EPR Paradox As Evidence for the Emergent Nature of Spacetime

Total Page:16

File Type:pdf, Size:1020Kb

EPR Paradox As Evidence for the Emergent Nature of Spacetime EPR Paradox as Evidence for the Emergent Nature of Spacetime Armin Nikkhah Shirazi∗ University of Michigan Ann Arbor, MI 48109 March 16th, 2011 Abstract After a providing a review of the EPR paradox which draws a distinction between what is here called the locality and the influence paradoxes, this paper presents a qualitative overview of a framework recently introduced by this author in which spacetime is assumed to emerge from areatime. Two key assumptions from this framework allow one to make the notion of quantum effects originating from `outside' spacetime intelligible. In particular, this framework assumes that until a quantum object is measured, it does not actually exist in spacetime and that there are connections between quantum particles in areatime which are independent of metric relations in spacetime. These assumptions are then shown to permit one to conceptually understand both the locality and the influence paradoxes, and lead to the overall conclusion that spacetime is emergent in the sense that a very large number of discrete events which correspond to `measurements' in quantum mechanics aggregate to give rise on a large scale to the apparently smooth reality we experience in our daily lives. Keywords: Non-locality, EPR locality Paradox, EPR influence paradox, Bell's Theorem, Dimensional The- ory, Emergence of Spacetime 1 Introduction It is well known that one of the most mystifying features of quantum theory, which is also one of its most pervasive [4], is what is commonly called non-locality [1, pp. 131-144][3, pp. 437-455]. In general terms, non-locality in non-relativistic quantum mechanics refers to the phenomenon in which the measurement of some property of one part of a quantum system seems to somehow influence the outcome of a similar measurement at some distance of another part in cases in which the two parts of the system are described by a non-separable wavefunction, or, in more colorful language, when they are `entangled'. The type of experiment which demonstrates that entanglement really is a feature of nature was first described in a paper by Einstein, Rosen and Podolsky, and hence the mystery it describes is often called the `EPR paradox'. There are actually two separately mysterious aspects which pertain to the EPR paradox. The first one is that which already appears in non-relativistic quantum mechanics and involves the non-local influence which enforces the correlations. The other aspect is an extra twist which appears when this phenomenon is considered in a more fully special relativistic context. Here the mystery is that for any spacelike separated measurements of entangled particles two distinct frames can be found in which the order of the influence is reversed. In order to keep these two issues separate, we will refer to the first as the EPR locality paradox and to the second as the EPR influence paradox. This paper is organized as follows: Section 2 will provide a brief overview of the EPR paradox which emphasizes the distinction between the EPR locality and influence paradoxes. Section 3 will introduce as a `story' i.e. in purely qualitative terms, a framework recently proposed by this author which is meant to elucidate the fundamental physical processes behind the formalism of quantum mechanics. The two key ∗[email protected] 1 points of this framework specifically applicable to the EPR paradox are (1) the idea that quantum objects do not actually exist in spacetime until they are `measured' (in a manner to be described more clearly below) and (2) the metric relations which they obey prior to measurement are independent from the spacetime metric, so that at least in the sense of this independence, (both versions of) the EPR paradox can be said to involve transmission of an influence `outside' spacetime. Section 4 uses these two key ideas to reduce the EPR influence paradox to a spacetime version of the EPR locality paradox. Finally, section 5 presents a `story' of how one might intuitively `make sense' of the spacetime version of the EPR locality paradox, given these two assumptions. The overall conclusion drawn is that if the explanations provided are correct, then the EPR paradox is evidence that spacetime is emergent. 2 Background: Quantum Non-locality vs. Special Relativity As Maudlin has pointed out, the non-local influence associated with entangled particles is different from other kinds of influences which occur in physical theories and are commonly labeled as action-at-a-distance in at least three notable ways [5, pp. 22-24]: • It is unattenuated: The `strength' of the influence seems to be unaffected by distance. • It is discriminating: The influence only seems to act exclusively on those specific parts of the system which are described by the same non-separable wave-function. • It is faster than light or instantaneous: In fact, a recent experiment to measure the speed of this influence found a lower bound of at least 104c [6]. Of these, the last property introduces a tension with special relativity (SR). That is because according to SR the speed of light c is invariant in all inertial frames and this invariance is commonly interpreted to establish c as a limit on the speed of transmission of a range of possible phenomena. The first well-known instance in which the tension between non-locality and Special Relativity came to be appreciated occurred when Einstein, Rosen and Podolsky (EPR) presented an argument in 1935 meant to demonstrate that quantum mechanics was an incomplete theory of nature: According to the argument, either \(1) the quantum mechanical description of reality given by the wave function is not complete or (2) when the operators corresponding to two physical quantities do not commute the two quantities cannot have simultaneous reality"(italics in original)[7]. This argument, applied to two entangled parts of a quantum system some distance apart, implicitly assumed that such influences could not propagate at infinite or at least superluminal speeds, and thus if according to the theory a measurement on one part instantaneously or superluminally changed the state of the other, thereby indicating that the latter did not describe a reality simultaneous with the first, then this could only confirm their conclusion, and hence there would have to be some additional specifications, commonly called `hidden variables' which would be required to give a complete account of nature beyond that provided by standard quantum mechanics. The subsequent debate it engendered seemed merely philosophical until in 1964 Bell presented a way by which two possibilities, that quantum mechanics is complete but non-local or that it is incomplete but must be supplemented by local hidden variables, could be distinguished from each other in the most general way [8]. The distinction was based on a difference in predictions between the two theories of statistical correlations between repeated measurements of the type proposed by EPR (actually a modified version proposed by Bohm and Aharanov [9]). More specifically, he showed that the difference in predictions could be phrased in terms of an inequality obeyed by any local hidden variable theory but violated by canonical quantum mechanics. In 1982, Aspect et al. performed the relevant experiments and found that Bell's inequalities were indeed violated[10]. Similar experiments were (and had been) performed by others and the results were found to also agree with the violation[11][12]. It is important to note that these experiments not only confirmed quantum mechanics but also foreclosed the possibility that any serious candidate for a successor theory would be local. Thus, at least in this respect, then, nature seems to be indeed non-local. This, however, raises the question of how such influences can apparently travel at superluminal speeds in light of the constraints imposed by SR. As mentioned in the introduction, this apparent contradiction will be referred to as the EPR locality paradox. 2 What is in this paper called the EPR influence paradox presents an added mystery arising from the relativity of time ordering for those spacelike separated events which correspond to the emission and arrival of the influence that enforces the correlations between two entangled systems: Suppose we have an EPR type set-up in which observers A and B are spacelike separated and perform the experiment in which two entangled particles are sent out in order for a certain property to be measured. If two events are spacelike separated, then there exists a frame in which the two measurements are simultaneous. For simplicity, and without loss of generality, let us suppose that for the above experiment this was the rest frame of the emitter. Figure 1 is a spacetime diagram that illustrates this situation as observed in that frame. Figure 1: A Frame in which the two measurement events (0;A) and (0;B) are simultaneous. For each particle, the two separate world lines represent a single world line to illustrate the superposition of two possible measurement outcomes of some property such as spin. It is understood that there are infinitely many other such worldlines, each corresponding to a path that is part of the path integral. Here, (0,0) marks the spacetime event which is the emission of the entangled particles, (0;A) marks the event which is A's measurement of some property of particle a which has two possible outcomes (e.g. spin if these are spin 1=2 particles) and (0;B) marks that which is B's measurement of the same property of particle b. As mentioned, in this frame (0;A) and (0;B) are simultaneous. From the path integral formulation we know that associated with each particle there are an infinite number of paths. Since the standard path integral formulation makes no distinction between paths that contribute to the path integral and classical paths, it is natural to assume that to each path there corresponds a separate worldline.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • The E.P.R. Paradox George Levesque
    Undergraduate Review Volume 3 Article 20 2007 The E.P.R. Paradox George Levesque Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Quantum Physics Commons Recommended Citation Levesque, George (2007). The E.P.R. Paradox. Undergraduate Review, 3, 123-130. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/20 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 George Levesque The E.P.R. Paradox George Levesque George graduated from Bridgewater his paper intends to discuss the E.P.R. paradox and its implications State College with majors in Physics, for quantum mechanics. In order to do so, this paper will discuss the Mathematics, Criminal Justice, and features of intrinsic spin of a particle, the Stern-Gerlach experiment, Sociology. This piece is his Honors project the E.P.R. paradox itself and the views it portrays. In addition, we will for Electricity and Magnetism advised by consider where such a classical picture succeeds and, eventually, as we will see Dr. Edward Deveney. George ruminated Tin Bell’s inequality, fails in the strange world we live in – the world of quantum to help the reader formulate, and accept, mechanics. why quantum mechanics, though weird, is valid. Intrinsic Spin Intrinsic spin angular momentum is odd to describe by any normal terms. It is unlike, and often entirely unrelated to, the classical “orbital angular momentum.” But luckily we can describe the intrinsic spin by its relationship to the magnetic moment of the particle being considered.
