Differentiable Game Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Poetics of Reflection in Digital Games
© Copyright 2019 Terrence E. Schenold The Poetics of Reflection in Digital Games Terrence E. Schenold A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Brian M. Reed, Chair Leroy F. Searle Phillip S. Thurtle Program Authorized to Offer Degree: English University of Washington Abstract The Poetics of Reflection in Digital Games Terrence E. Schenold Chair of the Supervisory Committee: Brian Reed, Professor English The Poetics of Reflection in Digital Games explores the complex relationship between digital games and the activity of reflection in the context of the contemporary media ecology. The general aim of the project is to create a critical perspective on digital games that recovers aesthetic concerns for game studies, thereby enabling new discussions of their significance as mediations of thought and perception. The arguments advanced about digital games draw on philosophical aesthetics, media theory, and game studies to develop a critical perspective on gameplay as an aesthetic experience, enabling analysis of how particular games strategically educe and organize reflective modes of thought and perception by design, and do so for the purposes of generating meaning and supporting expressive or artistic goals beyond amusement. The project also provides critical discussion of two important contexts relevant to understanding the significance of this poetic strategy in the field of digital games: the dynamics of the contemporary media ecology, and the technological and cultural forces informing game design thinking in the ludic century. The project begins with a critique of limiting conceptions of gameplay in game studies grounded in a close reading of Bethesda's Morrowind, arguing for a new a "phaneroscopical perspective" that accounts for the significance of a "noematic" layer in the gameplay experience that accounts for dynamics of player reflection on diegetic information and its integral relation to ergodic activity. -
Learning Board Game Rules from an Instruction Manual Chad Mills A
Learning Board Game Rules from an Instruction Manual Chad Mills A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2013 Committee: Gina-Anne Levow Fei Xia Program Authorized to Offer Degree: Linguistics – Computational Linguistics ©Copyright 2013 Chad Mills University of Washington Abstract Learning Board Game Rules from an Instruction Manual Chad Mills Chair of the Supervisory Committee: Professor Gina-Anne Levow Department of Linguistics Board game rulebooks offer a convenient scenario for extracting a systematic logical structure from a passage of text since the mechanisms by which board game pieces interact must be fully specified in the rulebook and outside world knowledge is irrelevant to gameplay. A representation was proposed for representing a game’s rules with a tree structure of logically-connected rules, and this problem was shown to be one of a generalized class of problems in mapping text to a hierarchical, logical structure. Then a keyword-based entity- and relation-extraction system was proposed for mapping rulebook text into the corresponding logical representation, which achieved an f-measure of 11% with a high recall but very low precision, due in part to many statements in the rulebook offering strategic advice or elaboration and causing spurious rules to be proposed based on keyword matches. The keyword-based approach was compared to a machine learning approach, and the former dominated with nearly twenty times better precision at the same level of recall. This was due to the large number of rule classes to extract and the relatively small data set given this is a new problem area and all data had to be manually annotated. -
Branched Hamiltonians and Supersymmetry
Branched Hamiltonians and Supersymmetry Thomas Curtright, University of Miami Wigner 111 seminar, 12 November 2013 Some examples of branched Hamiltonians are explored, as recently advo- cated by Shapere and Wilczek. These are actually cases of switchback poten- tials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian dynamical systems in a classical context. A basic model, with a pair of Hamiltonian branches related by supersymmetry, is considered as an inter- esting illustration, and as stimulation. “It is quite possible ... we may discover that in nature the relation of past and future is so intimate ... that no simple representation of a present may exist.” – R P Feynman Based on work with Cosmas Zachos, Argonne National Laboratory Introduction to the problem In quantum mechanics H = p2 + V (x) (1) is neither more nor less difficult than H = x2 + V (p) (2) by reason of x, p duality, i.e. the Fourier transform: ψ (x) φ (p) ⎫ ⎧ x ⎪ ⎪ +i∂/∂p ⎪ ⇐⇒ ⎪ ⎬⎪ ⎨⎪ i∂/∂x p − ⎪ ⎪ ⎪ ⎪ ⎭⎪ ⎩⎪ This equivalence of (1) and (2) is manifest in the QMPS formalism, as initiated by Wigner (1932), 1 2ipy/ f (x, p)= dy x + y ρ x y e− π | | − 1 = dk p + k ρ p k e2ixk/ π | | − where x and p are on an equal footing, and where even more general H (x, p) can be considered. See CZ to follow, and other talks at this conference. Or even better, in addition to the excellent books cited at the conclusion of Professor Schleich’s talk yesterday morning, please see our new book on the subject ... Even in classical Hamiltonian mechanics, (1) and (2) are equivalent under a classical canonical transformation on phase space: (x, p) (p, x) ⇐⇒ − But upon transitioning to Lagrangian mechanics, the equivalence between the two theories becomes obscure. -
Games and Rules
Requirements for a General Game Mechanics Framework Imre Hofmann In this article I will apply a meta-theoretical approach to the question of how a game mechanics framework has to be designed in order to fulfil its task of ade- quately depicting or modeling the reality of game mechanics. I had two aims in mind when starting my research. I studied existing game theories and three game mechanics theories in particular in order to evaluate the state of the art of game mechanics theory. (Descriptive aim) The second aim followed on from these studies. With the results of my research I wanted to define the attributes a com- prehensive and general game mechanics theory might or – rather – needed to have. What are the general properties that such a theory should display? (Norma- tive aim) In my opinion the underlying mechanics of a game may be regarded in some way as its centerpiece. The reasons for this shall become clear over the course of this article. To begin with, I would like to make two terminological clarifications. First, I am not going to examine different game mechanics and typologies or categories of game mechanics. Instead, I will take a theoretical step backwards, so to speak, on the meta-level by analyzing and comparing different theories of game me- chanics (which themselves suggest categories and typologies). Secondly, I will use the expressions “game mechanics theory” “(game mechanics) framework” and “(game mechanics) model” synonymously. In my research I focused mainly on the following three key theories of game mechanics: 1. Carlo Fabricatore’s Gameplay and Game Mechanics Design (2007) 2. -
Week 3 Day 1: Designing Games with Conditionals
INTRODUCTION | CYBER ARCADE: PROGRAMMING AND MAKING WITH MICRO:BIT 3-1 | ELEMENTARY WEEK 3 DAY 1: DESIGNING GAMES WITH CONDITIONALS INTRODUCTION This week makers continue to use the Micro:bit microcontroller and begin coding and designing interactive games and art. ESSENTIAL QUESTIONS • How can we use code and math to create a fun game? • What is a conditional statement? • How do artists, engineers, and makers solve problems when they’re working? LEARNING OUTCOMES 1. Learn how to use code and conditionals to create a game. 2. Engage in project-based learning through problem-solving and troubleshooting by creating a game using a Micro:bit microcontroller and code. TEACHERLESSON | RESOURCE CYBER ARCADE: | CYBER PROGRAMMING ARCADE: PROGRAMMING AND MAKING AND WITH MAKING MICRO:BIT WITH MICRO:BIT 3-23-2 | | ELEMENTARY ELEMENTARY VOCABULARY Conditional: Set of rules performed if a certain condition is met Game mechanics: Basic actions, processes, visuals, and control mechanisms that are used to make a game Game designer: Person responsible for designing game storylines, plots, objectives, scenarios, the degree of difficulty, and character development Game engineer: Specialized software engineers who design and program video games Troubleshooting: Using resources to solve issues as they arise TEACHERLESSON | RESOURCE CYBER ARCADE: | CYBER PROGRAMMING ARCADE: PROGRAMMING AND MAKING AND WITH MAKING MICRO:BIT WITH MICRO:BIT 3-33-3 | | ELEMENTARY ELEMENTARY MATERIALS LIST EACH PAIR OF MAKERS NEEDS: • Micro:bit microcontroller • Laptop with internet connection • USB to micro-USB cord • USB flash drive • External battery pack • AAA batteries (2) • Notebook TEACHER RESOURCE | CYBER ARCADE: PROGRAMMING AND MAKING WITH MICRO:BIT 3-4 | ELEMENTARY They can also use the Troubleshooting Tips, search the internet for help, TEACHER PREP WORK or use the tutorial page on the MakeCode website. -
Computer Game Flow Design, ACM Computers in Entertainment, 4, 1
LJMU Research Online Taylor, MJ, Baskett, M, Reilly, D and Ravindran, S Game theory for computer games design http://researchonline.ljmu.ac.uk/id/eprint/7332/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Taylor, MJ, Baskett, M, Reilly, D and Ravindran, S (2017) Game theory for computer games design. Games and Culture, 14 (7-8). pp. 843-855. ISSN 1555-4139 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ Game theory for computer games design Abstract Designing and developing computer games can be a complex activity that may involve professionals from a variety of disciplines. In this article, we examine the use of game theory for supporting the design of game play within the different sections of a computer game, and demonstrate its application in practice via adapted high-level decision trees for modelling the flow in game play and payoff matrices for modelling skill or challenge levels. -
BRST APPROACH to HAMILTONIAN SYSTEMS Our Starting Point Is the Partition Function
