELATIVXSTTC QUANTUM HECHAHICS OF EXTENDED PARTICLES* Eckehard W. Mielke International Centre for Theoretical Physics, Trieste, Italy. MIRAHABE - TRIESTE January 198l • Submitted for publication. ABSTRACT I. INTRODUCTION AMD MOTIVATION A quantum theory of intrinsically extended particles similar to de Broglie's In recent years the conviction has apparently increased among most theory of the Double Solution is proposed, A rational notion of the particle's physicists that all fundamental interactions between particles - including extension is enthroned by realizing its internal structure via soliton-type gravity - can be comprehended by appropriate extensions of local gauge theories. solutions of nonlinear, relativistic wave equations. These droplet-type waves The principle of gauge invarisince was first formulated in have a quasi-objective character except for certain boundary conditions vhich 1923 by Hermann Weyl[l57] with the aim to give a proper connection between may be subject to stochastic fluctuations. More precisely, this assumption Dirac's relativistic quantum theory [37] of the electron and the Maxwell- amounts to a probabilistic description of the center of a soliton such that it Lorentz's theory of electromagnetism. Later Yang and Mills [167] as well as would follow the conventional quantum-mechanical formalism in the limit of zero Sharp were able to extend the latter theory to a nonabelian gauge particle radius. -
Quantum Statistics (Quantenstatistik)
Chapter 7 Quantum Statistics (Quantenstatistik) 7.1 Density of states of massive particles Our goal: discover what quantum effects bring into the statistical description of systems. Formulate conditions under which QM-specific effects are not essential and classical descriptions can be used. Consider a single particle in a box with infinitely high walls U ε3 ε2 Figure 7.1: Levels of a single particle in a 3D box. At the ε1 box walls the potential is infinite and the wave-function is L zero. A one-particle Hamiltonian has only the momentum p^2 ~2 H^ = = − r2 (7.1) 2m 2m The infinite potential at the box boundaries imposes the zero-wave-function boundary condition. Hence the eigenfunctions of the Hamiltonian are k = sin(kxx) sin(kyy) sin(kzz) (7.2) ~ 2π + k = ~n; ~n = (n1; n2; n3); ni 2 Z (7.3) L ( ) ~ ~ 2π 2 ~p = ~~k; ϵ = k2 = ~n2;V = L3 (7.4) 2m 2m L 4π2~2 ) ϵ = ~n2 (7.5) 2mV 2=3 Let us introduce spin s (it takes into account possible degeneracy of the energy levels) and change the summation over ~n to an integration over ϵ X X X X X X Z X Z 1 ··· = ··· = · · · ∼ d3~n ··· = dn4πn2 ::: (7.6) 0 ν s ~k s ~n s s 45 46 CHAPTER 7. QUANTUM STATISTICS (QUANTENSTATISTIK) (2mϵ)1=2 V 1=3 1 1 V m3=2 n = V 1=3 ; dn = 2mdϵ, 4πn2dn = p ϵ1=2dϵ (7.7) 2π~ 2π~ 2 (2mϵ)1=2 2π2~3 X = gs = 2s + 1 spin-degeneracy (7.8) s Z X g V m3=2 1 ··· = ps dϵϵ1=2 ::: (7.9) 2~3 ν 2π 0 Number of states in a given energy range is higher at high energies than at low energies.