Higgs Boson in 2012 Was Made Possible Due to the Involvement of Physicists Across the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higgs Bosons and Supersymmetry
Higgs bosons and Supersymmetry 1. The Higgs mechanism in the Standard Model | The story so far | The SM Higgs boson at the LHC | Problems with the SM Higgs boson 2. Supersymmetry | Surpassing Poincar´e | Supersymmetry motivations | The MSSM 3. Conclusions & Summary D.J. Miller, Edinburgh, July 2, 2004 page 1 of 25 1. Electroweak Symmetry Breaking in the Standard Model 1. Electroweak Symmetry Breaking in the Standard Model Observation: Weak nuclear force mediated by W and Z bosons • M = 80:423 0:039GeV M = 91:1876 0:0021GeV W Z W couples only to left{handed fermions • Fermions have non-zero masses • Theory: We would like to describe electroweak physics by an SU(2) U(1) gauge theory. L ⊗ Y Left{handed fermions are SU(2) doublets Chiral theory ) right{handed fermions are SU(2) singlets f There are two problems with this, both concerning mass: gauge symmetry massless gauge bosons • SU(2) forbids m)( ¯ + ¯ ) terms massless fermions • L L R R L ) D.J. Miller, Edinburgh, July 2, 2004 page 2 of 25 1. Electroweak Symmetry Breaking in the Standard Model Higgs Mechanism Introduce new SU(2) doublet scalar field (φ) with potential V (φ) = λ φ 4 µ2 φ 2 j j − j j Minimum of the potential is not at zero 1 0 µ2 φ = with v = h i p2 v r λ Electroweak symmetry is broken Interactions with scalar field provide: Gauge boson masses • 1 1 2 2 MW = gv MZ = g + g0 v 2 2q Fermion masses • Y ¯ φ m = Y v=p2 f R L −! f f 4 degrees of freedom., 3 become longitudinal components of W and Z, one left over the Higgs boson D.J. -
Interactions of Antiprotons with Atoms and Molecules
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1988 INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES Mitio Inokuti Argonne National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Inokuti, Mitio, "INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES" (1988). US Department of Energy Publications. 89. https://digitalcommons.unl.edu/usdoepub/89 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. /'Iud Tracks Radial. Meas., Vol. 16, No. 2/3, pp. 115-123, 1989 0735-245X/89 $3.00 + 0.00 Inl. J. Radial. Appl .. Ins/rum., Part D Pergamon Press pic printed in Great Bntam INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES* Mmo INOKUTI Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. (Received 14 November 1988) Abstract-Antiproton beams of relatively low energies (below hundreds of MeV) have recently become available. The present article discusses the significance of those beams in the contexts of radiation physics and of atomic and molecular physics. Studies on individual collisions of antiprotons with atoms and molecules are valuable for a better understanding of collisions of protons or electrons, a subject with many applications. An antiproton is unique as' a stable, negative heavy particle without electronic structure, and it provides an excellent opportunity to study atomic collision theory. -
Spin and Parity of the Λ(1405) Baryon
Spin and Parity of the (1405) Baryon here [1], precisely because of the difficulty in producing it, and in particular because it must be produced spin polarized for a measurement to be made. We used photoproduction data from the CLAS detector at Jefferson Lab. The reaction + p K+ + (1405) was analyzed in the decay channel (1405) + + , where the decay distribution to + and the variation of the + polarization with respect to the (1405) polarization direction determined the spin and parity. The (1405) was produced in the c.m. energy range K 2.55 < W < 2.85 GeV and for 0.6 coscm.. 0.9 . The decay angular distribution of the (1405) in its rest Every subatomic particle has a set of properties that frame was found to be isotropic, which means the define its identity. Beyond mass, charge, and magnetic particle is consistent with spin J = ½. The first figure moment, each particle has discrete quantum numbers illustrates how the polarization P of a parent particle that include its spin angular momentum J and its with spin ½, in this case the (1405), transfers intrinsic parity P. The spin comes in integer steps of + starting from ½ for 3-quark objects (baryons). The polarization Q to the daughter baryon, in this case the , depending on whether the decay is in a spatial S wave parity is either positive (“+”) or negative (“”) (L=0) or P wave (L=1). This distinction is what depending on the inversion symmetry of its spatial wave determines the parity of the final state, and hence of the function. For example, the familiar proton and neutron parent. -
1 Standard Model: Successes and Problems
Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles. -
The Subatomic Particle Mass Spectrum
The Subatomic Particle Mass Spectrum Robert L. Oldershaw 12 Emily Lane Amherst, MA 01002 USA [email protected] Key Words: Subatomic Particles; Particle Mass Spectrum; General Relativity; Kerr Metric; Discrete Self-Similarity; Discrete Scale Relativity 1 Abstract: Representative members of the subatomic particle mass spectrum in the 100 MeV to 7,000 MeV range are retrodicted to a first approximation using the Kerr solution of General Relativity. The particle masses appear to form a restricted set of quantized values of a Kerr- based angular momentum-mass relation: M = n1/2 M, where values of n are a set of discrete integers and M is a revised Planck mass. A fractal paradigm manifesting global discrete self- similarity is critical to a proper determination of M, which differs from the conventional Planck mass by a factor of roughly 1019. This exceedingly simple and generic mass equation retrodicts the masses of a representative set of 27 well-known particles with an average relative error of 1.6%. A more rigorous mass formula, which includes the total spin angular momentum rule of Quantum Mechanics, the canonical spin values of the particles, and the dimensionless rotational parameter of the Kerr angular momentum-mass relation, is able to retrodict the masses of the 8 dominant baryons in the 900 MeV to 1700 MeV range at the < 99.7% > level. 2 “There remains one especially unsatisfactory feature [of the Standard Model of particle physics]: the observed masses of the particles, m. There is no theory that adequately explains these numbers. We use the numbers in all our theories, but we do not understand them – what they are, or where they come from. -
