Multiverse Predictions for Habitability: the Number of Stars and Their Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
H. G. Wells Time Traveler
Items on Exhibit 1. H. G. Wells – Teacher to the World 11. H. G. Wells. Die Zeitmaschine. (Illustrierte 21. H. G. Wells. Picshua [sketch] ‘Omaggio to 1. H. G. Wells (1866-1946). Text-book of Klassiker, no. 46) [Aachen: Bildschriftenverlag, P.C.B.’ [1900] Biology. London: W.B. Clive & Co.; University 196-]. Wells Picshua Box 1 H. G. Wells Correspondence College Press, [1893]. Wells Q. 823 W46ti:G Wells 570 W46t, vol. 1, cop. 1 Time Traveler 12. H. G. Wells. La machine à explorer le temps. 7. Fantasias of Possibility 2. H. G. Wells. The Outline of History, Being a Translated by Henry-D. Davray, illustrated by 22. H. G. Wells. The World Set Free [holograph Plain History of Life and Mankind. London: G. Max Camis. Paris: R. Kieffer, [1927]. manuscript, ca. 1913]. Simon J. James is Head of the Newnes, [1919-20]. Wells 823 W46tiFd Wells WE-001, folio W-3 Wells Q. 909 W46o 1919 vol. 2, part. 24, cop. 2 Department of English Studies, 13. H. G. Wells. Stroz času : Neviditelný. 23. H. G. Wells to Frederick Wells, ‘Oct. 27th 45’ Durham University, UK. He has 3. H. G. Wells. ‘The Idea of a World Translated by Pavla Moudrá. Prague: J. Otty, [Holograph letter]. edited Wells texts for Penguin and Encyclopedia.’ Nature, 138, no. 3500 (28 1905. Post-1650 MS 0667, folder 75 November 1936) : 917-24. Wells 823 W46tiCzm. World’s Classics and The Wellsian, the Q. 505N 24. H. G. Wells’ Things to Come. Produced by scholarly journal of the H. G. Wells Alexander Korda, directed by William Cameron Society. -
The Future of Robotics an Inside View on Innovation in Robotics
The Future of Robotics An Inside View on Innovation in Robotics FEATURE Robots, Humans and Work Executive Summary Robotics in the Startup Ecosystem The automation of production through three industrial revolutions has increased global output exponentially. Now, with machines increasingly aware and interconnected, Industry 4.0 is upon us. Leading the charge are fleets of autonomous robots. Built by major multinationals and increasingly by innovative VC-backed companies, these robots have already become established participants in many areas of the economy, from assembly lines to farms to restaurants. Investors, founders and policymakers are all still working to conceptualize a framework for these companies and their transformative Austin Badger technology. In this report, we take a data-driven approach to emerging topics in the industry, including business models, performance metrics, Director, Frontier Tech Practice and capitalization trends. Finally, we review leading theories of how automation affects the labor market, and provide quantitative evidence for and against them. It is our view that the social implications of this industry will be massive and will require a continual examination by those driving this technology forward. The Future of Robotics 2 Table of Contents 4 14 21 The Landscape VC and Robots Robots, Humans and Work Industry 4.0 and the An Emerging Framework Robotics Ecosystem The Interplay of Automation and Labor The Future of Robotics 3 The Landscape Industry 4.0 and the Robotics Ecosystem The Future of Robotics 4 COVID-19 and US Manufacturing, Production and Nonsupervisory Workers the Next 12.8M Automation Wave 10.2M Recessions tend to reduce 9.0M employment, and some jobs don’t come back. -
Constraints on the Habitability of Extrasolar Moons