    [Show full text]
  • The Statistical Interpretation of Entangled States B
    The Statistical Interpretation of Entangled States B. C. Sanctuary Department of Chemistry, McGill University 801 Sherbrooke Street W Montreal, PQ, H3A 2K6, Canada Abstract Entangled EPR spin pairs can be treated using the statistical ensemble interpretation of quantum mechanics. As such the singlet state results from an ensemble of spin pairs each with an arbitrary axis of quantization. This axis acts as a quantum mechanical hidden variable. If the spins lose coherence they disentangle into a mixed state. Whether or not the EPR spin pairs retain entanglement or disentangle, however, the statistical ensemble interpretation resolves the EPR paradox and gives a mechanism for quantum “teleportation” without the need for instantaneous action-at-a-distance. Keywords: Statistical ensemble, entanglement, disentanglement, quantum correlations, EPR paradox, Bell’s inequalities, quantum non-locality and locality, coincidence detection 1. Introduction The fundamental questions of quantum mechanics (QM) are rooted in the philosophical interpretation of the wave function1. At the time these were first debated, covering the fifty or so years following the formulation of QM, the arguments were based primarily on gedanken experiments2. Today the situation has changed with numerous experiments now possible that can guide us in our search for the true nature of the microscopic world, and how The Infamous Boundary3 to the macroscopic world is breached. The current view is based upon pivotal experiments, performed by Aspect4 showing that quantum mechanics is correct and Bell’s inequalities5 are violated. From this the non-local nature of QM became firmly entrenched in physics leading to other experiments, notably those demonstrating that non-locally is fundamental to quantum “teleportation”.
    [Show full text]
  • Analysis of Nonlinear Dynamics in a Classical Transmon Circuit
    Analysis of Nonlinear Dynamics in a Classical Transmon Circuit Sasu Tuohino B. Sc. Thesis Department of Physical Sciences Theoretical Physics University of Oulu 2017 Contents 1 Introduction2 2 Classical network theory4 2.1 From electromagnetic fields to circuit elements.........4 2.2 Generalized flux and charge....................6 2.3 Node variables as degrees of freedom...............7 3 Hamiltonians for electric circuits8 3.1 LC Circuit and DC voltage source................8 3.2 Cooper-Pair Box.......................... 10 3.2.1 Josephson junction.................... 10 3.2.2 Dynamics of the Cooper-pair box............. 11 3.3 Transmon qubit.......................... 12 3.3.1 Cavity resonator...................... 12 3.3.2 Shunt capacitance CB .................. 12 3.3.3 Transmon Lagrangian................... 13 3.3.4 Matrix notation in the Legendre transformation..... 14 3.3.5 Hamiltonian of transmon................. 15 4 Classical dynamics of transmon qubit 16 4.1 Equations of motion for transmon................ 16 4.1.1 Relations with voltages.................. 17 4.1.2 Shunt resistances..................... 17 4.1.3 Linearized Josephson inductance............. 18 4.1.4 Relation with currents................... 18 4.2 Control and read-out signals................... 18 4.2.1 Transmission line model.................. 18 4.2.2 Equations of motion for coupled transmission line.... 20 4.3 Quantum notation......................... 22 5 Numerical solutions for equations of motion 23 5.1 Design parameters of the transmon................ 23 5.2 Resonance shift at nonlinear regime............... 24 6 Conclusions 27 1 Abstract The focus of this thesis is on classical dynamics of a transmon qubit. First we introduce the basic concepts of the classical circuit analysis and use this knowledge to derive the Lagrangians and Hamiltonians of an LC circuit, a Cooper-pair box, and ultimately we derive Hamiltonian for a transmon qubit.
