Thorium Research in the Manhattan Project Era
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Preliminary Report of the Battle of the Crater, 30 July 1864
Holding the Line A Preliminary Report of The Battle of the Crater 30 July 1864 Adrian Mandzy, Ph. D. Michelle Sivilich, Ph. D. Benjamin Lewis Fitzpatrick, Ph. D. Dan Sivilich Floyd Patrick Davis Kelsey P. Becraft Dakota Leigh Goedel Jeffrey A. McFadden Jessey C. Reed Jaron A. Rucker A PRELIMINARY REPORT ON THE SURVEY OF THE BATTLE OF THE CRATER, 30 JULY 1864 By Adrian Mandzy, Ph.D., Michelle Sivilich, Ph. D., Floyd Patrick Davis, Kelsey P. Becraft, Dakota Leigh Goedel, Jeffrey A. McFadden, Jessey C. Reed, and Jaron A. Rucker With a Contributions by Daniel Sivilich and Dr. Benjamin Lewis Fitzpatrick Report prepared for the Northeast Region Archeology Program National Park Service 115 John Street, 4th Floor Lowell, Massachusetts 01852-1195 _______________________________ Adrian Mandzy Principal Investigator ARPA Permit 2014.PETE.01 2 Abstract In March 2015, faculty and students from Morehead State University’s History program, along with members of the Battlefield Restoration and Archeological Volunteer Organization (BRAVO) conducted a survey of The Crater Battlefield. Fought on 30 July 1864, during the Siege of Petersburg, the Battle of the Crater, according to the National Park Service, is one of the most important events of the Civil War. The participation of African-American troops in the battle and the subsequent execution of black prisoners highlights the racial animosities that were the underpinning causes of this conflict. The goal of this project is to document the level of integrity of any archaeological resources connected with this field of conflict and to examine how far the Union troops advance beyond the mouth of the Crater. -
Des Origines Du Programme Nucléaire Français À Nos Jours
Résistance et Dissuasion Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des origines du programme nucléaire français à nos jours EXPOSITION Résistance et Dissuasion Des origines du programme nucléaire français à nos jours © D.R. – ECPAD/Défense / Archives historiques CEA / Archives © D.R. – ECPAD/Défense Résistance et Dissuasion Des origines du programme nucléaire français à nos jours LE RÔLE PIONNIER DE LA FRANCE DANS LE DOMAINE DE L’éNERGIE NUCLÉAIRE De la découverte de la radioactivité naturelle à celle de la radioactivité artificielle Extrait du discours de réception du prix Nobel de physique, le 6 juin 1905, par Pierre Curie « (…) On peut concevoir encore que dans des mains criminelles le radium puisse devenir très dangereux, ès la fin du XIXe siècle, la France exerce un rôle majeur dans la Ci-dessus : Henri Becquerel dans son laboratoire, 1903 – D.R. et ici on peut se demander si l’humanité a avantage découverte de l’énergie atomique. C’est ainsi que le physicien Henri à connaître les secrets de la nature, si elle est mûre Becquerel découvre en 1896 le rayonnement émis par les sels À gauche : Pierre et Marie Curie dans leur laboratoire, vers 1898 pour en profiter ou si cette connaissance ne lui sera D Musée Curie (coll. ACJC) d’uranium ; c’est une découverte considérable car il vient de mettre en pas nuisible. Ci-dessous : Frédéric Joliot et Irène Curie dans leur laboratoire, évidence le phénomène de la radioactivité naturelle. L’étape suivante vers 1934 – Musée Curie (coll. -
The Making of an Atomic Bomb
(Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries. -
Wahlen, R. K. History of 100-B Area
WHC-EP-0273 History of 100-B Area R. K. Wahlen Date Published October 1989 Prepared for the U.S. Department of Energy Assistant Secretary for Management and Administration w Westinghouse P.O. Box 1970 0- Hanford mpany Richland, Washington &I352 Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-ACO6-87RLlOg30 WHC-EP-0273 EXECUTIVE SUMMARY In August 1939, Albert Einstein wrote a letter to President Roosevelt that informed him of the work that had been done by Enrico Fermi and L. Szilard on converting energy from the element uranium. He also informed President Roosevelt that there was strong evidence that the Germans were also working on this same development. This letter initiated a program by the United States to develop an atomic bomb. The U.S. Army Corps of Engineers, under the Department of Defense, was assigned the task. The program, which involved several locations in the United States, was given the code name, Manhattan Project. E. I. du Pont de Nemours & Company (Du Pont) was contracted to build and operate the reactors and chemical separations plants for the production of plutonium. On December 14, 1942, officials of Du Pont met in Wilmington, Delaware, to develop a set of criteria for the selection of a site for the reactors and separations plants. The basic criteria specified four requirements: (1) a large supply of clean water, (2) a large supply of electricity, (3) a large area with low population density, and (4) an area that would cover at least 12 by 16 mi. -
Marie Curie and Her Time
