GLUON CONTENT of the PROTON and HYPERON MAGNETIC MOMENTS Friedrich Wagner Max-Planck-Institut Ftir Physik Und Astrophysik, Munich, Fed.Rep.Germany

Total Page:16

File Type:pdf, Size:1020Kb

GLUON CONTENT of the PROTON and HYPERON MAGNETIC MOMENTS Friedrich Wagner Max-Planck-Institut Ftir Physik Und Astrophysik, Munich, Fed.Rep.Germany 4U9 GLUON CONTENT OF THE PROTON AND HYPERON MAGNETIC MOMENTS Friedrich Wagner Max-Planck-Institut ftir Physik und Astrophysik, Munich, Fed.Rep.Germany ABSTRACT It is shown, that a gluon three quark component in the baryon octet and decuplet ground state can be quite large, if it is due to a constant color magnetic field inside the hadron. In the flavor SU (3) limit it reproduces the usual SU (6) quark model prediction except for a reduction of G /G . Flavor breaking by quark masses improve the agreement of Hyperon magnetic momenA Vts with experiment con­ siderably by including such a gluon component. 410 Introduction I. The observed hadron spectrum can be explained phenomenologically by a simple model, namely by nonrelativistic mas sive quarks moving in a poten- tial Even details of the baryon spectrum can be accounted for by the Isgur­ 1). 2) Karl model . It is generally believed that such a model can be finally derived from a more fundamental theory where colored light quarks interact via (QCD) mas sless vector fields , the gluons . One proposal to solve this confinement pro­ 3 4 ) blem is made in analogy to superconductivity • where an electric Meissner effect prevents phys ical states other than color singlet states to exist. It seems to me unlikely that all long distance effects result in a nonrela­ QCD tivistic potential for quarks , and gluonic degrees of freedom can be discarded all together. One has already some hints that gluon components in the hadron wave function may be important. The hyperfine splitting of hadrons can be under­ S ) stood by a magnetic gluon exchange contribution to the energy . This second order perturbation contribution implies a first order change in the wave­ 6) function . Similarily gluon effects have been advocated to explain the mass splitting and decay rates in the charmonium states . Weak decays of mesons ? , S) D may be affected by gluon effect�. Especially nonleptonic (also K0 ) decays D may proceed via annihilation , however the rates are much too smal l, if the quarks are in a spin singlet state. If gluons are present, the quarks can be also in a triplet state, and annihilation is not suppressed. For quantitative s) agreement this component mus t be rather large . In deep inelastic scattering charged constituents carry only half the momentum of the proton . If this effect due to short distance gluons , these may leave some foot prints also at long 1, distances . In this paper we want to investigate the effect. of color magnetic forces on the hadron wave function . Usually this problem is treated by extrapolation of the short distance perturbation theory . This may be justified for heavy quarks (c ,b, ...) but not for light spectrum quarks (u,d,s) whose compton wave length is comparable to the hadronic size. Rather, we wi ll assume that in this case a slowly varying magnetic field induced by the color-n:� gnetic moments of the quarks leads to an adequate description of the gluonic effects . In analogy to problems in solid state physics one can solve the Hami ltonian for the quarks by a semi­ classical mean field approximation, which is to be discussed in section II. In presence of a color magnetic field the quarks are no longer in a color singlet state. By the Pauli principle this will change also the spin flavor wave-function and one may worry about the successful SU (6) prediction . In section III it will be demonstrated that in the frame work of the additive quark model the observ­ ables essentially do not change by the inclusion of Golor octet 3q configuration 411 in addition to the usual color-s inglet proton or state. We will not assume � any specific potential, but rather fit the free parameters to the observed masses of the octet and decuplet. This fixes the wave-functions , and static properties as G /G or hyperon magnetic moments can be predicted (section IV) . A V II. Magneto-static Hami ltonian for quarks We assume that color- electro-static forces lead to the usual nonrelativistic potential Hami ltonian Ho . To Ho we add the magnetic energy H from a constant m color magnetic field B . Its vector potential reads as a A (r) (1) a With the conditions 0 (2 ) the homogeneous Maxwell equation are satisfied . In the nonrelativistic approxima­ tion we obtain for H in terms of thE Pauli quark operator m � a g2 a H A 2 d A A A (3) m _!