PHILOSOPHY of BIOLOGY and METAPHYSICS Reconsidering the Aristotelian Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Kinds and Concepts: a Pragmatist and Methodologically Naturalistic Account
Natural Kinds and Concepts: A Pragmatist and Methodologically Naturalistic Account Ingo Brigandt Abstract: In this chapter I lay out a notion of philosophical naturalism that aligns with prag- matism. It is developed and illustrated by a presentation of my views on natural kinds and my theory of concepts. Both accounts reflect a methodological naturalism and are defended not by way of metaphysical considerations, but in terms of their philosophical fruitfulness. A core theme is that the epistemic interests of scientists have to be taken into account by any natural- istic philosophy of science in general, and any account of natural kinds and scientific concepts in particular. I conclude with general methodological remarks on how to develop and defend philosophical notions without using intuitions. The central aim of this essay is to put forward a notion of naturalism that broadly aligns with pragmatism. I do so by outlining my views on natural kinds and my account of concepts, which I have defended in recent publications (Brigandt, 2009, 2010b). Philosophical accounts of both natural kinds and con- cepts are usually taken to be metaphysical endeavours, which attempt to develop a theory of the nature of natural kinds (as objectively existing entities of the world) or of the nature of concepts (as objectively existing mental entities). However, I shall argue that any account of natural kinds or concepts must an- swer to epistemological questions as well and will offer a simultaneously prag- matist and naturalistic defence of my views on natural kinds and concepts. Many philosophers conceive of naturalism as a primarily metaphysical doc- trine, such as a commitment to a physicalist ontology or the idea that humans and their intellectual and moral capacities are a part of nature. -
History of Philosophymetaphysics & Epistem Ology Norm Ative
HistoryPhilosophy of MetaphysicsEpistemology & NormativePhilosophy Azzouni, Jody 114 Topics in Logic: Quine from Early to Late with Smith 120 Metaphysics 131 Epistemology 191 Objects 191 Rule-Following and Metaphysical Realism 191 Truth 191 Quine with McConnell 191 Philosophy of Mathematics 192 The Phenomenology of Public Language 195 Chomsky with McConnell 292 Advanced Epistemology Bauer, Nancy 186 Phenomenology & Existentialism 191 Feminist Philosophy 192 Simone de Beauvoir Baz, Avner 121 Ethical Theory 186 Phenomenology & Existentialism 192 Merleau Ponty Phenomenology 192 The Legacy of Thompson Clarke 192 Wittgenstein's Philosophical Investigations 292 Perceptions & Indeterminacy 292 Research Seminar on Philosophical Method Choi, Yoon 117 Philosophy of Mind 164 Kant's Critique of Pure Reason 192 Kant's Moral Philosophy Cohen, Michael 192 Conciousness Explored: The neurobiology and with Dennett philosophy of the human mind De Caro, Mario 152 History of Modern Philosophy De HistoryPhilosophy of MetaphysicsEpistemology & NormativePhilosophy Car 191 Nature & Norms 191 Free Will & Moral Responsibility Denby, David 133 Philosophy of Language 152 History of Modern Philosophy 191 History of Analytic Philosophy 191 Topics in Metaphysics 195 The Philosophy of David Lewis Dennett, Dan 191 Foundations of Cognitive Science 192 Artificial Agents & Autonomy with Scheutz 192 Cultural Evolution-Is it Darwinian 192 Topics in Philosophy of Biology: The Boundaries with Forber of Darwinian Theory 192 Evolving Minds: From Bacteria to Bach 192 Conciousness -
Revised Glossary for AQA GCSE Biology Student Book
Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they -
Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School
Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School This guide is for middle and high school students participating in AIMS Anatomy of the Human Heart and Pig Heart Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human heart by observing, studying, and examining human specimens. The primary focus is on the anatomy and flow of blood through the heart. Those students participating in Pig Heart Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. National Science Education (NSES) Content Standards for grades 9-12 • Content Standard:K-12 Unifying Concepts and Processes :Systems order and organization; Evidence, models and explanation; Form and function • Content Standard F, Science in Personal and Social Perspectives: Personal and community health • Content Standard C, Life Science: Matter, energy and organization of living systems • Content Standard A Science as Inquiry National Science Education (NSES) Content Standards for grades 5-8 • Content Standard A Science as Inquiry • Content Standard C, Life Science: Structure and function in living systems; Diversity and adaptations of organisms • Content Standard F, Science in Personal and Social Perspectives: Personal Health Show Me Standards (Science and Health/Physical Education) • Science 3. Characteristics and interactions of living organisms • Health/Physical Education 1. Structures of, functions of and relationships among human body systems Objectives: The student will be able to: 1. -
Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor
Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor: Rebecca Bailey 1 Chapter 1 The Human Body: An Orientation • Terms - Anatomy: the study of body structure and relationships among structures - Physiology: the study of body function • Levels of Organization - Chemical level 1. atoms and molecules - Cells 1. the basic unit of all living things - Tissues 1. cells join together to perform a particular function - Organs 1. tissues join together to perform a particular function - Organ system 1. organs join together to perform a particular function - Organismal 1. the whole body • Organ Systems • Anatomical Position • Regional Names - Axial region 1. head 2. neck 3. trunk a. thorax b. abdomen c. pelvis d. perineum - Appendicular region 1. limbs • Directional Terms - Superior (above) vs. Inferior (below) - Anterior (toward the front) vs. Posterior (toward the back)(Dorsal vs. Ventral) - Medial (toward the midline) vs. Lateral (away from the midline) - Intermediate (between a more medial and a more lateral structure) - Proximal (closer to the point of origin) vs. Distal (farther from the point of origin) - Superficial (toward the surface) vs. Deep (away from the surface) • Planes and Sections divide the body or organ - Frontal or coronal 1. divides into anterior/posterior 2 - Sagittal 1. divides into right and left halves 2. includes midsagittal and parasagittal - Transverse or cross-sectional 1. divides into superior/inferior • Body Cavities - Dorsal 1. cranial cavity 2. vertebral cavity - Ventral 1. lined with serous membrane 2. viscera (organs) covered by serous membrane 3. thoracic cavity a. two pleural cavities contain the lungs b. pericardial cavity contains heart c. the cavities are defined by serous membrane d. -
Interpreting the History of Evolutionary Biology Through a Kuhnian Prism: Sense Or Nonsense?
Interpreting the History of Evolutionary Biology through a Kuhnian Prism: Sense or Nonsense? Koen B. Tanghe Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Lieven Pauwels Department of Criminology, Criminal Law and Social Law, Universiteit Gent, Belgium Alexis De Tiège Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Johan Braeckman Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Traditionally, Thomas S. Kuhn’s The Structure of Scientific Revolutions (1962) is largely identified with his analysis of the structure of scientific revo- lutions. Here, we contribute to a minority tradition in the Kuhn literature by interpreting the history of evolutionary biology through the prism of the entire historical developmental model of sciences that he elaborates in The Structure. This research not only reveals a certain match between this model and the history of evolutionary biology but, more importantly, also sheds new light on several episodes in that history, and particularly on the publication of Charles Darwin’s On the Origin of Species (1859), the construction of the modern evolutionary synthesis, the chronic discontent with it, and the latest expression of that discon- tent, called the extended evolutionary synthesis. Lastly, we also explain why this kind of analysis hasn’t been done before. We would like to thank two anonymous reviewers for their constructive review, as well as the editor Alex Levine. Perspectives on Science 2021, vol. 29, no. 1 © 2021 by The Massachusetts Institute of Technology https://doi.org/10.1162/posc_a_00359 1 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 2 Evolutionary Biology through a Kuhnian Prism 1. -
Quiet Debut'' of the Double Helix: a Bibliometric and Methodological
Journal of the History of Biology Ó Springer 2009 DOI 10.1007/s10739-009-9183-2 Revisiting the ‘‘Quiet Debut’’ of the Double Helix: A Bibliometric and Methodological note on the ‘‘Impact’’ of Scientific Publications YVES GINGRAS De´partement d’histoire Universite´ du Que´bec a` Montre´al C.P. 8888, Suc. Centre-Ville Montreal, QC H3C-3P8 Canada E-mail: [email protected] Abstract. The object of this paper is two-fold: first, to show that contrary to what seem to have become a widely accepted view among historians of biology, the famous 1953 first Nature paper of Watson and Crick on the structure of DNA was widely cited – as compared to the average paper of the time – on a continuous basis from the very year of its publication and over