Surface Tension
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Drop Patch Project Making a Difference
United States Office of Water Environmental Protection (4501T) March 2008 Agency Washington, DC 20460 EPA 840-B-07-001 _________________________________________________________________________ Water Drop Patch Project Photo courtesy of GSUSA Making a Difference Acknowledgments Authors Meghan Klasic (author of new version of patch manual) Oak Ridge Institude of Science and Education Intern, USEPA Office of Wetlands, Oceans, and Watersheds Patricia Scott (co-author of original patch manual) USEPA’s Office of Wetlands, Oceans, and Watersheds Karen Brown (co-author of original patch manual) Retired, Girl Scout Council of the Nation’s Capital Editor Martha Martin, Tetra Tech, Inc. Contributors A great big thanks also goes out to the following people and organizations for their contributions, including images, photographs, text, formatting, and overall general knowledge: Jodi Stewart Schwarzer, Project Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program, Linking Girls to the Land Elliott Wildlife Values Project Kathleen Cullinan, Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program Matthew Boone, Kelly Brzezinski, Aileen Molloy, Scott Morello, American Horticultural Society, Fish and Wildlife Service, Girl Scouts of the United States of America, National Oceanic Atmospheric Administration, United States Geological Survey, U.S. Environmental Protection Agency. This resource is updated periodically and is available for free through the National Service Center for Environmental Publications (NSCEP) by calling toll-free (800) 490-9198 or e-mailing [email protected]. It is also available online at www.epa.gov/adopt/patch. Inquiries or suggestions related to the project should be directed to Patricia Scott, United States Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460 (Mail Code 4501T). -
Thermodynamics Notes
Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats . -
Introduction to Hydrostatics
Introduction to Hydrostatics Hydrostatics Equation The simplified Navier Stokes equation for hydrostatics is a vector equation, which can be split into three components. The convention will be adopted that gravity always acts in the negative z direction. Thus, and the three components of the hydrostatics equation reduce to Since pressure is now only a function of z, total derivatives can be used for the z-component instead of partial derivatives. In fact, this equation can be integrated directly from some point 1 to some point 2. Assuming both density and gravity remain nearly constant from 1 to 2 (a reasonable approximation unless there is a huge elevation difference between points 1 and 2), the z- component becomes Another form of this equation, which is much easier to remember is This is the only hydrostatics equation needed. It is easily remembered by thinking about scuba diving. As a diver goes down, the pressure on his ears increases. So, the pressure "below" is greater than the pressure "above." Some "rules" to remember about hydrostatics Recall, for hydrostatics, pressure can be found from the simple equation, There are several "rules" or comments which directly result from the above equation: If you can draw a continuous line through the same fluid from point 1 to point 2, then p1 = p2 if z1 = z2. For example, consider the oddly shaped container below: By this rule, p1 = p2 and p4 = p5 since these points are at the same elevation in the same fluid. However, p2 does not equal p3 even though they are at the same elevation, because one cannot draw a line connecting these points through the same fluid. -
Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing
energies Article Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing Yi Zhang 1, Jiexiang Wang 1,*, Peng Jia 2, Xiao Liu 1, Xuxu Zhang 1, Chang Liu 1 and Xiangwei Bai 1 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] (Y.Z.); [email protected] (X.L.); [email protected] (X.Z.); [email protected] (C.L.); [email protected] (X.B.) 2 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] * Correspondence: [email protected] Received: 13 February 2020; Accepted: 23 March 2020; Published: 2 April 2020 Abstract: Multilayer separate polymer injection in concentric dual-tubing is a special method for enhancing oil recovery in later development stage of the multilayer formation. During the injection process, heat exchange occurs among the inner tubing, tubing annulus and formation, making the thermal transfer process more complicated than traditional one. This work focuses on the polymer flowing characteristics during the multilayer separate polymer flooding injection process in the wellbore. A temperature–viscosity numerical model is derived to investigate the influencing factors on polymer dual-tubing injection process. Then, an estimate-correct method is introduced to derive the numerical solutions. Several influences have been discussed, including the axial temperature distribution, viscosity distribution, pressure drop, and flow pattern of polymer. Results show that under low injecting rates, below 5 m3/d, formation temperature will greatly decrease the polymer viscosity. When the injecting rates above 20 m3/d, the polymer just decreases 1–3 mPa s at the bottom · of well, which is really small. -
THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned. -
Pressure Diffusion Waves in Porous Media
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Pressure diffusion waves in porous media Permalink https://escholarship.org/uc/item/5bh9f6c4 Authors Silin, Dmitry Korneev, Valeri Goloshubin, Gennady Publication Date 2003-04-08 eScholarship.org Powered by the California Digital Library University of California Pressure diffusion waves in porous media Dmitry Silin* and Valeri Korneev, Lawrence Berkeley National Laboratory, Gennady Goloshubin, University of Houston Summary elastic porous medium. Such a model results in a parabolic pressure diffusion equation. Its validity has been Pressure diffusion wave in porous rocks are under confirmed and “canonized”, for instance, in transient consideration. The pressure diffusion mechanism can pressure well test analysis, where it is used as the main tool provide an explanation of the high attenuation of low- since 1930th, see e.g. Earlougher (1977) and Barenblatt et. frequency signals in fluid-saturated rocks. Both single and al., (1990). The basic assumptions of this model make it dual porosity models are considered. In either case, the applicable specifically in the low-frequency range of attenuation coefficient is a function of the frequency. pressure fluctuations. Introduction Theories describing wave propagation in fluid-bearing porous media are usually derived from Biot’s theory of poroelasticity (Biot 1956ab, 1962). However, the observed high attenuation of low-frequency waves (Goloshubin and Korneev, 2000) is not well predicted by this theory. One of possible reasons for difficulties in detecting Biot waves in real rocks is in the limitations imposed by the assumptions underlying Biot’s equations. Biot (1956ab, 1962) derived his main equations characterizing the mechanical motion of elastic porous fluid-saturated rock from the Hamiltonian Principle of Least Action. -
Bioinspired Inner Microstructured Tube Controlled Capillary Rise
Bioinspired inner microstructured tube controlled capillary rise Chuxin Lia, Haoyu Daia, Can Gaoa, Ting Wanga, Zhichao Donga,1, and Lei Jianga aChinese Academy of Sciences Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved May 21, 2019 (received for review December 17, 2018) Effective, long-range, and self-propelled water elevation and trans- viscosity resistance for subsequent bulk water elevation but also, port are important in industrial, medical, and agricultural applica- shrinks the inner diameter of the tube. On turning the peristome- tions. Although research has grown rapidly, existing methods for mimetic tube upside down, we can achieve capillary rise gating water film elevation are still limited. Scaling up for practical behavior, where no water rises in the tube. In addition to the cap- applications in an energy-efficient way remains a challenge. Inspired illary rise diode behavior, significantly, on bending the peristome- by the continuous water cross-boundary transport on the peristome mimetic tube replica into a “candy cane”-shaped pipe (closed sys- surface of Nepenthes alata,herewedemonstratetheuseof tem), a self-siphon is achieved with a high flux of ∼5.0 mL/min in a peristome-mimetic structures for controlled water elevation by pipe with a diameter of only 1.0 mm. bending biomimetic plates into tubes. The fabricated structures have unique advantages beyond those of natural pitcher plants: bulk wa- Results ter diode transport behavior is achieved with a high-speed passing General Description of the Natural Peristome Surface. -
What Is High Blood Pressure?
ANSWERS Lifestyle + Risk Reduction by heart High Blood Pressure BLOOD PRESSURE SYSTOLIC mm Hg DIASTOLIC mm Hg What is CATEGORY (upper number) (lower number) High Blood NORMAL LESS THAN 120 and LESS THAN 80 ELEVATED 120-129 and LESS THAN 80 Pressure? HIGH BLOOD PRESSURE 130-139 or 80-89 (HYPERTENSION) Blood pressure is the force of blood STAGE 1 pushing against blood vessel walls. It’s measured in millimeters of HIGH BLOOD PRESSURE 140 OR HIGHER or 90 OR HIGHER mercury (mm Hg). (HYPERTENSION) STAGE 2 High blood pressure (HBP) means HYPERTENSIVE the pressure in your arteries is higher CRISIS HIGHER THAN 180 and/ HIGHER THAN 120 than it should be. Another name for (consult your doctor or immediately) high blood pressure is hypertension. Blood pressure is written as two numbers, such as 112/78 mm Hg. The top, or larger, number (called Am I at higher risk of developing HBP? systolic pressure) is the pressure when the heart There are risk factors that increase your chances of developing HBP. Some you can control, and some you can’t. beats. The bottom, or smaller, number (called diastolic pressure) is the pressure when the heart Those that can be controlled are: rests between beats. • Cigarette smoking and exposure to secondhand smoke • Diabetes Normal blood pressure is below 120/80 mm Hg. • Being obese or overweight If you’re an adult and your systolic pressure is 120 to • High cholesterol 129, and your diastolic pressure is less than 80, you have elevated blood pressure. High blood pressure • Unhealthy diet (high in sodium, low in potassium, and drinking too much alcohol) is a systolic pressure of 130 or higher,or a diastolic pressure of 80 or higher, that stays high over time. -
THE SOLUBILITY of GASES in LIQUIDS INTRODUCTION the Solubility Data Project Aims to Make a Comprehensive Search of the Lit- Erat
THE SOLUBILITY OF GASES IN LIQUIDS R. Battino, H. L. Clever and C. L. Young INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the lit erature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uni form format. The data for each system are evaluated and where data of suf ficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are pUblished on consecutive pages. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solUbility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solUbility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solu bility depending on the particular range of pressure considered and the par ticular worker concerned. The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Statistical Mechanics I: Exam Review 1 Solution
8.333: Statistical Mechanics I Fall 2007 Test 1 Review Problems The first in-class test will take place on Wednesday 9/26/07 from 2:30 to 4:00 pm. There will be a recitation with test review on Friday 9/21/07. The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. The test will be composed entirely from a subset of the following problems. Thus if you are familiar and comfortable with these problems, there will be no surprises! ******** You may find the following information helpful: Physical Constants 31 27 Electron mass me 9.1 10− kg Proton mass mp 1.7 10− kg ≈ × 19 ≈ × 34 1 Electron Charge e 1.6 10− C Planck’s const./2π ¯h 1.1 10− Js− ≈ × 8 1 ≈ × 8 2 4 Speed of light c 3.0 10 ms− Stefan’s const. σ 5.7 10− W m− K− ≈ × 23 1 ≈ × 23 1 Boltzmann’s const. k 1.4 10− JK− Avogadro’s number N 6.0 10 mol− B ≈ × 0 ≈ × Conversion Factors 5 2 10 4 1atm 1.0 10 Nm− 1A˚ 10− m 1eV 1.1 10 K ≡ × ≡ ≡ × Thermodynamics dE = T dS+dW¯ For a gas: dW¯ = P dV For a wire: dW¯ = Jdx − Mathematical Formulas √π ∞ n αx n! 1 0 dx x e− = αn+1 2 ! = 2 R 2 2 2 ∞ x √ 2 σ k dx exp ikx 2σ2 = 2πσ exp 2 limN ln N! = N ln N N −∞ − − − →∞ − h i h i R n n ikx ( ik) n ikx ( ik) n e− = ∞ − x ln e− = ∞ − x n=0 n! � � n=1 n! � �c P 2 4 P 3 5 cosh(x) = 1 + x + x + sinh(x) = x + x + x + 2! 4! · · · 3! 5! · · · 2πd/2 Surface area of a unit sphere in d dimensions Sd = (d/2 1)! − 1 1. -
Drop Size Dependence of the Apparent Surface Tension of Aqueous Solutions in Hexane Vapor As Studied by Drop Profile Analysis Tensiometry
colloids and interfaces Article Drop Size Dependence of the Apparent Surface Tension of Aqueous Solutions in Hexane Vapor as Studied by Drop Profile Analysis Tensiometry Valentin B. Fainerman 1, Volodymyr I. Kovalchuk 2 , Eugene V. Aksenenko 3,* , Altynay A. Sharipova 4, Libero Liggieri 5 , Aliyar Javadi 6, Alexander V. Makievski 1, Mykola V. Nikolenko 7 , Saule B. Aidarova 4 and Reinhard Miller 8 1 Sinterface Technologies, D12489 Berlin, Germany; [email protected] (V.B.F.); [email protected] (A.V.M.) 2 Institute of Biocolloid Chemistry, National Academy of Sciences of Ukraine, 03680 Kyiv (Kiev), Ukraine; [email protected] 3 Institute of Colloid Chemistry and Chemistry of Water, National Academy of Sciences of Ukraine, 03680 Kyiv (Kiev), Ukraine 4 Kazakh-British Technical University, 050000 Almaty, Kazakhstan; [email protected] (A.A.S.); [email protected] (S.B.A.) 5 CNR-Institute of Condensed Matter Chemistry and Technologies for Energy, Unit of Genoa, 16149 Genoa, Italy; [email protected] 6 Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany; [email protected] 7 Ukrainian State University of Chemical Technology, 49000 Dnipro, Ukraine; [email protected] 8 Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany; [email protected] * Correspondence: [email protected] Received: 2 July 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: Surface tension experiments were performed using the drop profile analysis tensiometry method. The hexane was injected into the measuring cell at certain times before the formation of the solution drop. The influence of the capillary diameter and solution drop size on the measured apparent dynamic surface tension was studied.