PHY323:Lecture 9 the Birth of Non-Baryonic Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trinity of Strangeon Matter
Trinity of Strangeon Matter Renxin Xu1,2 1School of Physics and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China, 2State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; [email protected] Abstract. Strangeon is proposed to be the constituent of bulk strong matter, as an analogy of nucleon for an atomic nucleus. The nature of both nucleon matter (2 quark flavors, u and d) and strangeon matter (3 flavors, u, d and s) is controlled by the strong-force, but the baryon number of the former is much smaller than that of the latter, to be separated by a critical number of Ac ∼ 109. While micro nucleon matter (i.e., nuclei) is focused by nuclear physicists, astrophysical/macro strangeon matter could be manifested in the form of compact stars (strangeon star), cosmic rays (strangeon cosmic ray), and even dark matter (strangeon dark matter). This trinity of strangeon matter is explained, that may impact dramatically on today’s physics. Symmetry does matter: from Plato to flavour. Understanding the world’s structure, either micro or macro/cosmic, is certainly essential for Human beings to avoid superstitious belief as well as to move towards civilization. The basic unit of normal matter was speculated even in the pre-Socratic period of the Ancient era (the basic stuff was hypothesized to be indestructible “atoms” by Democritus), but it was a belief that symmetry, which is well-defined in mathematics, should play a key role in understanding the material structure, such as the Platonic solids (i.e., the five regular convex polyhedrons). -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Beyond the Standard Model Physics at CLIC
RM3-TH/19-2 Beyond the Standard Model physics at CLIC Roberto Franceschini Università degli Studi Roma Tre and INFN Roma Tre, Via della Vasca Navale 84, I-00146 Roma, ITALY Abstract A summary of the recent results from CERN Yellow Report on the CLIC potential for new physics is presented, with emphasis on the di- rect search for new physics scenarios motivated by the open issues of the Standard Model. arXiv:1902.10125v1 [hep-ph] 25 Feb 2019 Talk presented at the International Workshop on Future Linear Colliders (LCWS2018), Arlington, Texas, 22-26 October 2018. C18-10-22. 1 Introduction The Compact Linear Collider (CLIC) [1,2,3,4] is a proposed future linear e+e− collider based on a novel two-beam accelerator scheme [5], which in recent years has reached several milestones and established the feasibility of accelerating structures necessary for a new large scale accelerator facility (see e.g. [6]). The project is foreseen to be carried out in stages which aim at precision studies of Standard Model particles such as the Higgs boson and the top quark and allow the exploration of new physics at the high energy frontier. The detailed staging of the project is presented in Ref. [7,8], where plans for the target luminosities at each energy are outlined. These targets can be adjusted easily in case of discoveries at the Large Hadron Collider or at earlier CLIC stages. In fact the collision energy, up to 3 TeV, can be set by a suitable choice of the length of the accelerator and the duration of the data taking can also be adjusted to follow hints that the LHC may provide in the years to come. -
Baryon and Lepton Number Anomalies in the Standard Model
Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark. -
Properties of Baryons in the Chiral Quark Model
Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results. -
Introduction to Flavour Physics
Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section. -
Lecture 5: Quarks & Leptons, Mesons & Baryons
Physics 3: Particle Physics Lecture 5: Quarks & Leptons, Mesons & Baryons February 25th 2008 Leptons • Quantum Numbers Quarks • Quantum Numbers • Isospin • Quark Model and a little History • Baryons, Mesons and colour charge 1 Leptons − − − • Six leptons: e µ τ νe νµ ντ + + + • Six anti-leptons: e µ τ νe̅ νµ̅ ντ̅ • Four quantum numbers used to characterise leptons: • Electron number, Le, muon number, Lµ, tau number Lτ • Total Lepton number: L= Le + Lµ + Lτ • Le, Lµ, Lτ & L are conserved in all interactions Lepton Le Lµ Lτ Q(e) electron e− +1 0 0 1 Think of Le, Lµ and Lτ like − muon µ− 0 +1 0 1 electric charge: − tau τ − 0 0 +1 1 They have to be conserved − • electron neutrino νe +1 0 0 0 at every vertex. muon neutrino νµ 0 +1 0 0 • They are conserved in every tau neutrino ντ 0 0 +1 0 decay and scattering anti-electron e+ 1 0 0 +1 anti-muon µ+ −0 1 0 +1 anti-tau τ + 0 −0 1 +1 Parity: intrinsic quantum number. − electron anti-neutrino ν¯e 1 0 0 0 π=+1 for lepton − muon anti-neutrino ν¯µ 0 1 0 0 π=−1 for anti-leptons tau anti-neutrino ν¯ 0 −0 1 0 τ − 2 Introduction to Quarks • Six quarks: d u s c t b Parity: intrinsic quantum number • Six anti-quarks: d ̅ u ̅ s ̅ c ̅ t ̅ b̅ π=+1 for quarks π=−1 for anti-quarks • Lots of quantum numbers used to describe quarks: • Baryon Number, B - (total number of quarks)/3 • B=+1/3 for quarks, B=−1/3 for anti-quarks • Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t • S=N(s)̅ −N(s) C=N(c)−N(c)̅ B=N(b)̅ −N(b) T=N( t )−N( t )̅ • Isospin: I, IZ - describe up and down quarks B conserved in all Quark I I S C B T Q(e) • Z interactions down d 1/2 1/2 0 0 0 0 1/3 up u 1/2 −1/2 0 0 0 0 +2− /3 • S, C, B, T conserved in strange s 0 0 1 0 0 0 1/3 strong and charm c 0 0 −0 +1 0 0 +2− /3 electromagnetic bottom b 0 0 0 0 1 0 1/3 • I, IZ conserved in strong top t 0 0 0 0 −0 +1 +2− /3 interactions only 3 Much Ado about Isospin • Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks. -
Standard Model & Baryogenesis at 50 Years
Standard Model & Baryogenesis at 50 Years Rocky Kolb The University of Chicago The Standard Model and Baryogenesis at 50 Years 1967 For the universe to evolve from B = 0 to B ¹ 0, requires: 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious Baryon Asymmetry Baryon Asymmetry Baryon Asymmetry The Standard Model and Baryogenesis at 50 Years 99.825% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years Ω 2 = 0.02230 ± 0.00014 CMB (Planck 2015): B h Increasing baryon component in baryon-photon fluid: • Reduces sound speed. −1 c 3 ρ c =+1 B S ρ 3 4 γ • Decreases size of sound horizon. η rdc()η = ηη′′ ( ) SS0 • Peaks moves to smaller angular scales (larger k, larger l). = π knrPEAKS S • Baryon loading increases compression peaks, lowers rarefaction peaks. Wayne Hu The Standard Model and Baryogenesis at 50 Years 0.021 ≤ Ω 2 ≤0.024 BBN (PDG 2016): B h Increasing baryon component in baryon-photon fluid: • Increases baryon-to-photon ratio η. • In NSE abundance of species proportional to η A−1. • D, 3He, 3H build up slightly earlier leading to more 4He. • Amount of D, 3He, 3H left unburnt decreases. Discrepancy is fake news The Standard Model and Baryogenesis at 50 Years = (0.861 ± 0.005) × 10 −10 Baryon Asymmetry: nB/s • Why is there an asymmetry between matter and antimatter? o Initial (anthropic?) conditions: . -
Baryon Spectrum of SU(4) Composite Higgs Theory with Two Distinct Fermion Representations
PHYSICAL REVIEW D 97, 114505 (2018) Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations Venkitesh Ayyar,1 Thomas DeGrand,1 Daniel C. Hackett,1 William I. Jay,1 Ethan T. Neil,1,2,* Yigal Shamir,3 and Benjamin Svetitsky3 1Department of Physics, University of Colorado, Boulder, Colorado 80309, USA 2RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA 3Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel (Received 30 January 2018; published 8 June 2018) We use lattice simulations to compute the baryon spectrum of SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simulta- neously. This model is closely related to a composite Higgs model in which the chimera baryon made up of fermions from both representations plays the role of a composite top-quark partner. The dependence of the baryon masses on each underlying fermion mass is found to be generally consistent with a quark-model description and large-Nc scaling. We combine our numerical results with experimental bounds on the scale of the new strong sector to estimate a lower bound on the mass of the top-quark partner. We discuss some theoretical uncertainties associated with this estimate. DOI: 10.1103/PhysRevD.97.114505 I. INTRODUCTION study of the baryon spectrum on a limited set of partially quenched lattices (i.e., with dynamical fundamental In this paper, we compute the baryon spectrum of SU(4) fermions but without dynamical sextet fermions) was gauge theory with simultaneous dynamical fermions in presented in Ref. -
Charmed Baryons