___m ,,,+"' KB2 a (L + a) + £12 A + abc b c iJ; 2 [ 4 ] The first term describes the interaction of B with the intrinsic and orbital mag­ a netic moment . Whereas the first two terms are also present in the last term QED , is typical for a SU(n) gauge group with n 3. It describes the coupling of the � quark charge �+ )ca � to the color charge of the magnetic field. In addition to equs . (1-3) there is the constraint from the inhomogeneous Maxwe ll equation, which we write in analogy to the usual electromagnetic case B ( ) a 4 where is the susceptibility of the hadronic ma tter. will differ from the X X diamagnetic value - due to vacuum polarization effects. If electrical con- �2m ) finement is due to magnetic monopoles in the vacuum4 , they will strongly in- fluence will in general depend on B itself. Since we are interested in X . X the effects of a strong B field we assume that is such that B saturates , the X field strength is independent of the strength of the source. Neglecting the L 2 and A terms in H equations (3)-·( ) are nothing else but the Heisenberg ferro- 1 4 ) ) magnet. Also the BCS model9 or the Jona-Lasini0-Nambu modellO have a similar 412 mathematical structure. All these models are solved in the mean field approxima­ tion by replacing the r.h.s. of equ. (4) by its expectation value. For a clas­ sical B field the Hamiltonian (3) can be solved with eigenstate [tf'<Bl . Then a -' ) equ. (4) becomes a nonlinear equation for B B a (5) the so-called self consistency equation (gap equation). ln our case Ba can b'e used to describe many gluon effects in the hadron wave function. From equ. (4) we conclude it must transfonn like spin 1 under rotations and like a color octet representation under color transformations . III. Baryon States with L 0 We want to solve the Hamiltonian (3) for the baryon ground state. These are color singlet states containing three quarks with orbital angular momentum L = 0. The most general state reads as + + + 1\f> - 1 lJ! lJ! lJ! lJ! (r l [o> (6) 13! a 1 a2 a, a,a,a, i a . JIi where the wave-functions 'f (r i) depends on the spin, color and flavor index ai. ai and the quark coordinates ri. The latter requires a specific Ho . We simply assume that this is independent from ai . Therefore the ri dependence can be fac­ tored out and need not to be considered anymore. consists of products of lfa . i color wave-functions Ci and spin flavor wave-functions F. The antisymmetric color singlet wave-function has to be combined with flavor spin F56 (7) lf0 . 1 . SS F or quar k s in a co or octet state C 8 t he flavor spin part mus te ba F70, wi'th quark spin S 3/2, 1/2. The quark spin S will be combined with a spin 1 color =k octet object•'ljJa (B) to total spin J ,M state. This leads to the following wave- functions , 2 (note that 1f2 = 0 for the flavor decuplet) (8) rllf S+� Color decuplet can be neglected since in this case H0 is purely repulsive. Occurrence of a F70 wave-function in the baryon groundstate will in general change the successful predictions of the naive SU (6) rr.odel, which are based on the F56 assignment. However these predictions are based on the additive quark model, which tests only the single particle density ma trix1 1) but not the whole wave-function. For the flavor octet this matrix is characterized by two flavor D. D coupling constants F and If only tpo is present one obtains = 1 and 413 F/D = 2/3. Almost any quark model prediction for the octet (magnetic moments , pseudoscalar coupling constants •••) depend only on this F/D ratio. Only = = GA/GV F+D 5/3 depends on the absolute size and disagrees with experiment. For the combination lf+ (Lf\ +Lf'2 ) for the octet one obtains the � F/D ratio as for If 0• Therefore �this combination leads to � quark model predictions as the usual tp0• Only the absolute size of D for lf+ is reduced to 2/3. Therefore % · i lf1 _ = (\f1-\f2) GA/GV will be for + alone. Presence of lf will lead to a dif­ ferent F/D ratio and thereby destroy the naive SU (6) pre�dicti ons . The Hami ltonian equ . (3) for the octet (decuplet) will be a 3x3 (2x2) ma trix in the space '-r lf> lf Solving12) the self-consistency equation (5) o ' + _ together with condition (2) we find that lf_ decouples from the octet ground state. Therefore, the admixture of a 70 wave-function induced by the color mag­ netic field does not change the usual SU(6) predictions except for GA/GV. In order to describe the hadron masses we have to introduce the usual flavor break­ ing by assuming a heavier s quark mass. By the same time also coupling to the magnetic color field gets reduced for s quarks � + a A�-+ mu B � a A� B + ms This flavor breaking changes the matrix elements and mixes a 'f_ component and flavor decuplet (singlet) contributions into the octet wave-functions.