Marie Curie and Her Time by Hélène Langevin-Joliot to pass our lives near each other hypnotized by our dreams, your patriotic dream, our humanitarian dream, arie Curie (1867–1934) belongs to that exclu- and our scientific dream.” sive group of women whose worldwide rec- Frederick Soddy wrote about Marie that she was Mognition and fame have endured for a century “the most beautiful discovery of Pierre Curie.” Of or more. She was indeed one of the major agents of course, it might also be said that Pierre Curie was the scientific revolution which allowed experimen- “the most beautiful discovery of Marie Skłodowska.” tal investigation to extend beyond the macroscopic It is difficult to imagine more contrasting personali- world. Her work placed the first stone in the founda- ties than those of Pierre and of Marie. In spite of that, tion of a new discipline: radiochemistry. And Curie’s or because of that, they complemented each other achievements are even more remarkable since they astonishingly well. Pierre was as dreamy as Marie was occurred in the field of science, an intellectual activ- organized. At the same time, they shared similar ideas ity traditionally forbidden to women. However, these about family and society. accomplishments alone don’t seem to fully explain the near mythic status of Marie Curie today. One hundred years ago, she was often considered to be just an assistant to her husband. Perhaps the reason her name still resonates is because of the compelling story of her life and her intriguing personality. The Most Beautiful Discovery of Pierre Curie The story of the young Maria Skłodowska leaving In this iconic photograph of participants at the Fifth her native Poland to pursue upper-level studies in Solvay Conference in 1927, Marie Curie is third from Paris sounds like something out of a novel. -
Patronage and Science: Roger Revelle, the US Navy, And
PATRONAGE AND SCIENCE: ROGER REVELLE, THE NAVY, AND OCEANOGRAPHY AT THE SCRIPPS INSTITUTION RONALD RAINGER Department of History, Texas Tech University,Lubbock, TX 79409-1013, [email protected] Originally published as: Rainger, Ronald. "Patronage and Science: Roger Revelle, the U.S. Navy, and Oceanography at the Scripps Institution." Earth sciences history : journal of the History of the Earth Sciences Society 19(1):58-89, 2000. This article is reprinted courtesy of the History of the Sciences Society from Earth Sciences History, 2000, 19:58-89. ABSTRACT In the years between 1940 and 1955, American oceanography experienced considerable change. Nowhere was that more true than at the Scripps Institution of Oceanography in La Jolla, California. There Roger Revelle (1909-1991) played a major role in transforming a small, seaside laboratory into one of the leading oceanographic centers in the world. This paper explores the impact that World War II had on oceanography and his career. Through an analysis of his activities as a naval officer responsible for promoting oceanography in the navy and wartime civilian laboratories, this article examines his understanding of the relationship between military patronage and scientific research and the impact that this relationship had on disciplinary and institutional developments at Scripps. In 1947 Harald Sverdrup (1888-1957) and Roger Revelle, two of the leading oceanographers in the United States, made plans for Revelle's return to the Scripps 2 Institution of Oceanography (SIO). After six years of coordinating and promoting oceanography within the U.S. Navy, Revelle was returning to the center where he had earned his Ph.D. -
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering. -
Sky and Telescope
SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history. -
Confronting Antisemitism in Modern Media, the Legal and Political Worlds an End to Antisemitism!
Confronting Antisemitism in Modern Media, the Legal and Political Worlds An End to Antisemitism! Edited by Armin Lange, Kerstin Mayerhofer, Dina Porat, and Lawrence H. Schiffman Volume 5 Confronting Antisemitism in Modern Media, the Legal and Political Worlds Edited by Armin Lange, Kerstin Mayerhofer, Dina Porat, and Lawrence H. Schiffman ISBN 978-3-11-058243-7 e-ISBN (PDF) 978-3-11-067196-4 e-ISBN (EPUB) 978-3-11-067203-9 DOI https://10.1515/9783110671964 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For details go to https://creativecommons.org/licenses/by-nc-nd/4.0/ Library of Congress Control Number: 2021931477 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2021 Armin Lange, Kerstin Mayerhofer, Dina Porat, Lawrence H. Schiffman, published by Walter de Gruyter GmbH, Berlin/Boston The book is published with open access at www.degruyter.com Cover image: Illustration by Tayler Culligan (https://dribbble.com/taylerculligan). With friendly permission of Chicago Booth Review. Printing and binding: CPI books GmbH, Leck www.degruyter.com TableofContents Preface and Acknowledgements IX LisaJacobs, Armin Lange, and Kerstin Mayerhofer Confronting Antisemitism in Modern Media, the Legal and Political Worlds: Introduction 1 Confronting Antisemitism through Critical Reflection/Approaches -
