Magnetic Multipole Moments

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Multipole Moments Magnetic multipole moments We characterized the scalar potential V for a localized charge distribution at a point far from the charges with a multipole expansion of V: We can do the same with a vector potential due to a localized current distribution. The monopole moment turns out to vanish. The electric monopole moment was just the total charge of the distribution. Since we have no magnetic monopoles, we might expect the monopole moment to vanish. It is clear that the first term vanishes in the case of filamentary currents. That integral is just the vector displacement about a closed loop, which is zero. The same scenario will hold for a closed surface current. The proof that the monopole term vanishes for the case of a volume current density is given in Wangsness Section 19-1-1. It relies on a vector identity and use of the divergence theorem. The magnetic monopole moment always vanishes. The magnetic dipole term will be the dominant term in the multipole expansion. It is the only term we will consider. It will also turn out to be independent of the choice of origin of coordinates. This might also be expected since we found that the electric dipole moment was independent of the choice of origin when the total charge (electric monopole) vanished. The nice thing about the electric multipole expansion was that we could use it to characterize a charge distribution. So we would like to manipulate our magnetic dipole term to separate the source description from the position of the point at which we calculate the vector potential. We will find the following result, which defines the magnetic dipole moment. The proof of the relation given above for the case of a continuous volume current distribution is given in Section 19-1-2 of Wangsness. It is quite involved but straightforward so you can read it there. Here, we will go through the equivalent proof of the relation for the case of a filamentary circuit. We want to cleanly separate all dependence on the field point from the integration over the circuit. We can manipulate this form into an ordinary line integral form and apply Stoke’s theorem to accomplish this. Consider Stoke’s theorem in general first. So the desired separation is achieved here. So we can summarize the dominant dipole term in a common form for each type of current distribution. Given the vector potential, one can calculate the magnetic field associated with the idealized dipole contribution by taking the curl. In the electrostatic case, we had a simple picture of a physical dipole and a straightforward result for the leading dipole term of the electric field. The above would hold for a loop lying in the x-y plane at the origin. For a loop of radius a, small relative to r, Magnetism in the Presence of Matter Now we will go beyond the case of currents in vacuum. The concept of magnetic dipole will play the role that was taken by electric dipole when we discussed dielectric materials. Electric dipoles, as embodied by the charge separation of particles in atoms and molecules, felt the influence of external electric fields with the result characterized by the macroscopic polarization, and then described by bound volume and surface charge densities. With magnetic materials, it is ultimately the motion of charged particles (primarily electrons) that leads to the equivalent property of magnetization. Both orbital motions and intrinsic angular momentum (spin – quantum mechanical property) contribute to the magnetic properties of materials. The microscopic situation is complex and includes cases of paramagnetism (alignment of intrinsic magnetic moment by external field), diamagnetism (all materials, external field induces magnetic moment) and ferromagnetism (domains of aligned magnetic moments arising from electron spin interactions). We will describe magnetization in terms of volume and surface current densities. Take a small circular current loop as our prototype of a magnetic dipole. We can consider the influence on the loop (force and torque) of an external magnetic field. If the applied magnetic field is constant, the force on the loop vanishes. In the case of a position dependent magnetic field, the simplest way to derive an expression for the force is to approximate the value of the field at each point on the small loop via a Taylor expansion relative to the value of the field at the center of the loop (at the origin). The full details are given in Wangsness Section 19-4. But we will just quote the result because it is just like the situation we had in electrostatics: So this just serves to demonstrate that our magnetic dipoles can experience a force due to an applied field. Likewise, a magnetic dipole experiences a torque due to an applied magnetic field – even for a constant field. Here, consider that the applied field is constant. So we can see the possibility of alignment of magnetic dipoles within a material at the microscopic level. With polarized dielectrics, we used the polarization to find bound volume and surface charge densities. With magnetized material, we will find volume and surface current densities from the magnetization. The easiest way to extract those current densities is by consideration of the vector potential for the material. We know how to write the contribution to the vector potential of a loop of current due to its dipole moment. This is the dominant term for distances large relative to the loop size. We will leave the second volume integral intact but we will manipulate the first one into a surface integral. The volume over which we are integrating is the volume of the magnetized material. Use this expression to rewrite our result for the vector potential. This is the form we want. Recall we have seen the vector potential expressed in terms of current densities. This corresponds to precisely those forms, for equivalent surface and volume current densities. These surface and volume current densities, arising as a result of the magnetization of a material are referred to as equivalent, Amperian, magnetization, or bound current densities. We’ll use the term in Wangsness – magnetization current densities. Just as with the bound charge densities in dielectrics,these magnetization current densities are real currents. When the magnetization is uniform (curl M =0), there are only surface currents. By thinking of the aligned magnetic dipoles as small current loops, it is easy to see how the surface current density arises. For uniform magnetization, in the volume of the material, currents from adjacent “dipole loops” cancel. If the magnetization has a spatial dependence such that its curl does not vanish, then this cancellation is incomplete and the volume current density is nonvanishing. So we have a continuity statement again, but for the case of a current density associated with magnetization, we find that it cannot contribute to any charge accumulation. With dielectric materials, we progressed from the concept of polarized material as an assembly of dipoles described the the polarization, to a description in terms of equivalent volume and surface charge densities. With magnetic material, we go from the concept of magnetized material as an assembly of magnetic dipoles (think of as small current loops) described by the magnetization, to a description in terms of equivalent volume and surface current densities. The Biot-Savart law for the magnetic field is modified to include magnetization current densities: The subscript “outside” is a reminder that we developed this description of magnetized material starting with the multipole expansion of the vector potential. However, as long as we do not try to describe magnetic material at the microscopic level, the result also holds inside matter, just as we found for the case of dielectrics. Now we can do a bit of a summary by revisiting our results on magnetism for the vacuum case, with our new understanding of the addition of magnetic materials. We will extend our results for magnetism in this way. Magnetism so far, Introduction of H, and Some Boundary Conditions Adding magnetic materials, the magnetic field due to magnetization current densities arises due to the motion of charges, just as for free currents. So the form of the magnetic field is identical. Thus our result remains intact – after all, we interpret it as implying no static magnetic charges. So this result is modified when we include magnetic materials. It is important to note that this result was derived for the case of static fields. It will be further modified . We called the above result Ampere’s law in differential form. Like Gauss’ law in diff form, it has limits to its application. Both laws only work for situations where the fields are differentiable. So we saw that the electric field was discontinuous at an interface containing a surface charge. In that case, we had to use the integral form of Gauss’ law. Likewise, the diff form of Ampere’s law will not hold at the surface of a magnetized material where we have a surface current density. An obvious example is an infinite plane sheet of current, where the magnetic field is clearly discontinuous. Let’s be guided by what we did with the introduction of dielectrics in further manipulating Ampere’s law in diff and integral forms. We separated free and bound charge density. Just as we found a form of G’s law for displacement, we can find a form of Ampere’s law for H. Consider the flux of curl H through an open surface S. It is important to remember that these results were derived for steady currents – that is, using .
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • The Magnetic Moment of a Bar Magnet and the Horizontal Component of the Earth’S Magnetic Field
    260 16-1 EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH’S MAGNETIC FIELD I. THEORY The purpose of this experiment is to measure the magnetic moment μ of a bar magnet and the horizontal component BE of the earth's magnetic field. Since there are two unknown quantities, μ and BE, we need two independent equations containing the two unknowns. We will carry out two separate procedures: The first procedure will yield the ratio of the two unknowns; the second will yield the product. We will then solve the two equations simultaneously. The pole strength of a bar magnet may be determined by measuring the force F exerted on one pole of the magnet by an external magnetic field B0. The pole strength is then defined by p = F/B0 Note the similarity between this equation and q = F/E for electric charges. In Experiment 3 we learned that the magnitude of the magnetic field, B, due to a single magnetic pole varies as the inverse square of the distance from the pole. k′ p B = r 2 in which k' is defined to be 10-7 N/A2. Consider a bar magnet with poles a distance 2x apart. Consider also a point P, located a distance r from the center of the magnet, along a straight line which passes from the center of the magnet through the North pole. Assume that r is much larger than x. The resultant magnetic field Bm at P due to the magnet is the vector sum of a field BN directed away from the North pole, and a field BS directed toward the South pole.
    [Show full text]
  • Magnetic Polarizability of a Short Right Circular Conducting Cylinder 1
    Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 64B, No.4, October- December 1960 Magnetic Polarizability of a Short Right Circular Conducting Cylinder 1 T. T. Taylor 2 (August 1, 1960) The magnetic polarizability tensor of a short righ t circular conducting cylinder is calcu­ lated in the principal axes system wit h a un iform quasi-static but nonpenetrating a pplied fi eld. On e of the two distinct tensor components is derived from res ults alread y obtained in co nnection wi th the electric polarizabili ty of short conducting cylinders. The other is calcu­ lated to an accuracy of four to five significan t fi gures for cylinders with radius to half-length ratios of }~, }~, 1, 2, a nd 4. These results, when combin ed with t he corresponding results for the electric polari zability, are a pplicable to t he proble m of calculating scattering from cylin­ cl ers and to the des ign of artifi c;al dispersive media. 1. Introduction This ar ticle considers the problem of finding the mftgnetie polariz ability tensor {3ij of a short, that is, noninfinite in length, righ t circular conducting cylinder under the assumption of negli gible field penetration. The latter condition can be realized easily with avail able con­ ductin g materials and fi elds which, although time varying, have wavelengths long compared with cylinder dimensions and can therefore be regftrded as quasi-static. T he approach of the present ar ticle is parallel to that employed earlier [1] 3 by the author fo r fin ding the electric polarizability of shor t co nductin g cylinders.
    [Show full text]
  • PH585: Magnetic Dipoles and So Forth
    PH585: Magnetic dipoles and so forth 1 Magnetic Moments Magnetic moments ~µ are analogous to dipole moments ~p in electrostatics. There are two sorts of magnetic dipoles we will consider: a dipole consisting of two magnetic charges p separated by a distance d (a true dipole), and a current loop of area A (an approximate dipole). N p d -p I S Figure 1: (left) A magnetic dipole, consisting of two magnetic charges p separated by a distance d. The dipole moment is |~µ| = pd. (right) An approximate magnetic dipole, consisting of a loop with current I and area A. The dipole moment is |~µ| = IA. In the case of two separated magnetic charges, the dipole moment is trivially calculated by comparison with an electric dipole – substitute ~µ for ~p and p for q.i In the case of the current loop, a bit more work is required to find the moment. We will come to this shortly, for now we just quote the result ~µ=IA nˆ, where nˆ is a unit vector normal to the surface of the loop. 2 An Electrostatics Refresher In order to appreciate the magnetic dipole, we should remind ourselves first how one arrives at the field for an electric dipole. Recall Maxwell’s first equation (in the absence of polarization density): ρ ∇~ · E~ = (1) r0 If we assume that the fields are static, we can also write: ∂B~ ∇~ × E~ = − (2) ∂t This means, as you discovered in your last homework, that E~ can be written as the gradient of a scalar function ϕ, the electric potential: E~ = −∇~ ϕ (3) This lets us rewrite Eq.
    [Show full text]
  • Ph501 Electrodynamics Problem Set 8 Kirk T
    Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald (2001) [email protected] http://physics.princeton.edu/~mcdonald/examples/ Princeton University 2001 Ph501 Set 8, Problem 1 1 1. Wire with a Linearly Rising Current A neutral wire along the z-axis carries current I that varies with time t according to ⎧ ⎪ ⎨ 0(t ≤ 0), I t ( )=⎪ (1) ⎩ αt (t>0),αis a constant. Deduce the time-dependence of the electric and magnetic fields, E and B,observedat apoint(r, θ =0,z = 0) in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that ct r and ct = r + , where c is the speed of light and r. The related, but more intricate case of a solenoid with a linearly rising current is considered in http://physics.princeton.edu/~mcdonald/examples/solenoid.pdf Princeton University 2001 Ph501 Set 8, Problem 2 2 2. Harmonic Multipole Expansion A common alternative to the multipole expansion of electromagnetic radiation given in the Notes assumes from the beginning that the motion of the charges is oscillatory with angular frequency ω. However, we still use the essence of the Hertz method wherein the current density is related to the time derivative of a polarization:1 J = p˙ . (2) The radiation fields will be deduced from the retarded vector potential, 1 [J] d 1 [p˙ ] d , A = c r Vol = c r Vol (3) which is a solution of the (Lorenz gauge) wave equation 1 ∂2A 4π ∇2A − = − J. (4) c2 ∂t2 c Suppose that the Hertz polarization vector p has oscillatory time dependence, −iωt p(x,t)=pω(x)e .