Recommended publications
  • Higgs and Particle Production in Nucleus-Nucleus Collisions
    Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2016 c 2015 Zhe Liu All Rights Reserved Abstract Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsäcker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsäcker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium.
    [Show full text]
  • Baryon Number Fluctuation and the Quark-Gluon Plasma
    Baryon Number Fluctuation and the Quark-Gluon Plasma Z. W. Lin and C. M. Ko Because of the fractional baryon number Using the generating function at of quarks, baryon and antibaryon number equilibrium, fluctuations in the quark-gluon plasma is less than those in the hadronic matter, making them plausible signatures for the quark-gluon plasma expected to be formed in relativistic heavy ion with g(l) = ∑ Pn = 1 due to normalization of collisions. To illustrate this possibility, we have the multiplicity probability distribution, it is introduced a kinetic model that takes into straightforward to obtain all moments of the account both production and annihilation of equilibrium multiplicity distribution. In terms of quark-antiquark or baryon-antibaryon pairs [1]. the fundamental unit of baryon number bo in the In the case of only baryon-antibaryon matter, the mean baryon number per event is production from and annihilation to two mesons, given by i.e., m1m2 ↔ BB , we have the following master equation for the multiplicity distribution of BB pairs: while the squared baryon number fluctuation per baryon at equilibrium is given by In obtaining the last expressions in Eqs. (5) and In the above, Pn(ϑ) denotes the probability of ϑ 〈σ 〉 (6), we have kept only the leading term in E finding n pairs of BB at time ; G ≡ G v 〈σ 〉 corresponding to the grand canonical limit, and L ≡ L v are the momentum-averaged cross sections for baryon production and E 1, as baryons and antibaryons are abundantly produced in heavy ion collisions at annihilation, respectively; Nk represents the total number of particle species k; and V is the proper RHIC.
    [Show full text]
  • Fully Strange Tetraquark Sss¯S¯ Spectrum and Possible Experimental Evidence
    PHYSICAL REVIEW D 103, 016016 (2021) Fully strange tetraquark sss¯s¯ spectrum and possible experimental evidence † Feng-Xiao Liu ,1,2 Ming-Sheng Liu,1,2 Xian-Hui Zhong,1,2,* and Qiang Zhao3,4,2, 1Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 4University of Chinese Academy of Sciences, Beijing 100049, China (Received 21 August 2020; accepted 5 January 2021; published 26 January 2021) In this work, we construct 36 tetraquark configurations for the 1S-, 1P-, and 2S-wave states, and make a prediction of the mass spectrum for the tetraquark sss¯s¯ system in the framework of a nonrelativistic potential quark model without the diquark-antidiquark approximation. The model parameters are well determined by our previous study of the strangeonium spectrum. We find that the resonances f0ð2200Þ and 2340 2218 2378 f2ð Þ may favor the assignments of ground states Tðsss¯s¯Þ0þþ ð Þ and Tðsss¯s¯Þ2þþ ð Þ, respectively, and the newly observed Xð2500Þ at BESIII may be a candidate of the lowest mass 1P-wave 0−þ state − 2481 0þþ 2440 Tðsss¯s¯Þ0 þ ð Þ. Signals for the other ground state Tðsss¯s¯Þ0þþ ð Þ may also have been observed in PC −− the ϕϕ invariant mass spectrum in J=ψ → γϕϕ at BESIII. The masses of the J ¼ 1 Tsss¯s¯ states are predicted to be in the range of ∼2.44–2.99 GeV, which indicates that the ϕð2170Þ resonance may not be a good candidate of the Tsss¯s¯ state.