the period 1953–1970 and that the citations came from a wide array of scientific journals. A systematic analysis of the bibliometric data thus shows that Watson’s and Crick’s paper did in fact have immediate and long term impact if we define ‘‘impact’’ in terms of comparative citations with other papers of the time. In this precise sense it did not fall into ‘‘relative oblivion’’ in the scientific community. The second aim of this paper is to show, using the case of the reception of the Watson–Crick and Jacob–Monod papers as concrete examples, how large scale bibliometric data can be used in a sophisticated manner to provide information about the dynamic of the scientific field as a whole instead of limiting the analysis to a few major actors and generalizing the result to the whole community without further ado. -
A Short History of Botany in the United States</Article
would have extended the value of the classes (the chapter on plant ecology book to the layman, the high school to my environmental biology class, for ScienceFilmstrips biology student, and even the elemen- example) in order to give students a tary-school child. fine historical overview of the particu- R. E. Barthelemy lar discipline's development in this BIOLOGY CHEMISTRY University of Minnesota country. Meanwhile I read the book PHYSICS MICROBIOLOGY Minneapolis piecemeal myself for biohistorical ap- ATOMICENERGY preciation and background; it shouldn't at one sit- ATOMICCONCEPT be read from cover to cover HISTORYAND PHILOSOPHY ting! HOWTO STUDY Never before has such a fund of di- on American botani- GENERALSCIENCE A SHORT HISTORY OF BOTANY IN THE UNITED verse information in FIGURE DRAWING STATES, ed. by Joseph Ewan. 1969. cal endeavor been brought together LABORATORYSAFETY Hafner Publishing Co., N.Y. 174 pp. one handy volume. We might hope that American zoologists, undaunted by HEALTHAND SAFETY(Campers) Price not given. Engelmann of St. having been upstaged, can shortly man- SAFETYIN AN ATOMICATTACK In 1846 George Louis, after finally receiving some fi- age to compile a comparable volume SCHOOLBUS SAFETY nancial encouragement for the pursuit for their discipline. BICYCLESAFETY of botany in the American West, opti- Richard G. Beidleman Colorado College mistically wrote that he could "hope a Downloaded from http://online.ucpress.edu/abt/article-pdf/32/3/178/339753/4442993.pdf by guest on 28 September 2021 WATERCONSERVATION Springs little more from this country for sci- Colorado ence." Today, Engelmann would be de- CARL LINNAEUS, Alvin and Virginia Ask for free folder and information lighted and amazed by what his adopted by Silverstein. -
The Teaching of Anatomy Throughout the Centuries: from Herophilus To
Medicina Historica 2019; Vol. 3, N. 2: 69-77 © Mattioli 1885 Original article: history of medicine The teaching of anatomy throughout the centuries: from Herophilus to plastination and beyond Veronica Papa1, 2, Elena Varotto2, 3, Mauro Vaccarezza4, Roberta Ballestriero5, 6, Domenico Tafuri1, Francesco M. Galassi2, 7 1 Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Napoli, Italy; 2 FAPAB Research Center, Avola (SR), Italy; 3 Department of Humanities (DISUM), University of Catania, Catania, Italy; 4 School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA, Australia; 5 University of the Arts, Central Saint Martins, London, UK; 6 The Gordon Museum of Pathology, Kings College London, London, UK;7 Archaeology, College of Hu- manities, Arts and Social Sciences, Flinders University, Adelaide, Australia Abstract. Cultural changes, scientific progress, and new trends in medical education have modified the role of dissection in the teaching of anatomy in today’s medical schools. Dissection is indispensable for a correct and complete knowledge of human anatomy, which can ensure safe as well as efficient clinical practice and the hu- man dissection lab could possibly be the ideal place to cultivate humanistic qualities among future physicians. In this manuscript, we discuss the role of dissection itself, the value of which has been under debate for the last 30 years; furthermore, we attempt to focus on the way in which anatomy knowledge was delivered throughout the centuries, from the ancient times, through the Middles Ages to the present. Finally, we document the rise of plastination as a new trend in anatomy education both in medical and non-medical practice. -
DICTIONARY of the HISTORY of SCIENCE Subject Editors
