Celestial Fireworks: Supernova Remnants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring Pulsars
High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority. -
Radio Emissions Associated with Shock Waves and a Brief Model of Type Ii Solar Radio Bursts
RADIO EMISSIONS ASSOCIATED WITH SHOCK WAVES AND A BRIEF MODEL OF TYPE II SOLAR RADIO BURSTS C. S. Wu¤ Abstract In this paper, we discuss the generation of radio waves at shock waves. Two cases are considered. One is associated with a quasi{perpendicular shock and the other is with a quasi{parallel shock. In the former case, it is stressed that a nearly perpendicular shock can lead to a fast Fermi acceleration. Looking at these energized electrons either in the deHo®mann{Teller frame or the plasma frame, one concludes that the accelerated electrons should inherently possess a loss{cone distribution after the mirror reflection at the shock. Consequently, these electrons can lead to induced emission of radio waves via a maser instability. In the latter case, we assume that a quasi{parallel shock is propagating in an environment which has already been populated with energetic electrons. In this case, the shock wave can also lead to induced radiation via a maser instability. Based on this notion, we describe briefly a model to explain the Type II solar radio bursts which is a very intriguing phenomenon and has a long history. 1 Introduction An interesting theoretical issue is how radio emission processes can be induced or triggered by shock waves under various physical conditions. In this article, we present a discussion which comprises two parts. The ¯rst part is concerned with a nearly perpendicular shock. In this case, the shock can energize a fraction of the thermal electrons or suprathermal electrons to much higher energies by means of a fast Fermi process. -
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D. -
Cassiopeia A: on the Origin of the Hard X-Ray Continuum and the Implication of the Observed O Vııı Ly-Α/Ly-Β Distribution
A&A 365, L225–L230 (2001) Astronomy DOI: 10.1051/0004-6361:20000048 & c ESO 2001 Astrophysics Cassiopeia A: On the origin of the hard X-ray continuum and the implication of the observed O vııı Ly-α/Ly-β distribution J. A. M. Bleeker1, R. Willingale2, K. van der Heyden1, K. Dennerl3,J.S.Kaastra1, B. Aschenbach3, and J. Vink4,5,6 1 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 2 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, 85740 Garching, Germany 4 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 5 Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA 6 Chandra Fellow Received 6 October 2000 / Accepted 24 October 2000 Abstract. We present the first results on the hard X-ray continuum image (up to 15 keV) of the supernova remnant Cas A measured with the EPIC cameras onboard XMM-Newton. The data indicate that the hard X-ray tail, observed previously, that extends to energies above 100 keV does not originate in localised regions, like the bright X-ray knots and filaments or the primary blast wave, but is spread over the whole remnant with a rather flat hardness ratio of the 8–10 and 10–15 keV energy bands. This result does not support an interpretation of the hard X-radiation as synchrotron emission produced in the primary shock, in which case a limb brightened shell of hard X-ray emission close to the primary shock front is expected. -
Physics of Compact Stars
Physics of Compact Stars • Crab nebula: Supernova 1054 • Pulsars: rotating neutron stars • Death of a massive star • Pulsars: lab’s of many-particle physics • Equation of state and star structure • Phase diagram of nuclear matter • Rotation and accretion • Cooling of neutron stars • Neutrinos and gamma-ray bursts • Outlook: particle astrophysics David Blaschke - IFT, University of Wroclaw - Winter Semester 2007/08 1 Example: Crab nebula and Supernova 1054 1054 Chinese Astronomers observe ’Guest-Star’ in the vicinity of constellation Taurus – 6times brighter than Venus, red-white light – 1 Month visible during the day, 1 Jahr at evenings – Luminosity ≈ 400 Million Suns – Distance d ∼ 7.000 Lightyears (ly) (when d ≤ 50 ly Life on earth would be extingished) 1731 BEVIS: Telescope observation of the SN remnants 1758 MESSIER: Catalogue of nebulae and star clusters 1844 ROSSE: Name ’Crab nebula’ because of tentacle structure 1939 DUNCAN: extrapolates back the nebula expansion −! Explosion of a point source 766 years ago 1942 BAADE: Star in the nebula center could be related to its origin 1948 Crab nebula one of the brightest radio sources in the sky CHANDRA (BLAU) + HUBBLE (ROT) 1968 BAADE’s star identified as pulsar 2 Pulsars: Rotating Neutron stars 1967 Jocelyne BELL discovers (Nobel prize 1974 for HEWISH) pulsating radio frequency source (pulse in- terval: 1.34 sec; pulse duration: 0.01 sec) Today more than 1700 of such sources are known in the milky way ) PULSARS Pulse frequency extremely stable: ∆T=T ≈ 1 sec/1 million years 1968 Explanation -
What Is a Quantum Shock Wave?
What is a quantum shock wave? S. A. Simmons,1 F. A. Bayocboc, Jr.,1 J. C. Pillay,1 D. Colas,1, 2 I. P. McCulloch,1 and K. V. Kheruntsyan1 1School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia 2ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of Queensland, Brisbane, Queensland 4072, Australia (Dated: November 4, 2020) Shock waves are examples of the far-from-equilibrium behaviour of matter; they are ubiquitous in nature, yet the underlying microscopic mechanisms behind their formation are not well understood. Here, we study the dynamics of dispersive quantum shock waves in a one-dimensional Bose gas, and show that the oscillatory train forming from a local density bump expanding into a uniform background is a result of quantum mechanical self- interference. The amplitude of oscillations, i.e., the interference contrast, decreases with the increase of both the temperature of the gas and the interaction strength due to the reduced phase coherence length. Furthermore, we show that vacuum and thermal fluctuations can significantly wash out the interference contrast, seen in the mean-field approaches, due to shot-to-shot fluctuations in the position of interference fringes around the mean. Introduction.—The study of dispersive shock waves in linear interaction [22], in both the GPE and NLSE, has been superfluids, such as dilute gas Bose-Einstein condensates exploited in, and is required for, the interpretation of disper- (BECs), has been attracting a growing attention in recent years sive shock waves as a train of grey solitons [6, 23]. However, (see, e.g., Refs. -
A Blast Wave from the 1843 Eruption of Eta Carinae
1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2]. -
Events: General Meeting : No General Meeting This Month
The monthly newsletter of the Temecula Valley Astronomers July 2016 Events: General Meeting : No general meeting this month. Join us for our annual Anza Star-B-Q. Watch your email for details. For the latest on Star Parties, check the web page. Juno spacecraft and its science instruments. Image credit: NASA/JPL General information: Subscription to the TVA is included in the annual $25 WHAT’S INSIDE THIS MONTH: membership (regular members) donation ($9 student; $35 family). Cosmic Comments by President Mark Baker President: Mark Baker 951-691-0101 Looking Up <[email protected]> Vice President: Chuck Dyson <[email protected]> by Curtis Croulet Past President: John Garrett <[email protected]> Random thoughts Treasurer: Curtis Croulet <[email protected]> by Chuck Dyson Secretary: Deborah Cheong <[email protected]> Hubble's bubble lights up the Club Librarian: Bob Leffler <[email protected]> interstellar rubble Facebook: Tim Deardorff <[email protected]> Star Party Coordinator and Outreach: Deborah Cheong by Ethan Siegel <[email protected]> Send newsletter submissions to Mark DiVecchio Address renewals or other correspondence to: <[email protected]> by the 20th of the month for Temecula Valley Astronomers the next month's issue. PO Box 1292 Murrieta, CA 92564 Like us on Facebook Member’s Mailing List: [email protected] Website: http://www.temeculavalleyastronomers.com/ Page 1 of 10 The monthly newsletter of the Temecula Valley Astronomers July 2016 Cosmic Comments – July/2016 by President Mark Baker As some of you may notice, I will often despair at the current state of the US Space program, to the point of disparagement. -
A Csillagképek Története És Látnivalói, 2019. Március 13
Az északi pólus környéke 2. A csillagképek története és látnivalói, 2019. március 13. Sárkány • Latin: Draco, birtokos: Draconis, rövidítés: Dra • Méretbeli rangsor: 8. (1083°2, a teljes égbolt 2,63%-a) 2m 3m 4m 5m 6m • Eredet: görög (Δράκων (Drakón)) 1 5 10 57 144 Cefeusz Kis Medve Kultúrtörténet Görögök: kígyó (korábban) v. sárkány • ő Ladón, a Heszperiszek Kertjének őre: itt található Héra nászajándéka, egy örök ifjúságot és halhatatlanságot adó aranyalmákat érlelő fa • Héraklész 10+1-edik feladatként ellopott három almát • vagy ő maga, mérgezett nyilakkal elpusztítva Ladónt • vagy megkérte erre Atlaszt, és addig tartotta helyette az eget Héraklész rálép a sárkány • Héra emlékül az égre helyezte fejére (Dürer) Arabok • a sárkányfej-négyszöget (, , , ) 4 anyatevének látták • akik egy teveborjút védelmeznek (?) • mert azt két hiéna (, ) támadja • a tevék gazdái (, , ) a közelben táboroznak Kína • a Központi Palotát közrefogó két „fal” nagy része itt futott • Csillagok: semmi nagyon extra • Az É-i ekliptikai pólus ide esik • Az É-i pólus -3000 környékén az Dra (Thuban) közelébe esett • Mélyég: Macskaszem-köd (NGC 6543): planetáris köd: haldokló óriáscsillag által ledobott anyagfelhő A Kéfeusz-Kassziopeia-Androméda • Kéfeusz Etiópia királya, Zeusz leszármazottja (egyik szeretője, Io jóvoltából) mondakör • felesége, Kassziopeia annyira hiú volt a saját vagy a lánya szépségére („szebb, mint a nereidák”), hogy Poszeidón egy tengeri szörnyet (Cet) küldött büntetésből a királyság pusztítására • hogy elhárítsák a veszedelmet, egy jós tanácsára -
Blasts from the Past Historic Supernovas
BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD.