Mathematics (MATH) 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics 1
Mathematics 1 Mathematics Department Information • Department Chair: Friedrich Littmann, Ph.D. • Graduate Coordinator: Indranil Sengupta, Ph.D. • Department Location: 412 Minard Hall • Department Phone: (701) 231-8171 • Department Web Site: www.ndsu.edu/math (http://www.ndsu.edu/math/) • Application Deadline: March 1 to be considered for assistantships for fall. Openings may be very limited for spring. • Credential Offered: Ph.D., M.S. • English Proficiency Requirements: TOEFL iBT 71; IELTS 6 Program Description The Department of Mathematics offers graduate study leading to the degrees of Master of Science (M.S.) and Doctor of Philosophy (Ph.D.). Advanced work may be specialized among the following areas: • algebra, including algebraic number theory, commutative algebra, and homological algebra • analysis, including analytic number theory, approximation theory, ergodic theory, harmonic analysis, and operator algebras • applied mathematics, mathematical finance, mathematical biology, differential equations, dynamical systems, • combinatorics and graph theory • geometry/topology, including differential geometry, geometric group theory, and symplectic topology Beginning with their first year in residence, students are strongly urged to attend research seminars and discuss research opportunities with faculty members. By the end of their second semester, students select an advisory committee and develop a plan of study specifying how all degree requirements are to be met. One philosophical tenet of the Department of Mathematics graduate program is that each mathematics graduate student will be well grounded in at least two foundational areas of mathematics. To this end, each student's background will be assessed, and the student will be directed to the appropriate level of study. The Department of Mathematics graduate program is open to all qualified graduates of universities and colleges of recognized standing. -
Mathematics (MATH)
Course Descriptions MATH 1080 QL MATH 1210 QL Mathematics (MATH) Precalculus Calculus I 5 5 MATH 100R * Prerequisite(s): Within the past two years, * Prerequisite(s): One of the following within Math Leap one of the following: MAT 1000 or MAT 1010 the past two years: (MATH 1050 or MATH 1 with a grade of B or better or an appropriate 1055) and MATH 1060, each with a grade of Is part of UVU’s math placement process; for math placement score. C or higher; OR MATH 1080 with a grade of C students who desire to review math topics Is an accelerated version of MATH 1050 or higher; OR appropriate placement by math in order to improve placement level before and MATH 1060. Includes functions and placement test. beginning a math course. Addresses unique their graphs including polynomial, rational, Covers limits, continuity, differentiation, strengths and weaknesses of students, by exponential, logarithmic, trigonometric, and applications of differentiation, integration, providing group problem solving activities along inverse trigonometric functions. Covers and applications of integration, including with an individual assessment and study inequalities, systems of linear and derivatives and integrals of polynomial plan for mastering target material. Requires nonlinear equations, matrices, determinants, functions, rational functions, exponential mandatory class attendance and a minimum arithmetic and geometric sequences, the functions, logarithmic functions, trigonometric number of hours per week logged into a Binomial Theorem, the unit circle, right functions, inverse trigonometric functions, and preparation module, with progress monitored triangle trigonometry, trigonometric equations, hyperbolic functions. Is a prerequisite for by a mentor. May be repeated for a maximum trigonometric identities, the Law of Sines, the calculus-based sciences. -
RESOURCES in NUMERICAL ANALYSIS Kendall E
RESOURCES IN NUMERICAL ANALYSIS Kendall E. Atkinson University of Iowa Introduction I. General Numerical Analysis A. Introductory Sources B. Advanced Introductory Texts with Broad Coverage C. Books With a Sampling of Introductory Topics D. Major Journals and Serial Publications 1. General Surveys 2. Leading journals with a general coverage in numerical analysis. 3. Other journals with a general coverage in numerical analysis. E. Other Printed Resources F. Online Resources II. Numerical Linear Algebra, Nonlinear Algebra, and Optimization A. Numerical Linear Algebra 1. General references 2. Eigenvalue problems 3. Iterative methods 4. Applications on parallel and vector computers 5. Over-determined linear systems. B. Numerical Solution of Nonlinear Systems 1. Single equations 2. Multivariate problems C. Optimization III. Approximation Theory A. Approximation of Functions 1. General references 2. Algorithms and software 3. Special topics 4. Multivariate approximation theory 5. Wavelets B. Interpolation Theory 1. Multivariable interpolation 2. Spline functions C. Numerical Integration and Differentiation 1. General references 2. Multivariate numerical integration IV. Solving Differential and Integral Equations A. Ordinary Differential Equations B. Partial Differential Equations C. Integral Equations V. Miscellaneous Important References VI. History of Numerical Analysis INTRODUCTION Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry, and calculus, and they involve variables that vary continuously; these problems occur throughout the natural sciences, social sciences, engineering, medicine, and business. During the second half of the twentieth century and continuing up to the present day, digital computers have grown in power and availability. -
Mathematics: the Science of Patterns
_RE The Science of Patterns LYNNARTHUR STEEN forcesoutside mathematics while contributingto humancivilization The rapid growth of computing and applicationshas a rich and ever-changingvariety of intellectualflora and fauna. helpedcross-fertilize the mathematicalsciences, yielding These differencesin perceptionare due primarilyto the steep and an unprecedentedabundance of new methods,theories, harshterrain of abstractlanguage that separatesthe mathematical andmodels. Examples from statisiicalscienceX core math- rainforest from the domainof ordinaryhuman activity. ematics,and applied mathematics illustrate these changes, The densejungle of mathematicshas beennourished for millennia which have both broadenedand enrichedthe relation by challengesof practicalapplications. In recentyears, computers between mathematicsand science. No longer just the have amplifiedthe impact of applications;together, computation study of number and space, mathematicalscience has and applicationshave swept like a cyclone across the terrainof become the science of patterlls, with theory built on mathematics.Forces -unleashed by the interactionof theseintellectu- relations among patterns and on applicationsderived al stormshave changed forever and for the better the morpholo- from the fit betweenpattern and observation. gy of mathematics.In their wake have emergednew openingsthat link diverseparts of the mathematicalforest, making possible cross- fertilizationof isolatedparts that has immeasurablystrengthened the whole. MODERN MATHEMATICSJUST MARKED ITS 300TH BIRTH- -
History of Mathematics
History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed. -
History and Pedagogy of Mathematics in Mathematics Education: History of the Field, the Potential of Current Examples, and Directions for the Future Kathleen Clark
History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen Clark To cite this version: Kathleen Clark. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. hal-02436281 HAL Id: hal-02436281 https://hal.archives-ouvertes.fr/hal-02436281 Submitted on 12 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen M. Clark Florida State University, School of Teacher Education, Tallahassee, Florida USA; [email protected] The field of history of mathematics in mathematics education—often referred to as the history and pedagogy of mathematics domain (or, HPM domain)—can be characterized by an interesting and rich past and a vibrant and promising future. In this plenary, I describe highlights from the development of the field, and in doing so, I focus on several ways in which research in the field of history of mathematics in mathematics education offers important connections to frameworks and areas of long-standing interest within mathematics education research, with a particular emphasis on student learning. -
Lecture 1: Mathematical Roots
E-320: Teaching Math with a Historical Perspective O. Knill, 2010-2017 Lecture 1: Mathematical roots Similarly, as one has distinguished the canons of rhetorics: memory, invention, delivery, style, and arrangement, or combined the trivium: grammar, logic and rhetorics, with the quadrivium: arithmetic, geometry, music, and astronomy, to obtain the seven liberal arts and sciences, one has tried to organize all mathematical activities. counting and sorting arithmetic Historically, one has dis- spacing and distancing geometry tinguished eight ancient positioning and locating topology roots of mathematics. surveying and angulating trigonometry Each of these 8 activities in balancing and weighing statics turn suggest a key area in moving and hitting dynamics mathematics: guessing and judging probability collecting and ordering algorithms To morph these 8 roots to the 12 mathematical areas covered in this class, we complemented the ancient roots with calculus, numerics and computer science, merge trigonometry with geometry, separate arithmetic into number theory, algebra and arithmetic and turn statics into analysis. counting and sorting arithmetic spacing and distancing geometry positioning and locating topology Lets call this modern adap- dividing and comparing number theory tation the balancing and weighing analysis moving and hitting dynamics 12 modern roots of guessing and judging probability Mathematics: collecting and ordering algorithms slicing and stacking calculus operating and memorizing computer science optimizing and planning numerics manipulating and solving algebra Arithmetic numbers and number systems Geometry invariance, symmetries, measurement, maps While relating math- Number theory Diophantine equations, factorizations ematical areas with Algebra algebraic and discrete structures human activities is Calculus limits, derivatives, integrals useful, it makes sense Set Theory set theory, foundations and formalisms to select specific top- Probability combinatorics, measure theory and statistics ics in each of this area. -
Efficient Space-Time Sampling with Pixel-Wise Coded Exposure For
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Efficient Space-Time Sampling with Pixel-wise Coded Exposure for High Speed Imaging Dengyu Liu, Jinwei Gu, Yasunobu Hitomi, Mohit Gupta, Tomoo Mitsunaga, Shree K. Nayar Abstract—Cameras face a fundamental tradeoff between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this tradeoff without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing and reconstructing the space-time volume in order to overcome this tradeoff. Our approach has two important distinctions compared to previous works: (1) we achieve sparse representation of videos by learning an over-complete dictionary on video patches, and (2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach - sampling function and sparse representation by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a Liquid Crystal on Silicon (LCoS) device. System characteristics such as field of view, Modulation Transfer Function (MTF) are evaluated for our imaging system. Both simulations and experiments on a wide range of -
MATH 531.01: Topology
University of Montana ScholarWorks at University of Montana Syllabi Course Syllabi Fall 9-1-2000 MATH 531.01: Topology Karel M. Stroethoff University of Montana, Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/syllabi Let us know how access to this document benefits ou.y Recommended Citation Stroethoff, Karel M., "MATH 531.01: Topology" (2000). Syllabi. 5961. https://scholarworks.umt.edu/syllabi/5961 This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. M ath 531 — Topology Fall Semester 2000 Class: MWF: 11:10 pm - 12:00 noon; MA 211; CRN: 73628 Class website: http://www.math.umt.edu/~stroet/531.htinl Instructor: Karel Stroethoff Contact Coordinates: Office: MA 309 Phone: 243-4082 or 243-5311 (secretaries) E-mail: [email protected] Homepage: h ttp ://www.math.umt.edu/~stroet/ Office H ours: See webpage. Description: One of the most important developments in twentieth century mathematics has been the formation of topology as an independent field of study and the systematic application of topological ideas to other fields of mathematics. The beginnings of algebraic and geometric topology can be traced, to the results of Leonhard Euler (1707-1783) on polyhedra and graph theory. Point-set topology or general topology has its origin in nine teenthcentury works establishing a rigorous basis for the Calculus. Currently topological ideas are prevalent in many areas of mathematics, not only in pure subject areas, but even in the most applied fields. -
Mathematics (MATH) 1
Mathematics (MATH) 1 MATHEMATICS (MATH) MATH 1000 Special Problems (IND 0.0-6.0) MATH 1208 Calculus With Analytic Geometry I (LEC 5.0) Problems or readings in specific subjects or projects in the department. A study of limits, continuity, differentiation and integration of algebraic Consent of instructor required. and trigonometric functions. Applications of these concepts in physical as well as mathematical settings are considered. Credit will only be given MATH 1001 Special Topics (LAB 0.0 and LEC 0.0) for one of Math 1208 or Math 1214. Prerequisites: Math 1160; Math 1120 or 1140, both with a grade of "C"; or better; or by placement exam. This course is designed to give the department an opportunity to test a new course. Variable title. MATH 1210 Calculus I-A (LAB 1.0 and LEC 3.0) MATH 1101 Introduction To Mathematics (LEC 1.0) An introduction to differential and integral calculus for students