Theoretical Neutrino Physics Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Particle Zoo
219 8 The Particle Zoo 8.1 Introduction Around 1960 the situation in particle physics was very confusing. Elementary particlesa such as the photon, electron, muon and neutrino were known, but in addition many more particles were being discovered and almost any experiment added more to the list. The main property that these new particles had in common was that they were strongly interacting, meaning that they would interact strongly with protons and neutrons. In this they were different from photons, electrons, muons and neutrinos. A muon may actually traverse a nucleus without disturbing it, and a neutrino, being electrically neutral, may go through huge amounts of matter without any interaction. In other words, in some vague way these new particles seemed to belong to the same group of by Dr. Horst Wahl on 08/28/12. For personal use only. particles as the proton and neutron. In those days proton and neutron were mysterious as well, they seemed to be complicated compound states. At some point a classification scheme for all these particles including proton and neutron was introduced, and once that was done the situation clarified considerably. In that Facts And Mysteries In Elementary Particle Physics Downloaded from www.worldscientific.com era theoretical particle physics was dominated by Gell-Mann, who contributed enormously to that process of systematization and clarification. The result of this massive amount of experimental and theoretical work was the introduction of quarks, and the understanding that all those ‘new’ particles as well as the proton aWe call a particle elementary if we do not know of a further substructure. -
Neutrino Oscillations
Neutrino Oscillations March 24, 2015 0.1 Introduction This section discusses the phenomenon of neutrino flavour oscillations, the big discovery of the last 10 years, which prompted the first major change to the standard model in the last 20 years. We will discuss the evidence for neutrino oscillations, look at the formalism - both for 2-flavour and 3-flavour oscillations, and look at oscillation experiments. 0.2 Neutrino Flavour Oscillation in Words I will first introduce the concept of neutrino flavour oscillations without going into the rigorous theory (see below). We have seen that the thing we call a neutrino is a state that is produced in a weak interaction. It is, by definition, a flavour eigenstate, in the sense that a neutrino is always produced with, or absorbed to give, a charged lepton of electron, muon or tau flavour. The neutrino that is generated with the charged electron is the electron neutrino, and so on. However, as with the quarks and the CKM matrix, it is possible that the flavour eigenstates (states with definite flavour) are not identical to the mass eigenstates (states which have definite mass). What does this mean? Suppose we label the mass states as ν1; ν2 and ν3 and that they have different, but close, masses. Everytime we create an electron in a weak interaction we will create one of these mass eigenstates (ensuring the energy and momentum is conserved at the weak interaction vertex as we do so). Suppose that we create these with different probabilities (i.e. 10% of the time we create a ν1 etc). -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
The Seesaw Mechanism
C. Amsler, Nuclear and Particle Physics The seesaw mechanism This section deals with a model to explain the triflingly small neutrino mass (< 2 eV), which is much smaller than that of other fermions such as the next lightest one, the elec- tron (0.5 MeV). In the standard model neutrinos and antineutrinos are different (Dirac) particles. The chirality of the neutrino is negative, that of the antineutrino positive (see *15.79*). The neutrinos and antineutrinos involved in the weak interaction with other particles are represented by the spinors 1 − γ5 1 + γ5 = and ( c) = c; (1) L 2 R 2 respectively, where and c are solution of the Dirac equation (chapter *15*). The spinors 1 + γ5 1 − γ5 = and ( c) = c (2) R 2 L 2 correspond to sterile neutrinos and antineutrinos. The following discussion deals with only one flavour of neutrinos, say νe, but is ap- plicable to νµ and ντ as well. We shall denote the neutrino spinor by and that of the charge conjugated antineutrino by c. We have shown in section *15.5* that T T c = C = iγ2γ0 : (3) Table1 lists a few useful relations satisfied by the charge conjugation C, which are easily verified by using the properties of γ matrices derived in chapter *15*. Table 1: Some properties of the charge conjugation. Cy = CT = −C C2 = −1 CCy = 1 CCT = 1 Cγ0C = γ0 γ0Cγ0 = −C We have seen e.g. in section *14.4* that the neutrino is observed to be left-handed and the corresponding antineutrino right-handed. As discussed in section *15.3* the spinors (1) and (2) are eigenstates of the chirality operator γ5, but chirality is equivalent to han- dedness in the limit of vanishing masses, hence the subscripts L and R in (1) and (2). -
Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available. -
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved. -
Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year. -
The Seesaw Mechanism and Renormalization Group Effects
November 14, 2004 20:49 Proceedings Trim Size: 9in x 6in lindner THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universit¨at M¨unchen James-Franck-Str., D-85748 Garching/M¨unchen, Germany E-mail: [email protected] Neutrino mass models predict masses and mixings typically at very high scales, while the measured values are determined at low energies. The renormalization group running which connects models with measurements is discussed in this paper. Analytic formulae for the running which include both Dirac- and Majorana CP phases are provided and they allow a systematic understanding of all effects. Some applications and numerical examples are shown. 1. Introduction The determination of neutrino masses and mixings has made enormous progress in recent years. Furthermore it is expected that precision neu- trino physics will become possible in the future such that the lepton sector may ultimately provide the most precise information on flavour structures. Already now exists enough information to try to understand the patterns of masses and mixings in different models of flavour, but this will become much more interesting in the future with growing precision. One class of models is, for example, given by discrete flavour symmetries which might emerge as unbroken subgroups of broken flavour gauge symmetries. There are different reasons why the scale where an understanding of flavour be- comes possible is very high. This has the consequence, that like in the quark sector 1,2 renormalization group (RGE) effects must potentially be taken into account when high energy predictions are compared with low energy measurements. -
B2.IV Nuclear and Particle Physics
B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ...................... -
Ions, Protons, and Photons As Signatures of Monopoles
universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3]. -
Jongkuk Kim Neutrino Oscillations in Dark Matter
Neutrino Oscillations in Dark Matter Jongkuk Kim Based on PRD 99, 083018 (2019), Ki-Young Choi, JKK, Carsten Rott Based on arXiv: 1909.10478, Ki-Young Choi, Eung Jin Chun, JKK 2019. 10. 10 @ CERN, Swiss Contents Neutrino oscillation MSW effect Neutrino-DM interaction General formula Dark NSI effect Dark Matter Assisted Neutrino Oscillation New constraint on neutrino-DM scattering Conclusions 2 Standard MSW effect Consider neutrino/anti-neutrino propagation in a general background electron, positron Coherent forward scattering 3 Standard MSW effect Generalized matter potential Standard matter potential L. Wolfenstein, 1978 S. P. Mikheyev, A. Smirnov, 1985 D d Matter potential @ high energy d 4 General formulation Equation of motion in the momentum space : corrections R. F. Sawyer, 1999 P. Q. Hung, 2000 A. Berlin, 2016 In a Lorenz invariant medium: S. F. Ge, S. Parke, 2019 H. Davoudiasl, G. Mohlabeng, M. Sulliovan, 2019 G. D’Amico, T. Hamill, N. Kaloper, 2018 d F. Capozzi, I. Shoemaker, L. Vecchi 2018 Canonical basis of the kinetic term: 5 General formulation The Equation of Motion Correction to the neutrino mass matrix Original mass term is modified For large parameter space, the mass correction is subdominant 6 DM model Bosonic DM (ϕ) and fermionic messenger (푋푖) Lagrangian Coherent forward scattering 7 General formulation Ki-Young Choi, Eung Jin Chun, JKK Neutrino/ anti-neutrino Hamiltonian Corrections 8 Neutrino potential Ki-Young Choi, Eung Jin Chun, JKK Change of shape: Low Energy Limit: High Energy limit: 9 Two-flavor oscillation The effective Hamiltonian D The mixing angle & mass squared difference in the medium 10 Mass difference between ν&νҧ Ki-Young Choi, Eung Jin Chun, JKK I Bound: T. -
Neutrino Opacity I. Neutrino-Lepton Scattering*
PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries.