Statics a Special Case of Dynamics, an Alternative Approach To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Parallelogram Law Objective: to Take Students Through the Process
The Parallelogram Law Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof. I. Introduction: Use one of the following… • Geometer’s Sketchpad demonstration • Geogebra demonstration • The introductory handout from this lesson Using one of the introductory activities, allow students to explore and make a conjecture about the relationship between the sum of the squares of the sides of a parallelogram and the sum of the squares of the diagonals. Conjecture: The sum of the squares of the sides of a parallelogram equals the sum of the squares of the diagonals. Ask the question: Can we prove this is always true? II. Activity: Have students look at one more example. Follow the instructions on the exploration handouts, “Demonstrating the Parallelogram Law.” • Give each student a copy of the student handouts, scissors, a glue stick, and two different colored highlighters. Have students follow the instructions. When they get toward the end, they will need to cut very small pieces to fit in the uncovered space. Most likely there will be a very small amount of space left uncovered, or a small amount will extend outside the figure. • After the activity, discuss the results. Did the squares along the two diagonals fit into the squares along all four sides? Since it is unlikely that it will fit exactly, students might question if the relationship is always true. At this point, talk about how we will need to find a convincing proof. III. Go through one or more of the proofs below: Page 1 of 10 MCC@WCCUSD 02/26/13 A. -
Vector Mechanics: Statics
PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course G492 www.PDHonline.org Table of Contents Introduction ..................................................................................................................................... 1 Vectors ............................................................................................................................................ 1 Vector Decomposition ................................................................................................................ 2 Components of a Vector ............................................................................................................. 2 Force ............................................................................................................................................... 4 Equilibrium ..................................................................................................................................... 5 Equilibrium of a Particle ............................................................................................................. 6 Rigid Bodies.............................................................................................................................. 10 Pulleys ...................................................................................................................................... -
Knowledge Assessment in Statics: Concepts Versus Skills
Session 1168 Knowledge Assessment in Statics: Concepts versus skills Scott Danielson Arizona State University Abstract Following the lead of the physics community, engineering faculty have recognized the value of good assessment instruments for evaluating the learning of their students. These assessment instruments can be used to both measure student learning and to evaluate changes in teaching, i.e., did student-learning increase due different ways of teaching. As a result, there are significant efforts underway to develop engineering subject assessment tools. For instance, the Foundation Coalition is supporting assessment tool development efforts in a number of engineering subjects. These efforts have focused on developing “concept” inventories. These concept inventories focus on determining student understanding of the subject’s fundamental concepts. Separately, a NSF-supported effort to develop an assessment tool for statics was begun in the last year by the authors. As a first step, the project team analyzed prior work aimed at delineating important knowledge areas in statics. They quickly recognized that these important knowledge areas contained both conceptual and “skill” components. Both knowledge areas are described and examples of each are provided. Also, a cognitive psychology-based taxonomy of declarative and procedural knowledge is discussed in relation to determining the difference between a concept and a skill. Subsequently, the team decided to focus on development of a concept-based statics assessment tool. The ongoing Delphi process to refine the inventory of important statics concepts and validate the concepts with a broader group of subject matter experts is described. However, the value and need for a skills-based assessment tool is also recognized. -
Lecture 10: Impulse and Momentum
ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Kinetics of a particle: Impulse and Momentum Chapter 15 Chapter objectives • Develop the principle of linear impulse and momentum for a particle • Study the conservation of linear momentum for particles • Analyze the mechanics of impact • Introduce the concept of angular impulse and momentum • Solve problems involving steady fluid streams and propulsion with variable mass W. Wang Lecture 10 • Kinetics of a particle: Impulse and Momentum (Chapter 15) - 15.1-15.3 W. Wang Material covered • Kinetics of a particle: Impulse and Momentum - Principle of linear impulse and momentum - Principle of linear impulse and momentum for a system of particles - Conservation of linear momentum for a system of particles …Next lecture…Impact W. Wang Today’s Objectives Students should be able to: • Calculate the linear momentum of a particle and linear impulse of a force • Apply the principle of linear impulse and momentum • Apply the principle of linear impulse and momentum to a system of particles • Understand the conditions for conservation of momentum W. Wang Applications 1 A dent in an automotive fender can be removed using an impulse tool, which delivers a force over a very short time interval. How can we determine the magnitude of the linear impulse applied to the fender? Could you analyze a carpenter’s hammer striking a nail in the same fashion? W. Wang Applications 2 Sure! When a stake is struck by a sledgehammer, a large impulsive force is delivered to the stake and drives it into the ground. -
Classical Mechanics
Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation . -
CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar
CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar Multiplication for Vectors. §1. Basics. Geometric or physical quantities such as length, area, volume, tempera- ture, pressure, speed, energy, capacity etc. are given by specifying a single numbers. Such quantities are called scalars, because many of them can be measured by tools with scales. Simply put, a scalar is just a number. Quantities such as force, velocity, acceleration, momentum, angular velocity, electric or magnetic field at a point etc are vector quantities, which are represented by an arrow. If the ‘base’ and the ‘head’ of this arrow are B and H repectively, then we denote this vector by −−→BH: Figure 1. Often we use a single block letter in lower case, such as u, v, w, p, q, r etc. to denote a vector. Thus, if we also use v to denote the above vector −−→BH, then v = −−→BH.A vector v has two ingradients: magnitude and direction. The magnitude is the length of the arrow representing v, and is denoted by v . In case v = −−→BH, certainly we | | have v = −−→BH for the magnitude of v. The meaning of the direction of a vector is | | | | self–evident. Two vectors are considered to be equal if they have the same magnitude and direction. You recognize two equal vectors in drawing, if their representing arrows are parallel to each other, pointing in the same way, and have the same length 1 Figure 2. For example, if A, B, C, D are vertices of a parallelogram, followed in that order, then −→AB = −−→DC and −−→AD = −−→BC: Figure 3. -
Impact Dynamics of Newtonian and Non-Newtonian Fluid Droplets on Super Hydrophobic Substrate
IMPACT DYNAMICS OF NEWTONIAN AND NON-NEWTONIAN FLUID DROPLETS ON SUPER HYDROPHOBIC SUBSTRATE A Thesis Presented By Yingjie Li to The Department of Mechanical and Industrial Engineering in partial fulfillment of the requirements for the degree of Master of Science in the field of Mechanical Engineering Northeastern University Boston, Massachusetts December 2016 Copyright (©) 2016 by Yingjie Li All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of Yingjie Li or designated representatives. ACKNOWLEDGEMENTS I hereby would like to appreciate my advisors Professors Kai-tak Wan and Mohammad E. Taslim for their support, guidance and encouragement throughout the process of the research. In addition, I want to thank Mr. Xiao Huang for his generous help and continued advices for my thesis and experiments. Thanks also go to Mr. Scott Julien and Mr, Kaizhen Zhang for their invaluable discussions and suggestions for this work. Last but not least, I want to thank my parents for supporting my life from China. Without their love, I am not able to complete my thesis. TABLE OF CONTENTS DROPLETS OF NEWTONIAN AND NON-NEWTONIAN FLUIDS IMPACTING SUPER HYDROPHBIC SURFACE .......................................................................... i ACKNOWLEDGEMENTS ...................................................................................... iii 1. INTRODUCTION .................................................................................................. 9 1.1 Motivation ........................................................................................................ -
Post-Newtonian Approximation
Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism Post-Newtonian Approximation Piotr Jaranowski Faculty of Physcis, University of Bia lystok,Poland 01.07.2013 P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Relativistic binary systems exist in nature, they comprise compact objects: neutron stars or black holes. These systems emit gravitational waves, which experimenters try to detect within the LIGO/VIRGO/GEO600 projects. -
Apollonian Circle Packings: Dynamics and Number Theory
APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them. -
New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics Guagsan Yu* Harbin Macro, Dynamics Institute, P
Computa & tio d n ie a l l p M Yu, J Appl Computat Math 2015, 4:3 p a Journal of A t h f e o m l DOI: 10.4172/2168-9679.1000222 a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics GuagSan Yu* Harbin Macro, Dynamics Institute, P. R. China Abstract Textual point of view, generate in a series of rotational dynamics experiment. Initial research, is wish find a method overcome the momentum conservation. But further study, again detected inside the classical mechanics, the error of the principle of force moment. Then a series of, momentous the error of inside classical theory, all discover come out. The momentum conservation law is wrong; the newton third law is wrong; the energy conservation law is also can surpass. After redress these error, the new theory namely perforce bring. This will involve the classical physics and mechanics the foundation fraction, textbooks of physics foundation part should proceed the grand modification. Keywords: Rigid body; Inertia torque; Centroid moment; Centroid occurrence change? The Inertia-torque, namely, such as Figure 3 the arm; Statics; Static force; Dynamics; Conservation law show, the particle m (the m is also its mass) is a r 1 to O the slewing radius, so it the Inertia-torque is: Introduction I = m.r1 (1.1) Textual argumentation is to bases on the several simple physics experiment, these experiments pass two videos the document to The Inertia-torque is similar with moment of force, to the same of proceed to demonstrate. -
Ill.'Dept. of Mathemat Available in Hard Copy Due To:Copyright,Restrictions
Docusty4 REWIRE . ED184843 E 030 460 AUTHOR Kogan, B. Yu TITLE The Application àf Me anics to Ge setry. Popullr Lectures in Mathematice. 'INSTITUTION Cbicag Univ. Ill.'Dept. of Mathemat s. SPONS AGENCY National Science Foundation, Nashington;.D.C. PUB DATE 74 GRANT NSLY-3-13847(MA) NOTE 65p.; ?or related documents, see SE 030 4-61-465. Not available in hard copy due to:copyright,restrictions. Translated and adapted from the Russian edition. 'AVAILABLE FROM The University of Chicago Press, Chicaip, IL 60637. (Order No. 450163; $4.50). EDRS PRICE MP01 Plus Postage.. PC Not Available from ED4S. DESZRIPTORS *College Mathematics; Force; Geometric Concepti; *Geometry; Higher Education; Lecture Method; *Mathematical Applications; *Mathemaiics; *Mechanics (Physics) ABBTRAiT Presented in thir traInslktion are three chapters. Chapter I discusses the compbsitivn of forces and several theoreas of geometry are proved using the'fundamental conceptsand certain laws of statics. Chapter II discusses the perpetual motion postRlate; several geometri:l.theorems are proved, uting the postulate t4t p9rp ual motion is iipossib?e. In Chapter ILI,' the Center of Gray Potential Energy, and Vork are discussed. (MK) a N'4 , * Reproductions supplied by EDRS are the best that can be madel * * from the original document. * U.S. DIEPARTMINT OP WEALTH. g.tpUCATION WILPARI - aATIONAL INSTITTLISM Oa IDUCATION THIS DOCUMENT HAS BEEN REPRO. atiCED EXACTLMAIS RECEIVED Flicw THE PERSON OR ORGANIZATION DRPOIN- ATINO IT POINTS'OF VIEW OR OPINIONS STATED DO NOT NECESSARILY WEPRE.' se NT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY 0 * "PERMISSION TO REPRODUC THIS MATERIAL IN MICROFICHE dIlLY HAS SEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)." -Mlk -1 Popular Lectures In nithematics. -
Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.