Introduction to the department, program of study, methods of study, and needing extra algebra or trigonometry content. Emphasizes differential an introduction of the various areas of mathematics. Required of fall calculus along with linear, polynomial, rational, and radical functions semester freshman mathematics majors. and equations. Math 1210 and 1211 combined cover the same calculus content as Math 1214. Credit will be given for only one of Math 1210 or Math 1214. Prerequisites: A grade of "C" or better in either Math 1120 or MATH 1103 Fundamentals Of Algebra (LEC 3.0) Math 1140, or by placement exam. Basic principles of algebra including the number line and an introduction to equations and inequalities, polynomials, rational expressions, exponents and radicals, the quadratic formula and functions. -
The Structure of Math
E-320: Teaching Math with a Historical Perspective O. Knill, 2010-2015 Lecture 1: Mathematical roots Similarly, as one has distinguished the canons of rhetorics: memory, invention, delivery, style, and arrangement, or combined the trivium: grammar, logic and rhetorics, with the quadrivium: arithmetic, geometry, music, and astronomy, to obtain the seven liberal arts and sciences, one has tried to organize all mathematical activities. counting and sorting arithmetic Historically, one has dis- spacing and distancing geometry tinguished eight ancient positioning and locating topology roots of mathematics. surveying and angulating trigonometry Each of these 8 activities in balancing and weighing statics turn suggest a key area in moving and hitting dynamics mathematics: guessing and judging probability collecting and ordering algorithms To morph these 8 roots to the 12 mathematical areas covered in this class, we complemented the ancient roots with calculus, numerics and computer science, merge trigonometry with geometry, separate arithmetic into number theory, algebra and arithmetic and turn statics into analysis. counting and sorting arithmetic spacing and distancing geometry positioning and locating topology Lets call this modern adap- dividing and comparing number theory tation the balancing and weighing analysis moving and hitting dynamics 12 modern roots of guessing and judging probability Mathematics: collecting and ordering algorithms slicing and stacking calculus operating and memorizing computer science optimizing and planning numerics manipulating and solving algebra Arithmetic numbers and number systems Geometry invariance, symmetries, measurement, maps While relating math- Number theory Diophantine equations, factorizations ematical areas with Algebra algebraic and discrete structures human activities is Calculus limits, derivatives, integrals useful, it makes sense Set Theory set theory, foundations and formalisms to select specific top- Probability combinatorics, measure theory and statistics ics in each of this area. -
Outline of Mathematics
Outline of mathematics The following outline is provided as an overview of and 1.2.2 Reference databases topical guide to mathematics: • Mathematical Reviews – journal and online database Mathematics is a field of study that investigates topics published by the American Mathematical Society such as number, space, structure, and change. For more (AMS) that contains brief synopses (and occasion- on the relationship between mathematics and science, re- ally evaluations) of many articles in mathematics, fer to the article on science. statistics and theoretical computer science. • Zentralblatt MATH – service providing reviews and 1 Nature of mathematics abstracts for articles in pure and applied mathemat- ics, published by Springer Science+Business Media. • Definitions of mathematics – Mathematics has no It is a major international reviewing service which generally accepted definition. Different schools of covers the entire field of mathematics. It uses the thought, particularly in philosophy, have put forth Mathematics Subject Classification codes for orga- radically different definitions, all of which are con- nizing their reviews by topic. troversial. • Philosophy of mathematics – its aim is to provide an account of the nature and methodology of math- 2 Subjects ematics and to understand the place of mathematics in people’s lives. 2.1 Quantity Quantity – 1.1 Mathematics is • an academic discipline – branch of knowledge that • Arithmetic – is taught at all levels of education and researched • Natural numbers – typically at the college or university level. Disci- plines are defined (in part), and recognized by the • Integers – academic journals in which research is published, and the learned societies and academic departments • Rational numbers – or faculties to which their practitioners belong.