    [Show full text]
  • Units in Electromagnetism (PDF)
    Units in electromagnetism Almost all textbooks on electricity and magnetism (including Griffiths’s book) use the same set of units | the so-called rationalized or Giorgi units. These have the advantage of common use. On the other hand there are all sorts of \0"s and \µ0"s to memorize. Could anyone think of a system that doesn't have all this junk to memorize? Yes, Carl Friedrich Gauss could. This problem describes the Gaussian system of units. [In working this problem, keep in mind the distinction between \dimensions" (like length, time, and charge) and \units" (like meters, seconds, and coulombs).] a. In the Gaussian system, the measure of charge is q q~ = p : 4π0 Write down Coulomb's law in the Gaussian system. Show that in this system, the dimensions ofq ~ are [length]3=2[mass]1=2[time]−1: There is no need, in this system, for a unit of charge like the coulomb, which is independent of the units of mass, length, and time. b. The electric field in the Gaussian system is given by F~ E~~ = : q~ How is this measure of electric field (E~~) related to the standard (Giorgi) field (E~ )? What are the dimensions of E~~? c. The magnetic field in the Gaussian system is given by r4π B~~ = B~ : µ0 What are the dimensions of B~~ and how do they compare to the dimensions of E~~? d. In the Giorgi system, the Lorentz force law is F~ = q(E~ + ~v × B~ ): p What is the Lorentz force law expressed in the Gaussian system? Recall that c = 1= 0µ0.
    [Show full text]
  • Ph501 Electrodynamics Problem Set 1
    Princeton University Ph501 Electrodynamics Problem Set 1 Kirk T. McDonald (1998) [email protected] http://physics.princeton.edu/~mcdonald/examples/ References: R. Becker, Electromagnetic Fields and Interactions (Dover Publications, New York, 1982). D.J. Griffiths, Introductions to Electrodynamics, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 1999). J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999). The classic is, of course: J.C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954). For greater detail: L.D. Landau and E.M. Lifshitz, Classical Theory of Fields, 4th ed. (Butterworth- Heineman, Oxford, 1975); Electrodynamics of Continuous Media, 2nd ed. (Butterworth- Heineman, Oxford, 1984). N.N. Lebedev, I.P. Skalskaya and Y.S. Ulfand, Worked Problems in Applied Mathematics (Dover, New York, 1979). W.R. Smythe, Static and Dynamic Electricity, 3rd ed. (McGraw-Hill, New York, 1968). J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941). Excellent introductions: R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics,Vol.2 (Addison-Wesely, Reading, MA, 1964). E.M. Purcell, Electricity and Magnetism, 2nd ed. (McGraw-Hill, New York, 1984). History: B.J. Hunt, The Maxwellians (Cornell U Press, Ithaca, 1991). E. Whittaker, A History of the Theories of Aether and Electricity (Dover, New York, 1989). Online E&M Courses: http://www.ece.rutgers.edu/~orfanidi/ewa/ http://farside.ph.utexas.edu/teaching/jk1/jk1.html Princeton University 1998 Ph501 Set 1, Problem 1 1 1. (a) Show that the mean value of the potential over a spherical surface is equal to the potential at the center, provided that no charge is contained within the sphere.
    [Show full text]
  • Magnetic Moment of a Spin, Its Equation of Motion, and Precession B1.1.6
    Magnetic Moment of a Spin, Its Equation of UNIT B1.1 Motion, and Precession OVERVIEW The ability to “see” protons using magnetic resonance imaging is predicated on the proton having a mass, a charge, and a nonzero spin. The spin of a particle is analogous to its intrinsic angular momentum. A simple way to explain angular momentum is that when an object rotates (e.g., an ice skater), that action generates an intrinsic angular momentum. If there were no friction in air or of the skates on the ice, the skater would spin forever. This intrinsic angular momentum is, in fact, a vector, not a scalar, and thus spin is also a vector. This intrinsic spin is always present. The direction of a spin vector is usually chosen by the right-hand rule. For example, if the ice skater is spinning from her right to left, then the spin vector is pointing up; the skater is rotating counterclockwise when viewed from the top. A key property determining the motion of a spin in a magnetic field is its magnetic moment. Once this is known, the motion of the magnetic moment and energy of the moment can be calculated. Actually, the spin of a particle with a charge and a mass leads to a magnetic moment. An intuitive way to understand the magnetic moment is to imagine a current loop lying in a plane (see Figure B1.1.1). If the loop has current I and an enclosed area A, then the magnetic moment is simply the product of the current and area (see Equation B1.1.8 in the Technical Discussion), with the direction n^ parallel to the normal direction of the plane.