    [Show full text]
  • Arxiv:0810.4453V1 [Hep-Ph] 24 Oct 2008
    The Physics of Glueballs Vincent Mathieu Groupe de Physique Nucl´eaire Th´eorique, Universit´e de Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium. [email protected] Nikolai Kochelev Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia. [email protected] Vicente Vento Departament de F´ısica Te`orica and Institut de F´ısica Corpuscular, Universitat de Val`encia-CSIC, E-46100 Burjassot (Valencia), Spain. [email protected] Glueballs are particles whose valence degrees of freedom are gluons and therefore in their descrip- tion the gauge field plays a dominant role. We review recent results in the physics of glueballs with the aim set on phenomenology and discuss the possibility of finding them in conventional hadronic experiments and in the Quark Gluon Plasma. In order to describe their properties we resort to a va- riety of theoretical treatments which include, lattice QCD, constituent models, AdS/QCD methods, and QCD sum rules. The review is supposed to be an informed guide to the literature. Therefore, we do not discuss in detail technical developments but refer the reader to the appropriate references. I. INTRODUCTION Quantum Chromodynamics (QCD) is the theory of the hadronic interactions. It is an elegant theory whose full non perturbative solution has escaped our knowledge since its formulation more than 30 years ago.[1] The theory is asymptotically free[2, 3] and confining.[4] A particularly good test of our understanding of the nonperturbative aspects of QCD is to study particles where the gauge field plays a more important dynamical role than in the standard hadrons.
    [Show full text]
  • Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions
    Available online at www.sciencedirect.com Nuclear Physics A 967 (2017) 760–763 www.elsevier.com/locate/nuclphysa Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions Isaac Upsal for the STAR Collaboration1 Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210 Abstract Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory’s√ Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies sNN = 7.7 − 200 GeV. We report the first observation of globally polarized Λ and Λ hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision. 1. Introduction Collisions of nuclei at ultra-relativistic energies create a system of deconfined colored quarks and glu- ons, called the quark-gluon plasma (QGP). The large angular momentum (∼104−5) present in non-central collisions may produce a polarized QGP, in which quarks are polarized through spin-orbit coupling in QCD [1, 2, 3]. The polarization would be transmitted to hadrons in the final state and could be detectable through global hyperon polarization. Global hyperon polarization refers to the phenomenon in which the spin of Λ (and Λ) hyperons is corre- lated with the net angular momentum of the QGP which is perpendicular to the reaction plane, spanned by pbeam and b, where b is the impact parameter vector of the collision and pbeam is the beam momentum.
    [Show full text]
  • Light Higgs Production in Hyperon Decay
    Light Higgs Production in Hyperon Decay Xiao-Gang He∗ Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei. Jusak Tandean† Department of Mathematics/Physics/Computer Science, University of La Verne, La Verne, CA 91750, USA G. Valencia‡ Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA (Dated: July 8, 2018) Abstract A recent HyperCP observation of three events in the decay Σ+ pµ+µ− is suggestive of a new particle → with mass 214.3 MeV. In order to confront models that contain a light Higgs boson with this observation, it is necessary to know the Higgs production rate in hyperon decay. The contribution to this rate from penguin-like two-quark operators has been considered before and found to be too large. We point out that there are additional four-quark contributions to this rate that could be comparable in size to the two-quark contributions, and that could bring the total rate to the observed level in some models. To this effect we implement the low-energy theorems that dictate the couplings of light Higgs bosons to hyperons at leading order in chiral perturbation theory. We consider the cases of scalar and pseudoscalar Higgs bosons in the standard model and in its two-Higgs-doublet extensions to illustrate the challenges posed by existing experimental constraints and suggest possible avenues for models to satisfy them. arXiv:hep-ph/0610274v3 16 Apr 2008 ∗Electronic address: [email protected] †Electronic address: [email protected] ‡Electronic address: [email protected] 1 I. INTRODUCTION Three events for the decay mode Σ+ pµ+µ− with a dimuon invariant mass of 214.3 0.5 MeV → ± have been recently observed by the HyperCP Collaboration [1].
    [Show full text]
  • Charm and Strange Quark Contributions to the Proton Structure
    Report series ISSN 0284 - 2769 of SE9900247 THE SVEDBERG LABORATORY and \ DEPARTMENT OF RADIATION SCIENCES UPPSALA UNIVERSITY Box 533, S-75121 Uppsala, Sweden http://www.tsl.uu.se/ TSL/ISV-99-0204 February 1999 Charm and Strange Quark Contributions to the Proton Structure Kristel Torokoff1 Dept. of Radiation Sciences, Uppsala University, Box 535, S-751 21 Uppsala, Sweden Abstract: The possibility to have charm and strange quarks as quantum mechanical fluc- tuations in the proton wave function is investigated based on a model for non-perturbative QCD dynamics. Both hadron and parton basis are examined. A scheme for energy fluctu- ations is constructed and compared with explicit energy-momentum conservation. Resulting momentum distributions for charniand_strange quarks in the proton are derived at the start- ing scale Qo f°r the perturbative QCD evolution. Kinematical constraints are found to be important when comparing to the "intrinsic charm" model. Master of Science Thesis Linkoping University Supervisor: Gunnar Ingelman, Uppsala University 1 kuldsepp@tsl .uu.se 30-37 Contents 1 Introduction 1 2 Standard Model 3 2.1 Introductory QCD 4 2.2 Light-cone variables 5 3 Experiments 7 3.1 The HERA machine 7 3.2 Deep Inelastic Scattering 8 4 Theory 11 4.1 The Parton model 11 4.2 The structure functions 12 4.3 Perturbative QCD corrections 13 4.4 The DGLAP equations 14 5 The Edin-Ingelman Model 15 6 Heavy Quarks in the Proton Wave Function 19 6.1 Extrinsic charm 19 6.2 Intrinsic charm 20 6.3 Hadronisation 22 6.4 The El-model applied to heavy quarks
    [Show full text]
  • Discovery of Gluon
    Discovery of the Gluon Physics 290E Seminar, Spring 2020 Outline – Knowledge known at the time – Theory behind the discovery of the gluon – Key predicted interactions – Jet properties – Relevant experiments – Analysis techniques – Experimental results – Current research pertaining to gluons – Conclusion Knowledge known at the time The year is 1978, During this time, particle physics was arguable a mature subject. 5 of the 6 quarks were discovered by this point (the bottom quark being the most recent), and the only gauge boson that was known was the photon. There was also a theory of the strong interaction, quantum chromodynamics, that had been developed up to this point by Yang, Mills, Gell-Mann, Fritzsch, Leutwyler, and others. Trying to understand the structure of hadrons. Gluons can self-interact! Theory behind the discovery Analogous to QED, the strong interaction between quarks and gluons with a gauge group of SU(3) symmetry is known as quantum chromodynamics (QCD). Where the force mediating particle is the gluon. In QCD, we have some quite particular features such as asymptotic freedom and confinement. 4 α Short range:V (r) = − s QCD 3 r 4 α Long range: V (r) = − s + kr QCD 3 r (Between a quark and antiquark) Quantum fluctuations cause the bare color charge to be screened causes coupling strength to vary. Features are important for an understanding of jet formation. Theory behind the discovery John Ellis postulated the search for the gluon through bremsstrahlung radiation in electron- proton annihilation processes in 1976. Such a process will produce jets of hadrons: e−e+ qq¯g Furthermore, Mary Gaillard, Graham Ross, and John Ellis wrote a paper (“Search for Gluons in e+e- Annihilation.”) that described that the PETRA collider at DESY and the PEP collider at SLAC should be able to observe this process.
    [Show full text]
  • Observation of Structure in the J/Ψ-Pair Mass Spectrum
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-115 LHCb-PAPER-2020-011 CERN-EP-2020-115June 30, 2020 22 June 2020 Observation of structure in the J= -pair mass spectrum LHCb collaborationy Abstract p Using proton-proton collision data at centre-of-mass energies of s = 7, 8 and 13 TeV recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 9 fb−1, the invariant mass spectrum of J= pairs is studied. A narrow structure around 6:9 GeV/c2 matching the lineshape of a resonance and a broad structure just above twice the J= mass are observed. The deviation of the data from nonresonant J= -pair production is above five standard deviations in the mass region between 6:2 and 7:4 GeV/c2, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow X(6900) structure are measured assuming a Breit{Wigner lineshape. Submitted to Science Bulletin c 2020 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence. yAuthors are listed at the end of this paper. ii 1 1 Introduction 2 The strong interaction is one of the fundamental forces of nature and it governs the 3 dynamics of quarks and gluons. According to quantum chromodynamics (QCD), the 4 theory describing the strong interaction, quarks are confined into hadrons, in agreement 5 with experimental observations. The quark model [1,2] classifies hadrons into conventional 6 mesons (qq) and baryons (qqq or qqq), and also allows for the existence of exotic hadrons 7 such as tetraquarks (qqqq) and pentaquarks (qqqqq).