DICTIONARY OF THE HISTORY OF SCIENCE Subject Editors Astronomy Michael A. Hoskin, Churchill College, Cambridge. Biology Richard W. Burkhardt, Jr, Department of History, University of Illinois at Urbana-Champaign. Chemistry William H. Brock, Victorian Studies Centre, University of Leicester. Earth sciences Roy Porter, W ellcome Institute for the History of Medicine, London. Historiography Steven Shapin, & sociology Science Studies Unit, of science University of Edinburgh. Human Roger Smith, sciences Department of History, University of Lancaster. Mathematics Eric J. Aiton, Mathematics Faculty, Manchester Polytechnic. Medicine William F. Bynum, W ellcome Institute for the History of Medicine, London. Philosophy Roy Bhaskar, of science School of Social Sciences, University of Sussex. Physics John L. Heilbron, Office for History of Science & Technology, University of California, Berkeley. DICTIONARY OF THE HISTORY OF SCIENCE edited by W.EBynum E.J.Browne Roy Porter M © The Macmillan Press Ltd 1981 Softcover reprint of the hardcover 1st edition 1981 978-0-333-29316-4 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1981 by THE MACMILLAN PRESS LTD London and Basingstoke Associated Companies throughout the world. ISBN 978-1-349-05551-7 ISBN 978-1-349-05549-4 (eBook) DOI 10.1007/978-1-349-05549-4 Typeset by Computacomp (UK) Ltd, Fort William, Scotland Macmillan Consultant Editor Klaus Boehm Contents Introduction vii Acknowledgements viii Contributors X Analytical table of contents xiii Bibliography xxiii Abbreviations xxxiv Dictionary Bibliographical index 452 Introduction How is the historical dimension of science relevant to understanding its place in our lives? It is widely agreed that our present attitudes and ideas about religion, art, or morals are oriented the way they are, and thus related to other beliefs, because of their history. -
A Brief History of the Practice of Anatomical Dissection
Open Access Rambam Maimonides Medical Journal HISTORY OF MEDICINE Post-Mortem Pedagogy: A Brief History of the Practice of Anatomical Dissection Connor T. A. Brenna, B.Sc., M.D.(C.)* Department of Medicine, University of Toronto, Toronto, ON, Canada ABSTRACT Anatomical dissection is almost ubiquitous in modern medical education, masking a complex history of its practice. Dissection with the express purpose of understanding human anatomy began more than two millennia ago with Herophilus, but was soon after disavowed in the third century BCE. Historical evidence suggests that this position was based on common beliefs that the body must remain whole after death in order to access the afterlife. Anatomical dissection did not resume for almost 1500 years, and in the interim anatomical knowledge was dominated by (often flawed) reports generated through the comparative dissection of animals. When a growing recognition of the utility of anatomical knowledge in clinical medicine ushered human dissection back into vogue, it recommenced in a limited setting almost exclusively allowing for dissection of the bodies of convicted criminals. Ultimately, the ethical problems that this fostered, as well as the increasing demand from medical education for greater volumes of human dissection, shaped new considerations of the body after death. Presently, body bequeathal programs are a popular way in which individuals offer their bodies to medical education after death, suggesting that the once widespread views of dissection as punishment have largely dissipated. KEY WORDS: Anatomy, dissection, epistemic frameworks, history, medical education Citation: Brenna CTA. Post-Mortem Pedagogy: A Brief History of the Practice of Anatomical Dissection. Rambam Maimonides Med J 2021;12 (1):e0008. -
Therapy and Medicaments by Ibn Al-Nafis
Bull. Ind. Inst. Hist. Med. Vol. XXII pp 111 to 120 THERAPY AND MEDICAMENTS BY IBN AL-NAFIS SAMIR YAHIA EL-GAMMAL'~ ABSTRACT Ibn AI-Nafis was one 01 the head physicians in Egypt and an outstanding and brilliant philosopher of the 13th century A.D. He devoted all his life to his studies in medicine and anatomy. He began his research work with explaining the compilations of othe- physicians then turned his way, and began writing his own books based on his pe-sonal experiments on human bodies and animals, and could come to his own conclu- sions about the mechanism of action of the different organs. He also tried his best to present medicine to the common people as simple as possible. He described many forms of dietary food, best drugs to use etc. He gave specified new nomenclature and defini- tions to drugs also. Thus his life was filled with scientific activity specially medicine arid helped in directing it to the right and true path which guided the European scientists to follow his ideas and to discover more about it. Alaa EI Din Ali ibn Abi Al-Hazrn sician in the Hospital AI-Naseri (built Ibn AI-Nafis Al-Our ashi (or Al-Oara- by the King AI-Naser Salah AI-Din shi) ... known as Ibn AI- Natis, was (Saladin). Later on, he became chief one of the head physicians in Egypt physician at the Bimarestan AI-Man- and an outstanding and brilliant souri which was built by the King philosopher of the 13th century A.D.