FUNDAMENTAL PARTICLES Year 14 Physics Erin Hannigan
FUNDAMENTAL PARTICLES Year 14 Physics Erin Hannigan 1 Key Word List ■ Natural Philosophy – the science of matter and energy and their interactions. ■ Hadron – any elementary particle that interacts strongly with other particles. ■ Lepton – an elementary particle that participates in weak interactions. ■ Subatomic Particle – a body having finite mass and internal structure but negligible dimensions. ■ Quark – any of a number f subatomic particles carrying a fractional electric charge, postulated as building blocks of the hadrons. Quarks have not been directly observed but theoretical predictions based on their existence have been confirmed experimentally. ■ Atom – the smallest component of an element having the chemical properties of the element. 2 Fundamental Particles ■ Fundamental particles (also called elementary particles) are the smallest building blocks of the universe. The key characteristic of fundamental particles is that they have no internal structure. ■ There are two type of fundamental particles: – Particles that make up all matter, called fermions – Particles that carry force, called bosons ■ The four fundamental forces include: – Gravity – The weak force – Electromagnetism – The strong force 3 The Four Fundamental Forces ■ The four fundamental forces of nature govern everything that happens in the universe. ■ Gravity – The attraction between two objects that have mass or energy ■ The weak force – Responsible for particle decay – Physicists describe this interaction through the exchange of force-carrying particles called -
Introduction to Subatomic- Particle Spectrometers∗
IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos . -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
ANTIPROTON and NEUTRINO PRODUCTION ACCELERATOR TIMELINE ISSUES Dave Mcginnis August 28, 2005
ANTIPROTON AND NEUTRINO PRODUCTION ACCELERATOR TIMELINE ISSUES Dave McGinnis August 28, 2005 INTRODUCTION Most of the accelerator operating period is devoted to making antiprotons for the Collider program and accelerating protons for the NUMI program. While stacking antiprotons, the same Main Injector 120 GeV acceleration cycle is used to accelerate protons bound for the antiproton production target and protons bound for the NUMI neutrino production target. This is designated as Mixed-Mode operations. The minimum cycle time is limited by the time it takes to fill the Main Injector with two Booster batches for antiproton production and five Booster batches for neutrino production (7 x 0.067 seconds) and the Main Injector ramp rate (~ 1.5 seconds). As the antiproton stack size grows, the Accumulator stochastic cooling systems slow down which requires the cycle time to be lengthened. The lengthening of the cycle time unfortunately reduces the NUMI neutrino flux. This paper will use a simple antiproton stacking model to explore some of the tradeoffs between antiproton stacking and neutrino production. ACCUMULATOR STACKTAIL SYSTEM After the target, antiprotons are injected into the Debuncher ring where they undergo a bunch rotation and are stochastically pre-cooled for injection into the Accumulator. A fresh beam pulse injected into the Accumulator from the Debuncher is merged with previous beam pulses with the Accumulator StackTail system. This system cools and decelerates the antiprotons until the antiprotons are captured by the core cooling systems as shown in Figure 1. The antiproton flux through the Stacktail system is described by the Fokker –Plank equation ∂ψ ∂φ = − (1) ∂t ∂E where φ the flux of particles passing through the energy E and ψ is the particle density of the beam at energy E. -
The Ghost Particle 1 Ask Students If They Can Think of Some Things They Cannot Directly See but They Know Exist
Original broadcast: February 21, 2006 BEFORE WATCHING The Ghost Particle 1 Ask students if they can think of some things they cannot directly see but they know exist. Have them provide examples and reasoning for PROGRAM OVERVIEW how they know these things exist. NOVA explores the 70–year struggle so (Some examples and evidence of their existence include: [bacteria and virus- far to understand the most elusive of all es—illnesses], [energy—heat from the elementary particles, the neutrino. sun], [magnetism—effect on a com- pass], and [gravity—objects falling The program: towards Earth].) How do scientists • relates how the neutrino first came to be theorized by physicist observe and measure things that cannot be seen with the naked eye? Wolfgang Pauli in 1930. (They use instruments such as • notes the challenge of studying a particle with no electric charge. microscopes and telescopes, and • describes the first experiment that confirmed the existence of the they look at how unseen things neutrino in 1956. affect other objects.) • recounts how scientists came to believe that neutrinos—which are 2 Review the structure of an atom, produced during radioactive decay—would also be involved in including protons, neutrons, and nuclear fusion, a process suspected as the fuel source for the sun. electrons. Ask students what they know about subatomic particles, • tells how theoretician John Bahcall and chemist Ray Davis began i.e., any of the various units of mat- studying neutrinos to better understand how stars shine—Bahcall ter below the size of an atom. To created the first mathematical model predicting the sun’s solar help students better understand the neutrino production and Davis designed an experiment to measure size of some subatomic particles, solar neutrinos. -
New Physics of Strong Interaction and Dark Universe
universe Review New Physics of Strong Interaction and Dark Universe Vitaly Beylin 1 , Maxim Khlopov 1,2,3,* , Vladimir Kuksa 1 and Nikolay Volchanskiy 1,4 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected] (V.B.); [email protected] (V.K.); [email protected] (N.V.) 2 CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France 3 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 31 Kashirskoe Chaussee, 115409 Moscow, Russia 4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia * Correspondence: [email protected]; Tel.:+33-676380567 Received: 18 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes. -
MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.