    [Show full text]
  • Mass Generation Via the Higgs Boson and the Quark Condensate of the QCD Vacuum
    Pramana – J. Phys. (2016) 87: 44 c Indian Academy of Sciences DOI 10.1007/s12043-016-1256-0 Mass generation via the Higgs boson and the quark condensate of the QCD vacuum MARTIN SCHUMACHER II. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany E-mail: [email protected] Published online 24 August 2016 Abstract. The Higgs boson, recently discovered with a mass of 125.7 GeV is known to mediate the masses of elementary particles, but only 2% of the mass of the nucleon. Extending a previous investigation (Schumacher, Ann. Phys. (Berlin) 526, 215 (2014)) and including the strange-quark sector, hadron masses are derived from the quark condensate of the QCD vacuum and from the effects of the Higgs boson. These calculations include the π meson, the nucleon and the scalar mesons σ(600), κ(800), a0(980), f0(980) and f0(1370). The predicted second σ meson, σ (1344) =|ss¯, is investigated and identified with the f0(1370) meson. An outlook is given on the hyperons , 0,± and 0,−. Keywords. Higgs boson; sigma meson; mass generation; quark condensate. PACS Nos 12.15.y; 12.38.Lg; 13.60.Fz; 14.20.Jn 1. Introduction adds a small additional part to the total constituent- quark mass leading to mu = 331 MeV and md = In the Standard Model, the masses of elementary parti- 335 MeV for the up- and down-quark, respectively [9]. cles arise from the Higgs field acting on the originally These constituent quarks are the building blocks of the massless particles. When applied to the visible matter nucleon in a similar way as the nucleons are in the case of the Universe, this explanation remains unsatisfac- of nuclei.
    [Show full text]
  • Pentaquark and Tetraquark States Arxiv:1903.11976V2 [Hep-Ph]
    Pentaquark and Tetraquark states 1 2 3 4;5 6;7;8 Yan-Rui Liu, ∗ Hua-Xing Chen, ∗ Wei Chen, ∗ Xiang Liu, y Shi-Lin Zhu z 1School of Physics, Shandong University, Jinan 250100, China 2School of Physics, Beihang University, Beijing 100191, China 3School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 4School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 5Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China 6School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 7Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 8Center of High Energy Physics, Peking University, Beijing 100871, China April 2, 2019 Abstract The past seventeen years have witnessed tremendous progress on the experimental and theo- retical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in Ref. [1]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Espe- cially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known XYZ and Pc states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic arXiv:1903.11976v2 [hep-ph] 1 Apr 2019 tetraquark states QQQ¯Q¯ and doubly heavy tetraquark states QQq¯q¯, where Q is a heavy quark.
    [Show full text]
  • Phenomenological Review on Quark–Gluon Plasma: Concepts Vs
    Review Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations Roman Pasechnik 1,* and Michal Šumbera 2 1 Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden 2 Nuclear Physics Institute ASCR 250 68 Rez/Prague,ˇ Czech Republic; [email protected] * Correspondence: [email protected] Abstract: In this review, we present an up-to-date phenomenological summary of research developments in the physics of the Quark–Gluon Plasma (QGP). A short historical perspective and theoretical motivation for this rapidly developing field of contemporary particle physics is provided. In addition, we introduce and discuss the role of the quantum chromodynamics (QCD) ground state, non-perturbative and lattice QCD results on the QGP properties, as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (BNL RHIC) and CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small (p + p and p + A) systems. Keywords: extreme states of matter; heavy ion collisions; QCD critical point; quark–gluon plasma; saturation phenomena; QCD vacuum PACS: 25.75.-q, 12.38.Mh, 25.75.Nq, 21.65.Qr 1. Introduction Quark–gluon plasma (QGP) is a new state of nuclear matter existing at extremely high temperatures and densities when composite states called hadrons (protons, neutrons, pions, etc.) lose their identity and dissolve into a soup of their constituents—quarks and gluons.
    [Show full text]