BRST APPROACH TO HAMILTONIAN SYSTEMS A.K.Aringazin1, V.V.Arkhipov2, and A.S.Kudusov3 Department of Theoretical Physics Karaganda State University Karaganda 470074 Kazakstan Preprint KSU-DTP-10/96 Abstract BRST formulation of cohomological Hamiltonian mechanics is presented. In the path integral approach, we use the BRST gauge fixing procedure for the partition func- tion with trivial underlying Lagrangian to fix symplectic diffeomorphism invariance. Resulting Lagrangian is BRST and anti-BRST exact and the Liouvillian of classical mechanics is reproduced in the ghost-free sector. The theory can be thought of as a topological phase of Hamiltonian mechanics and is considered as one-dimensional cohomological field theory with the target space a symplectic manifold. Twisted (anti- )BRST symmetry is related to global N = 2 supersymmetry, which is identified with an exterior algebra. Landau-Ginzburg formulation of the associated d = 1, N = 2 model is presented and Slavnov identity is analyzed. We study deformations and per- turbations of the theory. Physical states of the theory and correlation functions of the BRST invariant observables are studied. This approach provides a powerful tool to investigate the properties of Hamiltonian systems. PACS number(s): 02.40.+m, 03.40.-t,03.65.Db, 11.10.Ef, 11.30.Pb. arXiv:hep-th/9811026v1 2 Nov 1998 [email protected] [email protected] [email protected] 1 1 INTRODUCTION Recently, path integral approach to classical mechanics has been developed by Gozzi, Reuter and Thacker in a series of papers[1]-[10]. They used a delta function constraint on phase space variables to satisfy Hamilton’s equation and a sort of Faddeev-Popov representation. -
Games and Rules
Games as a Special Zone Motivation Mechanics of Games René Bauer PLAY AS POSSIBILITY SPACE In games, sheep might speak, mountains fly, spaces move, moons disappear and faces morph; men can shrink, avatars can be moved, time rewound or frogs blown up. What would be regarded as delusional laws, imaginations and crazy ideas in other areas, as described for example in Dr. Daniel Schreber’s 1903 book “Denkwürdigkeiten eines Nervenkranken” (Memories of a Neuropath), is a tangible and interactive reality in many games. It is the special zone in which games operate that makes these divergent rules and laws culturally possible. Huizinga identified a number of playful special zones such as arenas, card tables, “Magic Circles”, stages or temples. They are all playgrounds. “The arena, the card-table, the magic circle, the temple, the stage, the screen, the tennis court, the court of justice, etc, are all in form and function play-grounds, i.e. forbidden spots, isolated, hedged round, hallowed, within which special rules obtain. All are tempo- rary worlds within the ordinary world, dedicated to the performance of an act apart.” (Huizinga 1955: 5) Thus, games (temporarily) position themselves against the ‘analog’ world with its fixed continuous rules that are based on atoms and their properties. The ana- log space surrounding us is bijective and continuous. It comes with three spatial dimensions, a continuous time and various resulting ‘laws’. The same applies to social and cultural conditions, which can also override or subvert games. This analog space and its rules become a complex, special set of rules in the much 36 | René Bauer more powerful possibility space of the games – or in other words: the analog space turns into another one of many game systems. -
Security in Online Gaming Bachelor Thesis Information Science
RADBOUD UNIVERSITY NIJMEGEN Security in online gaming Bachelor Thesis Information Science Rens van Summeren January 26, 2011 Online gaming has gone through an explosive growth in popularity during the last decade, and continues to grow at a great speed. With this growth in popularity and thus in the amount of players, the need for security also becomes increasingly clear. This thesis aims to provide a definition of security in online gaming, as well as security analysis for the various threats with examples and countermeasures. The goal is to help players and game developers assess online gaming security, and inform security experts about existing issues. CONTENTS 1 Introduction ................................................................................................................................... 1 Definition ............................................................................................................................... 1 Preface .................................................................................................................................. 1 2 Online Gaming ............................................................................................................................... 2 2.1 Why Look at the Security of Online Games? ................................................................... 2 2.2 Types of Online Games and Business Models ................................................................. 2 2.3 Massive Multiplayer Online Games ................................................................................ -
Antibrackets and Supersymmetric Mechanics
