Math 306: Combinatorics & Discrete Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Statement
D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules. -
Introduction to Computational Social Choice
1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures. -
Ces`Aro's Integral Formula for the Bell Numbers (Corrected)
Ces`aro’s Integral Formula for the Bell Numbers (Corrected) DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 [email protected] October 3, 2005 In 1885, Ces`aro [1] gave the remarkable formula π 2 cos θ N = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin pθ dθ p πe Z0 where (Np)p≥1 = (1, 2, 5, 15, 52, 203,...) are the modern-day Bell numbers. This formula was reproduced verbatim in the Editorial Comment on a 1941 Monthly problem [2] (the notation Np for Bell number was still in use then). I have not seen it in recent works and, while it’s not very profound, I think it deserves to be better known. Unfortunately, it contains a typographical error: a factor of p! is omitted. The correct formula, with n in place of p and using Bn for Bell number, is π 2 n! cos θ B = ee cos(sin θ)) sin( ecos θ sin(sin θ) ) sin nθ dθ n ≥ 1. n πe Z0 eiθ The integrand is the imaginary part of ee sin nθ, and so an equivalent formula is π 2 n! eiθ B = Im ee sin nθ dθ . (1) n πe Z0 The formula (1) is quite simple to prove modulo a few standard facts about set par- n titions. Recall that the Stirling partition number k is the number of partitions of n n [n] = {1, 2,...,n} into k nonempty blocks and the Bell number Bn = k=1 k counts n k n n k k all partitions of [ ]. -
MAT344 Lecture 6
MAT344 Lecture 6 2019/May/22 1 Announcements 2 This week This week, we are talking about 1. Recursion 2. Induction 3 Recap Last time we talked about 1. Recursion 4 Fibonacci numbers The famous Fibonacci sequence starts like this: 1; 1; 2; 3; 5; 8; 13;::: The rule defining the sequence is F1 = 1;F2 = 1, and for n ≥ 3, Fn = Fn−1 + Fn−2: This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many counting problems. Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2 × n checkerboard can be tiled with 2 × 1 dominoes in Fn+1 many ways. Solution: Denote the number of tilings of a 2 × n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want to prove that they satisfy the recurrence relation Tn = Tn−1 + Tn−2: Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in which case the rest of the tiling can be interpreted as a tiling of a 2 × (n − 1) rectangle, or it is a horizontal domino, in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a tiling of a 2 × (n − 2) rectangle. Therefore Tn = Tn−1 + Tn−2: Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and T2 = F3 = 2, we may conclude that Tn = Fn+1. -
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. -
Code Library
Code Library Himemiya Nanao @ Perfect Freeze September 13, 2013 Contents 1 Data Structure 1 1.1 atlantis .......................................... 1 1.2 binary indexed tree ................................... 3 1.3 COT ............................................ 4 1.4 hose ........................................... 7 1.5 Leist tree ........................................ 8 1.6 Network ......................................... 10 1.7 OTOCI ........................................... 16 1.8 picture .......................................... 19 1.9 Size Blanced Tree .................................... 22 1.10 sparse table - rectangle ................................. 27 1.11 sparse table - square ................................... 28 1.12 sparse table ....................................... 29 1.13 treap ........................................... 29 2 Geometry 32 2.1 3D ............................................. 32 2.2 3DCH ........................................... 36 2.3 circle's area ....................................... 40 2.4 circle ........................................... 44 2.5 closest point pair .................................... 45 2.6 half-plane intersection ................................. 49 2.7 intersection of circle and poly .............................. 52 2.8 k-d tree .......................................... 53 2.9 Manhattan MST ..................................... 56 2.10 rotating caliper ...................................... 60 2.11 shit ............................................ 63 2.12 other .......................................... -
Discrete Mathematics Discrete Probability
Introduction Probability Theory Discrete Mathematics Discrete Probability Prof. Steven Evans Prof. Steven Evans Discrete Mathematics Introduction Probability Theory 7.1: An Introduction to Discrete Probability Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Definition An experiment is a procedure that yields one of a given set os possible outcomes. The sample space of the experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace's definition of the probability p(E) of an event E in a sample space S with finitely many equally possible outcomes is jEj p(E) = : jSj Prof. Steven Evans Discrete Mathematics By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. We see that the number of hands containing a full house is P(13; 2) · C(4; 3) · C(4; 2) = 13 · 12 · 4 · 6 = 3744: Because there are C(52; 5) = 2; 598; 960 poker hands, the probability of a full house is 3744 ≈ 0:0014: 2598960 Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. -
Why Theory of Quantum Computing Should Be Based on Finite Mathematics Felix Lev
Why Theory of Quantum Computing Should be Based on Finite Mathematics Felix Lev To cite this version: Felix Lev. Why Theory of Quantum Computing Should be Based on Finite Mathematics. 2018. hal-01918572 HAL Id: hal-01918572 https://hal.archives-ouvertes.fr/hal-01918572 Preprint submitted on 11 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Why Theory of Quantum Computing Should be Based on Finite Mathematics Felix M. Lev Artwork Conversion Software Inc., 1201 Morningside Drive, Manhattan Beach, CA 90266, USA (Email: [email protected]) Abstract We discuss finite quantum theory (FQT) developed in our previous publica- tions and give a simple explanation that standard quantum theory is a special case of FQT in the formal limit p ! 1 where p is the characteristic of the ring or field used in FQT. Then we argue that FQT is a more natural basis for quantum computing than standard quantum theory. Keywords: finite mathematics, quantum theory, quantum computing 1 Motivation Classical computer science is based on discrete mathematics for obvious reasons. Any computer can operate only with a finite number of bits, a bit represents the minimum amount of information and the notions of one half of the bit, one third of the bit etc. -
Identities Via Bell Matrix and Fibonacci Matrix
Discrete Applied Mathematics 156 (2008) 2793–2803 www.elsevier.com/locate/dam Note Identities via Bell matrix and Fibonacci matrix Weiping Wanga,∗, Tianming Wanga,b a Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China b Department of Mathematics, Hainan Normal University, Haikou 571158, PR China Received 31 July 2006; received in revised form 3 September 2007; accepted 13 October 2007 Available online 21 February 2008 Abstract In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix. Moreover, based on the matrix representations, various identities are derived. c 2007 Elsevier B.V. All rights reserved. Keywords: Combinatorial identities; Fibonacci numbers; Generalized Fibonacci numbers; Bell polynomials; Iteration matrix 1. Introduction Recently, the lower triangular matrices have catalyzed many investigations. The Pascal matrix and several generalized Pascal matrices first received wide concern (see, e.g., [2,3,17,18]), and some other lower triangular matrices were also studied systematically, for example, the Lah matrix [14], the Stirling matrices of the first kind and of the second kind [5,6]. In this paper, we will study the Fibonacci matrix and the Bell matrix. Let us first consider a special n × n lower triangular matrix Sn which is defined by = 1, i j, (Sn)i, j = −1, i − 2 ≤ j ≤ i − 1, for i, j = 1, 2,..., n. -
Mathematics 1
Mathematics 1 MATH 1030 College Algebra (MOTR MATH 130): 3 semester hours Mathematics Prerequisites: A satisfactory score on the UMSL Math Placement Examination, obtained at most one year prior to enrollment in this course, Courses or approval of the department. This is a foundational course in math. Topics may include factoring, complex numbers, rational exponents, MATH 0005 Intermediate Algebra: 3 semester hours simplifying rational functions, functions and their graphs, transformations, Prerequisites: A satisfactory score on the UMSL Math Placement inverse functions, solving linear and nonlinear equations and inequalities, Examination, obtained at most one year prior to enrollment in this polynomial functions, inverse functions, logarithms, exponentials, solutions course. Preparatory material for college level mathematics courses. to systems of linear and nonlinear equations, systems of inequalities, Covers systems of linear equations and inequalities, polynomials, matrices, and rates of change. This course fulfills the University's general rational expressions, exponents, quadratic equations, graphing linear education mathematics proficiency requirement. and quadratic functions. This course carries no credit towards any MATH 1035 Trigonometry: 2 semester hours baccalaureate degree. Prerequisite: MATH 1030 or MATH 1040, or concurrent registration in MATH 1020 Contemporary Mathematics (MOTR MATH 120): 3 either of these two courses, or a satisfactory score on the UMSL Math semester hours Placement Examination, obtained at most one year prior to enrollment Prerequisites: A satisfactory score on the UMSL Math Placement in this course. A study of the trigonometric and inverse trigonometric Examination, obtained at most one year prior to enrollment in this functions with emphasis on trigonometric identities and equations. course. This course presents methods of problem solving, centering on MATH 1045 PreCalculus (MOTR MATH 150): 5 semester hours problems and questions which arise naturally in everyday life. -
How to Choose a Winner: the Mathematics of Social Choice
Snapshots of modern mathematics № 9/2015 from Oberwolfach How to choose a winner: the mathematics of social choice Victoria Powers Suppose a group of individuals wish to choose among several options, for example electing one of several candidates to a political office or choosing the best contestant in a skating competition. The group might ask: what is the best method for choosing a winner, in the sense that it best reflects the individual pref- erences of the group members? We will see some examples showing that many voting methods in use around the world can lead to paradoxes and bad out- comes, and we will look at a mathematical model of group decision making. We will discuss Arrow’s im- possibility theorem, which says that if there are more than two choices, there is, in a very precise sense, no good method for choosing a winner. This snapshot is an introduction to social choice theory, the study of collective decision processes and procedures. Examples of such situations include • voting and election, • events where a winner is chosen by judges, such as figure skating, • ranking of sports teams by experts, • groups of friends deciding on a restaurant to visit or a movie to see. Let’s start with two examples, one from real life and the other made up. 1 Example 1. In the 1998 election for governor of Minnesota, there were three candidates: Norm Coleman, a Republican; Skip Humphrey, a Democrat; and independent candidate Jesse Ventura. Ventura had never held elected office and was, in fact, a professional wrestler. The voting method used was what is called plurality: each voter chooses one candidate, and the candidate with the highest number of votes wins. -
Complexity of Algorithms 3.4 the Integers and Division
University of Hawaii ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., University of Hawaii Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by McGraw-Hill ICS 141: Discrete Mathematics I – Fall 2011 13-1 University of Hawaii Lecture 16 Chapter 3. The Fundamentals 3.3 Complexity of Algorithms 3.4 The Integers and Division ICS 141: Discrete Mathematics I – Fall 2011 13-2 3.3 Complexity of AlgorithmsUniversity of Hawaii n An algorithm must always produce the correct answer, and should be efficient. n How can the efficiency of an algorithm be analyzed? n The algorithmic complexity of a computation is, most generally, a measure of how difficult it is to perform the computation. n That is, it measures some aspect of the cost of computation (in a general sense of “cost”). n Amount of resources required to do a computation. n Some of the most common complexity measures: n “Time” complexity: # of operations or steps required n “Space” complexity: # of memory bits required ICS 141: Discrete Mathematics I – Fall 2011 13-3 Complexity Depends on InputUniversity of Hawaii n Most algorithms have different complexities for inputs of different sizes. n E.g. searching a long list typically takes more time than searching a short one. n Therefore, complexity is usually expressed as a function of the input size. n This function usually gives the complexity for the worst-case input of any given length. ICS 141: Discrete Mathematics I – Fall 2011 13-4 Worst-, Average- and University of Hawaii Best-Case Complexity n A worst-case complexity measure estimates the time required for the most time consuming input of each size.