    [Show full text]
  • Theoretical Physics Group Decoherent Histories Approach: a Quantum Description of Closed Systems
    Theoretical Physics Group Department of Physics Decoherent Histories Approach: A Quantum Description of Closed Systems Author: Supervisor: Pak To Cheung Prof. Jonathan J. Halliwell CID: 01830314 A thesis submitted for the degree of MSc Quantum Fields and Fundamental Forces Contents 1 Introduction2 2 Mathematical Formalism9 2.1 General Idea...................................9 2.2 Operator Formulation............................. 10 2.3 Path Integral Formulation........................... 18 3 Interpretation 20 3.1 Decoherent Family............................... 20 3.1a. Logical Conclusions........................... 20 3.1b. Probabilities of Histories........................ 21 3.1c. Causality Paradox........................... 22 3.1d. Approximate Decoherence....................... 24 3.2 Incompatible Sets................................ 25 3.2a. Contradictory Conclusions....................... 25 3.2b. Logic................................... 28 3.2c. Single-Family Rule........................... 30 3.3 Quasiclassical Domains............................. 32 3.4 Many History Interpretation.......................... 34 3.5 Unknown Set Interpretation.......................... 36 4 Applications 36 4.1 EPR Paradox.................................. 36 4.2 Hydrodynamic Variables............................ 41 4.3 Arrival Time Problem............................. 43 4.4 Quantum Fields and Quantum Cosmology.................. 45 5 Summary 48 6 References 51 Appendices 56 A Boolean Algebra 56 B Derivation of Path Integral Method From Operator
    [Show full text]
  • SIMULATED INTERPRETATION of QUANTUM MECHANICS Miroslav Súkeník & Jozef Šima
    SIMULATED INTERPRETATION OF QUANTUM MECHANICS Miroslav Súkeník & Jozef Šima Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia Abstract: The paper deals with simulated interpretation of quantum mechanics. This interpretation is based on possibilities of computer simulation of our Universe. 1: INTRODUCTION Quantum theory and theory of relativity are two fundamental theories elaborated in the 20th century. In spite of the stunning precision of many predictions of quantum mechanics, its interpretation remains still unclear. This ambiguity has not only serious physical but mainly philosophical consequences. The commonest interpretations include the Copenhagen probability interpretation [1], many-words interpretation [2], and de Broglie-Bohm interpretation (theory of pilot wave) [3]. The last mentioned theory takes place in a single space-time, is non - local, and is deterministic. Moreover, Born’s ensemble and Watanabe’s time-symmetric theory being an analogy of Wheeler – Feynman theory should be mentioned. The time-symmetric interpretation was later, in the 60s re- elaborated by Aharonov and it became in the 80s the starting point for so called transactional interpretation of quantum mechanics. More modern interpretations cover a spontaneous collapse of wave function (here, a new non-linear component, causing this collapse is added to Schrödinger equation), decoherence interpretation (wave function is reduced due to an interaction of a quantum- mechanical system with its surroundings) and relational interpretation [4] elaborated by C. Rovelli in 1996. This interpretation treats the state of a quantum system as being observer-dependent, i.e. the state is the relation between the observer and the system. Relational interpretation is able to solve the EPR paradox.
    [Show full text]
  • On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Philosophy of Science Commons, and the Quantum Physics Commons Recommended Citation Acosta, Oscar, "On Relational Quantum Mechanics" (2010). Open Access Theses & Dissertations. 2621. https://digitalcommons.utep.edu/open_etd/2621 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. ON RELATIONAL QUANTUM MECHANICS OSCAR ACOSTA Department of Philosophy Approved: ____________________ Juan Ferret, Ph.D., Chair ____________________ Vladik Kreinovich, Ph.D. ___________________ John McClure, Ph.D. _________________________ Patricia D. Witherspoon Ph. D Dean of the Graduate School Copyright © by Oscar Acosta 2010 ON RELATIONAL QUANTUM MECHANICS by Oscar Acosta THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Department of Philosophy THE UNIVERSITY OF TEXAS AT EL PASO MAY 2010 Acknowledgments I would like to express my deep felt gratitude to my advisor and mentor Dr. Ferret for his never-ending patience, his constant motivation and for not giving up on me. I would also like to thank him for introducing me to the subject of philosophy of science and hiring me as his teaching assistant.
    [Show full text]
  • Path Integral Implementation of Relational Quantum Mechanics
    Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang ( [email protected] ) Qualcomm (United States) Research Article Keywords: Relational Quantum mechanics, Path Integral, Entropy, Inuence Functional Posted Date: February 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-206217/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on April 21st, 2021. See the published version at https://doi.org/10.1038/s41598-021-88045-6. Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang∗ Qualcomm, San Diego, CA 92121, USA (Dated: February 4, 2021) Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born’s Rule, Schr¨odinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems.