    [Show full text]
  • Magnetic & Electric Dipole Moments
    Axion Academic Training CERN, 1 December 2005 Magnetic & Electric Dipole Moments. Yannis K. Semertzidis Brookhaven National Lab •Muon g-2 experiment d c •EDMs: What do they probe? q •Physics of Hadronic EDMs θ •Probing QCD directly (RHIC), & indirectly (Hadronic EDM) •Experimental Techniques dsr v r r = μr × B + d × E dt Building blocks of matter Force carriers Muons decay to an electron and two neutrinos with a lifetime of 2.2μs (at rest). dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Quantum Mechanical Fluctuations •The electron particle is surrounded by a cloud of virtual particles, a …soup of particles… •The muon, which is ~200 times heavier than the electron, is surrounded by a heavier soup of particles… dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt A circulating particle with r charge e and mass m: μr, L r • Angular momentum e, m L = mvr e r • Magnetic dipole μr = L moment 2m μ = IA dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt For particles with intrinsic angular momentum (spin S): e r μr = g S 2m The anomalous magnetic moment a: g − 2 a = 2 dsr v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt In a magnetic field (B), there is a torque: r τr = μr × B Which causes the spin to precess in the horizontal plane: dsr r =×μr B dt r ds v r r = μr × B + d × E Axion Training, 1 December, 2005 Yannis Semertzidis, BNL dt Definition of g-Factor magnetic moment g ≡ eh / 2mc angular momentum h From Dirac equation g-2=0 for point-like, spin ½ particles.
    [Show full text]
  • Magnetic Fields
    Welcome Back to Physics 1308 Magnetic Fields Sir Joseph John Thomson 18 December 1856 – 30 August 1940 Physics 1308: General Physics II - Professor Jodi Cooley Announcements • Assignments for Tuesday, October 30th: - Reading: Chapter 29.1 - 29.3 - Watch Videos: - https://youtu.be/5Dyfr9QQOkE — Lecture 17 - The Biot-Savart Law - https://youtu.be/0hDdcXrrn94 — Lecture 17 - The Solenoid • Homework 9 Assigned - due before class on Tuesday, October 30th. Physics 1308: General Physics II - Professor Jodi Cooley Physics 1308: General Physics II - Professor Jodi Cooley Review Question 1 Consider the two rectangular areas shown with a point P located at the midpoint between the two areas. The rectangular area on the left contains a bar magnet with the south pole near point P. The rectangle on the right is initially empty. How will the magnetic field at P change, if at all, when a second bar magnet is placed on the right rectangle with its north pole near point P? A) The direction of the magnetic field will not change, but its magnitude will decrease. B) The direction of the magnetic field will not change, but its magnitude will increase. C) The magnetic field at P will be zero tesla. D) The direction of the magnetic field will change and its magnitude will increase. E) The direction of the magnetic field will change and its magnitude will decrease. Physics 1308: General Physics II - Professor Jodi Cooley Review Question 2 An electron traveling due east in a region that contains only a magnetic field experiences a vertically downward force, toward the surface of the earth.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • Assembling a Magnetometer for Measuring the Magnetic Properties of Iron Oxide Microparticles in the Classroom Laboratory Jefferson F
    APPARATUS AND DEMONSTRATION NOTES The downloaded PDF for any Note in this section contains all the Notes in this section. John Essick, Editor Department of Physics, Reed College, Portland, OR 97202 This department welcomes brief communications reporting new demonstrations, laboratory equip- ment, techniques, or materials of interest to teachers of physics. Notes on new applications of older apparatus, measurements supplementing data supplied by manufacturers, information which, while not new, is not generally known, procurement information, and news about apparatus under development may be suitable for publication in this section. Neither the American Journal of Physics nor the Editors assume responsibility for the correctness of the information presented. Manuscripts should be submitted using the web-based system that can be accessed via the American Journal of Physics home page, http://web.mit.edu/rhprice/www, and will be forwarded to the ADN edi- tor for consideration. Assembling a magnetometer for measuring the magnetic properties of iron oxide microparticles in the classroom laboratory Jefferson F. D. F. Araujo, a) Joao~ M. B. Pereira, and Antonio^ C. Bruno Department of Physics, Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil (Received 19 July 2018; accepted 9 April 2019) A compact magnetometer, simple enough to be assembled and used by physics instructional laboratory students, is presented. The assembled magnetometer can measure the magnetic response of materials due to an applied field generated by permanent magnets. Along with the permanent magnets, the magnetometer consists of two Hall effect-based sensors, a wall-adapter dc power supply to bias the sensors, a handheld digital voltmeter, and a plastic ruler.
    [Show full text]