Potentialities of a Low-Energy Detector Based on $^ 4$ He Evaporation to Observe Atomic Effects in Coherent Neutrino Scattering and Physics Perspectives
Potentialities of a low-energy detector based on 4He evaporation to observe atomic effects in coherent neutrino scattering and physics perspectives M. Cadeddu,1, ∗ F. Dordei,2, y C. Giunti,3, z K. A. Kouzakov,4, x E. Picciau,1, { and A. I. Studenikin5, 6, ∗∗ 1Universit`adegli studi di Cagliari and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I{10125 Torino, Italy 4Department of Nuclear Physics and Quantum Theory of Collisions, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 5Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 6Joint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia We propose an experimental setup to observe coherent elastic neutrino-atom scattering (CEνAS) using electron antineutrinos from tritium decay and a liquid helium target. In this scattering process with the whole atom, that has not beeen observed so far, the electrons tend to screen the weak charge of the nucleus as seen by the electron antineutrino probe. The interference between the nucleus and the electron cloud produces a sharp dip in the recoil spectrum at atomic recoil energies of about 9 meV, reducing sizeably the number of expected events with respect to the coherent elastic neutrino-nucleus scattering case. We estimate that with a 60 g tritium source surrounded by 500 kg of liquid helium in a cylindrical tank, one could observe the existence of CEνAS processes at 3σ in 5 years of data taking. -
Impact Cratering in the Solar System
Impact Cratering in the Solar System Michelle Kirchoff Lunar and Planetary Institute University of Houston - Clear Lake Physics Seminar March 24, 2008 Outline What is an impact crater? Why should we care about impact craters? Inner Solar System Outer Solar System Conclusions Open Questions What is an impact crater? Basically a hole in the ground… Barringer Meteor Crater (Earth) Bessel Crater (Moon) Diameter = 1.2 km Diameter = 16 km Depth = 200 m Depth = 2 km www.lpi.usra.edu What creates an “impact” crater? •Galileo sees circular features on Moon & realizes they are depressions (1610) •In 1600-1800’s many think they are volcanic features: look similar to extinct volcanoes on Earth; some even claim to see volcanic eruptions; space is empty (meteorites not verified until 1819 by Chladni) •G.K. Gilbert (1893) first serious support for lunar craters from impacts (geology and experiments) •On Earth Barringer (Meteor) crater recognized as created by impact by Barringer (1906) •Opik (1916) - impacts are high velocity, thus create circular craters at most impact angles Melosh, 1989 …High-Velocity Impacts! www.lpl.arizona.edu/SIC/impact_cratering/Chicxulub/Animation.gif Physics of Impact Cratering Understand how stress (or shock) waves propagate through material in 3 stages: 1. Contact and Compression 2. Excavation 3. Modification www.psi.edu/explorecraters/background.htm Hugoniot Equations Derived by P.H. Hugoniot (1887) to describe shock fronts using conservation of mass, momentum and energy across the discontinuity. equation (U-up) = oU of state P-Po = oupU E-Eo = (P+Po)(Vo-V)/2 P - pressure U - shock velocity up - particle velocity E - specific internal energy V = 1/specific volume) Understanding Crater Formation laboratory large simulations explosives (1950’s) (1940’s) www.nasa.gov/centers/ames/ numerical simulations (1960’s) www.lanl.gov/ Crater Morphology • Simple • Complex • Central peak/pit • Peak ring www3.imperial.ac. -
"But She's an Avowed Communist!" L'affaire Curie at the American Chemical Society, 1953-1955
ll. t. Ch. 20 ( 33 "BUT SHE'S AN AVOWED COMMUNIST!" L'AFFAIRE CURIE AT THE AMERICAN CHEMICAL SOCIETY, 1953-1955 Mrrt W. tr, Crnll Unvrt Intrdtn On ht hv xptd tht th Arn Chl St (ACS, n rnztn tht ld t b r n fr th dvnnt f htr nd nt n p ltl tt fr t brhp, ld rdl pt n ppltn fr bl lrt n htr. Yt th nt th th Irèn ltCr n . Aftr ntrntn ACS ffl rjtd hr brhp ppltn b f hr pltl rpttn (trnl lnd t th prCnt blf nd tvt f hr hbnd, rdr ltCr, nfrd hr f th dn bt v n rn, nd d nth n f thr tn pbll. Whn nth ltr hr frnd tnd nd pblzd hr rjtn, th b lèbr. h xtnv ntr nd rrpndn rrndn th pd t p bl t ntprr rtn t th d, hndln, nd nfn f th dn. Whn prd t n f th thr ntnt "th hnt" n th Untd Stt n th 40 nd 0, th pbl hrnt f ldn br f th Ar n Atn fr th Advnnt f Sn (AAAS, n n th dffrnt rtn. Whr th AAAS brd f drtr rpndd ttl t th ntnt rd b ltn E. U. Cndn nd Figure. 1 Irene Joliot-Curie (1897-1956). Shown here Krtl Mthr prdnt (, th ldr f th ACS late in life, Joliot-Curie shared the Nobel Prize in rfd t lt Md ltCr vn t br Chemistry with her husband Frederic in 1935. hp. "Affr Cr," t t b lld, l Intensely apolitical in her early life, she became more rvld trtrl tnn thn th ACS btn involved in French women's, socialist, and pro- th prttv ntnt f th br f th rd f Communist movements starting in the late 1930s.