    [Show full text]
  • Bachelorarbeit
    Bachelorarbeit The EPR-Paradox, Nonlocality and the Question of Causality Ilvy Schultschik angestrebter akademischer Grad Bachelor of Science (BSc) Wien, 2014 Studienkennzahl lt. Studienblatt: 033 676 Studienrichtung lt. Studienblatt: Physik Betreuer: Univ. Prof. Dr. Reinhold A. Bertlmann Contents 1 Motivation and Mathematical framework 2 1.1 Entanglement - Separability . .2 1.2 Schmidt Decomposition . .3 2 The EPR-paradox 5 2.1 Introduction . .5 2.2 Preface . .5 2.3 EPR reasoning . .8 2.4 Bohr's reply . 11 3 Hidden Variables and no-go theorems 12 4 Nonlocality 14 4.1 Nonlocality and Quantum non-separability . 15 4.2 Teleportation . 17 5 The Bell theorem 19 5.1 Bell's Inequality . 19 5.2 Derivation . 19 5.3 Violation by quantum mechanics . 21 5.4 CHSH inequality . 22 5.5 Bell's theorem and further discussion . 24 5.6 Different assumptions . 26 6 Experimental realizations and loopholes 26 7 Causality 29 7.1 Causality in Special Relativity . 30 7.2 Causality and Quantum Mechanics . 33 7.3 Remarks and prospects . 34 8 Acknowledgment 35 1 1 Motivation and Mathematical framework In recent years, many physicists have taken the incompatibility between cer- tain notions of causality, reality, locality and the empirical data less and less as a philosophical discussion about interpretational ambiguities. Instead sci- entists started to regard this tension as a productive resource for new ideas about quantum entanglement, quantum computation, quantum cryptogra- phy and quantum information. This becomes especially apparent looking at the number of citations of the original EPR paper, which has risen enormously over recent years, and be- coming the starting point for many groundbreaking ideas.
    [Show full text]
  • 1 Does Consciousness Really Collapse the Wave Function?
    Does consciousness really collapse the wave function?: A possible objective biophysical resolution of the measurement problem Fred H. Thaheld* 99 Cable Circle #20 Folsom, Calif. 95630 USA Abstract An analysis has been performed of the theories and postulates advanced by von Neumann, London and Bauer, and Wigner, concerning the role that consciousness might play in the collapse of the wave function, which has become known as the measurement problem. This reveals that an error may have been made by them in the area of biology and its interface with quantum mechanics when they called for the reduction of any superposition states in the brain through the mind or consciousness. Many years later Wigner changed his mind to reflect a simpler and more realistic objective position, expanded upon by Shimony, which appears to offer a way to resolve this issue. The argument is therefore made that the wave function of any superposed photon state or states is always objectively changed within the complex architecture of the eye in a continuous linear process initially for most of the superposed photons, followed by a discontinuous nonlinear collapse process later for any remaining superposed photons, thereby guaranteeing that only final, measured information is presented to the brain, mind or consciousness. An experiment to be conducted in the near future may enable us to simultaneously resolve the measurement problem and also determine if the linear nature of quantum mechanics is violated by the perceptual process. Keywords: Consciousness; Euglena; Linear; Measurement problem; Nonlinear; Objective; Retina; Rhodopsin molecule; Subjective; Wave function collapse. * e-mail address: [email protected] 1 1.
    [Show full text]
  • Many Worlds Model Resolving the Einstein Podolsky Rosen Paradox Via a Direct Realism to Modal Realism Transition That Preserves Einstein Locality
    Many Worlds Model resolving the Einstein Podolsky Rosen paradox via a Direct Realism to Modal Realism Transition that preserves Einstein Locality Sascha Vongehr †,†† †Department of Philosophy, Nanjing University †† National Laboratory of Solid-State Microstructures, Thin-film and Nano-metals Laboratory, Nanjing University Hankou Lu 22, Nanjing 210093, P. R. China The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. Keywords: Many Worlds Interpretation; Many Minds Interpretation; Einstein Podolsky Rosen Paradox; Everett Relativity; Modal Realism; Non-Locality PACS: 03.65. Ud 1 1 Introduction: Quantum Physics and Different Realisms ...............................................................
    [Show full text]
  • John Von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), Pp
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SAS-SPACE Published: Louis Caruana, ‘John von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), pp. 109-124. JOHN VON NEUMANN'S ‘IMPOSSIBILITY PROOF’ IN A HISTORICAL PERSPECTIVE ABSTRACT John von Neumann's proof that quantum mechanics is logically incompatible with hidden varibales has been the object of extensive study both by physicists and by historians. The latter have concentrated mainly on the way the proof was interpreted, accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell published the first explicit identification of the mistake it involved. What is proposed in this paper is an investigation into the origins of the proof rather than the aftermath. In the first section, a brief overview of the his personal life and his proof is given to set the scene. There follows a discussion on the merits of using here the historical method employed elsewhere by Andrew Warwick. It will be argued that a study of the origins of von Neumann's proof shows how there is an interaction between the following factors: the broad issues within a specific culture, the learning process of the theoretical physicist concerned, and the conceptual techniques available. In our case, the ‘conceptual technology’ employed by von Neumann is identified as the method of axiomatisation. 1. INTRODUCTION A full biography of John von Neumann is not yet available. Moreover, it seems that there is a lack of extended historical work on the origin of his contributions to quantum mechanics.
    [Show full text]