Preprint JINR E2-93-225 Antibrackets and Supersymmetric Mechanics Armen Nersessian 1 Laboratory of Theoretical Physics, JINR Dubna, Head Post Office, P.O.Box 79, 101 000 Moscow, Russia Abstract Using odd symplectic structure constructed over tangent bundle of the symplec- tic manifold, we construct the simple supergeneralization of an arbitrary Hamilto- arXiv:hep-th/9306111v2 29 Jul 1993 nian mechanics on it. In the case, if the initial mechanics defines Killing vector of some Riemannian metric, corresponding supersymmetric mechanics can be refor- mulated in the terms of even symplectic structure on the supermanifold. 1E-MAIL:[email protected] 1 Introduction It is well-known that on supermanifolds M the Poisson brackets of two types can be defined – even and odd ones, in correspondence with their Grassmannian grading 1. That is defined by the expression ∂ f ∂ g {f,g} = r ΩAB(z) l , (1.1) κ ∂zA κ ∂zB which satisfies the conditions p({f,g}κ)= p(f)+ p(g) + 1 (grading condition), (p(f)+κ)(p(g)+κ) {f,g}κ = −(−1) {g, f}κ (”antisymmetrisity”), (1.2) (p(f)+κ)(p(h)+κ) (−1) {f, {g, h}1}1 + cycl.perm.(f, g, h) = 0 (Jacobi id.), (1.3) l A ∂r ∂ where z are the local coordinates on M, ∂zA and ∂zA denote correspondingly the right and the left derivatives, κ = 0, 1 denote correspondingly the even and the odd Poisson brackets. Obviously, the even Poisson brackets can be nondegenerate only if dimM = (2N.M), and the odd one if dimM =(N.N). With nondegenerate Poisson bracket one can associate the symplectic structure A B Ωκ = dz Ω(κ)ABdz , (1.4) BC C where Ω(κ)AB Ωκ = δA . -
Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning
Proulx, J. N., Romero, M., & Arnab, S. (2016). Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning. Simulation & Gaming, 1046878116674399. Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning. Jean-Nicolas Proulx1, Margarida Romero1, Sylvester Arnab2 Abstract Background: Using digital games for educational purposes has been associated with higher levels of motivation among learners of different educational levels. However, the underlying psychological factors involved in digital game based learning (DGBL) have been rarely analyzed considering self-determination theory (SDT, Ryan & Deci, 2000b); the relation of SDT with the flow experience (Csikszentmihalyi, 1990) has neither been evaluated in the context of DGBL. Aim: This article evaluates DGBL under the perspective of SDT in order to improve the study of motivational factors in DGBL. Results: In this paper, we introduce the LMGM-SDT theoretical framework, where the use of DGBL is analyzed through the Learning Mechanics and Game Mechanics mapping model (LM-GM, Arnab et al., 2015) and its relation with the components of the SDT. The implications for the use of DGBL in order to promote learners’ motivation are also discussed. Keywords Digital game based learning, DGBL, education, flow, game mechanics, learning mechanics, LM-GM, LMGM-SDT, motivation, self-determination theory, SDT. 1 Université Laval, Québec, Canada 2 Disruptive Media Learning Lab, Coventry University, UK Corresponding Author: Jean-Nicolas Proulx, Department of Teaching and Learning Studies, Université Laval, Québec, Canada. Email : [email protected] Educational technologies and motivation One of the persistent educational myths is that technology fosters learners’ motivation by itself (Kleiman, 2000). -
Florin Gheorghe Filip Constantin-Bălă Zamfirescu Cristian Ciurea Computer‐ Supported Collaborative Decision‐ Making Automation, Collaboration, & E-Services
Automation, Collaboration, A C E S & E-Services Florin Gheorghe Filip Constantin-Bălă Zamfirescu Cristian Ciurea Computer‐ Supported Collaborative Decision‐ Making Automation, Collaboration, & E-Services Volume 4 Series editor Shimon Y. Nof, Purdue University, West Lafayette, USA e-mail: [email protected] About this Series The Automation, Collaboration, & E-Services series (ACES) publishes new devel- opments and advances in the fields of Automation, collaboration and e-services; rapidly and informally but with a high quality. It captures the scientific and engineer- ing theories and techniques addressing challenges of the megatrends of automation, and collaboration. These trends, defining the scope of the ACES Series, are evident with wireless communication, Internetworking, multi-agent systems, sensor networks, and social robotics – all enabled by collaborative e-Services. Within the scope of the series are monographs, lecture notes, selected contributions from spe- cialized conferences and workshops. More information about this series at http://www.springer.com/series/8393 Florin Gheorghe Filip • Constantin-Bălă Zamfirescu Cristian Ciurea Computer-Supported Collaborative Decision-Making 123 Florin Gheorghe Filip Cristian Ciurea Information Science and Technology Department of Economic Informatics Section, INCE and BAR and Cybernetics The Romanian Academy ASE Bucharest—The Bucharest University Bucharest of Economic Studies Romania Bucharest Romania Constantin-Bălă Zamfirescu Faculty of Engineering, Department of Computer Science and Automatic Control Lucian Blaga University of Sibiu Sibiu Romania ISSN 2193-472X ISSN 2193-4738 (electronic) Automation, Collaboration, & E-Services ISBN 978-3-319-47219-5 ISBN 978-3-319-47221-8 (eBook) DOI 10.1007/978-3-319-47221-8 Library of Congress Control Number: 2016953309 © Springer International Publishing AG 2017 This work is subject to copyright.