November, 2006 Charmed Baryons prepared by Hai-Yang Cheng Contents I. Introduction 2 II. Production of charmed baryons at BESIII 3 III. Spectroscopy 3 IV. Strong decays 7 A. Strong decays of s-wave charmed baryons 7 B. Strong decays of p-wave charmed baryons 9 V. Lifetimes 11 VI. Hadronic weak decays 17 A. Quark-diagram scheme 18 B. Dynamical model calculation 19 C. Discussions 22 1. Decay asymmetry 22 + 2. ¤c decays 24 + 3. ¥c decays 25 0 4. ¥c decays 26 0 5. c decays 26 D. Charm-flavor-conserving weak decays 26 VII. Semileptonic decays 27 VIII. Electromagnetic and Weak Radiative decays 28 A. Electromagnetic decays 28 B. Weak radiative decays 31 References 32 1 I. INTRODUCTION In the past years many new excited charmed baryon states have been discovered by BaBar, Belle and CLEO. In particular, B factories have provided a very rich source of charmed baryons both from B decays and from the continuum e+e¡ ! cc¹. A new chapter for the charmed baryon spectroscopy is opened by the rich mass spectrum and the relatively narrow widths of the excited states. Experimentally and theoretically, it is important to identify the quantum numbers of these new states and understand their properties. Since the pseudoscalar mesons involved in the strong decays of charmed baryons are soft, the charmed baryon system o®ers an excellent ground for testing the ideas and predictions of heavy quark symmetry of the heavy quark and chiral symmetry of the light quarks. The observation of the lifetime di®erences among the charmed mesons D+;D0 and charmed baryons is very interesting since it was realized very early that the naive parton model gives the same lifetimes for all heavy particles containing a heavy quark Q, while experimentally, the lifetimes + 0 of ¥c and c di®er by a factor of six ! This implies the importance of the underlying mechanisms such as W -exchange and Pauli interference due to the identical quarks produced in the heavy quark decay and in the wavefunction of the charmed baryons. -
Baryon Asymmetry, Dark Matter and Local Baryon Number
Baryon Asymmetry, Dark Matter and Local Baryon Number Pavel Fileviez P´erez∗ and Hiren H. Patel† Particle and Astro-Particle Physics Division Max-Planck Institute for Nuclear Physics (MPIK) Saupfercheckweg 1, 69117 Heidelberg, Germany We propose a new mechanism to understand the relation between baryon and dark matter asym- metries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B −L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature. I. INTRODUCTION The existence of the baryon asymmetry and cold dark Initial Asymmetry matter density in the Universe has motivated many stud- ies in cosmology and particle physics. Recently, there has been focus on investigations of possible mechanisms that relate the baryon asymmetry and dark matter density, i.e. Ω ∼ 5Ω . These mechanisms are based on the DM B Sphalerons idea of asymmetric dark matter (ADM). See Ref. [1] for 3 a recent review of ADM mechanisms and Ref. [2] for a (QQQL ) ψ¯RψL review on Baryogenesis at the low scale. Crucial to baryogenesis in any theory is the existence of baryon violating processes to generate the observed baryon asymmetry in the early universe. -
Baryons and Baryonic Matter in Four-Fermion Interaction Models
Baryons and baryonic matter in four-fermion interaction models 2 Den Naturwissenschaftlichen Fakultaten der Friedrich-Alexander-Universitat Erlangen NUrnberg zur Erlangung des Doktorgrades vorgelegt von Konrad Urlichs aus Erlangen Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultaten der Universitat Erlangen-Nurnberg Tag der mUndlichen Prufung: 23. Februar 2007 Vorsitzender der Promotionskommission: Prof. Dr. E. Bansch Erstberichterstatter: Prof. Dr. M. Thies Zweitberichterstatter: Prof. Dr. U.-J. Wiese Zusammenfassung In dieser Arbeit warden Baryonen und baryonische Materie in einfachen Theorien mit Vier- Fermion-Wechselwirkung behandelt, dem Gross-Neveu Modell und dem Nambu-Jona-Lasinio Modell in 1+1 und 2+1 Raumzeitdimensionen. Diese Modelle sind als Spielzeugmodelle fur dynamische Symmetriebrechung in der Physik der starken Wechselwirkung konzipiert. Die volle, durch Gluonaustausch vermittelte Wechselwirkung der Quantenchromodynamik wird dabei durch eine punktartige (“Vier-Fermion ”) Wechselwirkung ersetzt. Die Theorie wird im Limes einer groBen Zahl an Fermionflavors betrachtet. Hier ist die mittlere Feldnaherung exakt, die aquivalent zu der aus der relativistischen Vielteilchentheorie bekannten Hartree- Fock Naherung ist. In 1+1 Dimensionen werden bekannte Resultate far den Grundzustand auf Modelle erweitert, in denen die chirale Symmetrie durch einen Massenterm explizit gebrochen ist. Far das Gross-Neveu Modell ergibt sich eine exakte selbstkonsistente Losung far den Grundzustand bei endlicher Dichte, der aus einer eindimensionalen Kette von Potentialmulden besteht, dem Baryonenkristall. Far das Nambu-Jona-Lasinio Modell fahrt die Gradientenentwicklung auf eine Naherung far die Gesamtenergie in Potenzen des mittleren Feldes. Das Baryon ergibt sich als ein topologisches Soliton, ahnlich wie im Skyrme Modell der Kernphysik. Die Losung far das einzelne Baryon und baryonische Materie kann in einer systematischen Entwicklung in Potenzen der Pionmasse angegeben werden.