Formation, Detection, and Characterization of Extrasolar Habitable Planets Proceedings IAU Symposium No. 293, 2012 c International Astronomical Union 2014 N. Haghighipour, ed. doi:10.1017/S1743921313012738 Constraints on the Habitability of Extrasolar Moons Ren´e Heller1 and Rory Barnes2,3 1 Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam email: [email protected] 2 University of Washington, Dept. of Astronomy, Seattle, WA 98195, USA 3 Virtual Planetary Laboratory, NASA, USA email: [email protected] Abstract. Detections of massive extrasolar moons are shown feasible with the Kepler space telescope. Kepler’s findings of about 50 exoplanets in the stellar habitable zone naturally make us wonder about the habitability of their hypothetical moons. Illumination from the planet, eclipses, tidal heating, and tidal locking distinguish remote characterization of exomoons from that of exoplanets. We show how evaluation of an exomoon’s habitability is possible based on the parameters accessible by current and near-future technology. Keywords. celestial mechanics – planets and satellites: general – astrobiology – eclipses 1. Introduction The possible discovery of inhabited exoplanets has motivated considerable efforts towards estimating planetary habitability. Effects of stellar radiation (Kasting et al. 1993; Selsis et al. 2007), planetary spin (Williams & Kasting 1997; Spiegel et al. 2009), tidal evolution (Jackson et al. 2008; Barnes et al. 2009; Heller et al. 2011), and composition (Raymond et al. 2006; Bond et al. 2010) have been studied. Meanwhile, Kepler’s high precision has opened the possibility of detecting extrasolar moons (Kipping et al. 2009; Tusnski & Valio 2011) and the first dedicated searches for moons in the Kepler data are underway (Kipping et al. -
A NEW SOCIAL COMPACT for Work and Workers
FUTURE OF WORK IN CALIFORNIA A NEW SOCIAL COMPACT for work and workers RE OF W TU OR FU K CO N M MISSIO E OF W TUR OR FU K CO N M MISSIO Commissioners Produced by Institute for the Future (IFTF) for the California Future of Members of the Future of Work Commission were appointed by Governor Work Commission, with the support Gavin Newsom to help create inclusive, long-term economic growth and ensure from The James Irvine Foundation, Californians share in that success. Blue Shield of California Foundation, the Ford Foundation and Lumina Mary Kay Henry, Co-Chair Ash Kalra Foundation. President, Service Employees State Assemblymember, California International Union District 27 James Manyika, Co-Chair Stephane Kasriel Chairman & Director, McKinsey Former CEO, Upwork Global Institute Commission Staff Fei-Fei Li Roy Bahat Professor & Co-Director, Human- Anmol Chaddha, Head, Bloomberg Beta Centered Artificial Intelligence Manager Institute, Stanford Doug Bloch Alyssa Andersen Political Director, Teamsters Joint John Marshall Julie Ericsson Council 7 Senior Capital Markets Economist, United Food and Commercial Ben Gansky Soraya Coley Workers President, California Polytechnic Georgia Gillan State University, Pomona Art Pulaski Executive Secretary-Treasurer Marina Gorbis Lloyd Dean & Chief Officer, California Labor CEO, CommonSpirit Health Jean Hagan Federation Jennifer Granholm* Lyn Jeffery Maria S. Salinas Former Governor, State of Michigan President & CEO, Los Angeles Area *Resigned from Commission Ilana Lipsett Chamber of Commerce upon nomination -
Near-Death Experiences and the Theory of the Extraneuronal Hyperspace
Near-Death Experiences and the Theory of the Extraneuronal Hyperspace Linz Audain, J.D., Ph.D., M.D. George Washington University The Mandate Corporation, Washington, DC ABSTRACT: It is possible and desirable to supplement the traditional neu rological and metaphysical explanatory models of the near-death experience (NDE) with yet a third type of explanatory model that links the neurological and the metaphysical. I set forth the rudiments of this model, the Theory of the Extraneuronal Hyperspace, with six propositions. I then use this theory to explain three of the pressing issues within NDE scholarship: the veridicality, precognition and "fear-death experience" phenomena. Many scholars who write about near-death experiences (NDEs) are of the opinion that explanatory models of the NDE can be classified into one of two types (Blackmore, 1993; Moody, 1975). One type of explana tory model is the metaphysical or supernatural one. In that model, the events that occur within the NDE, such as the presence of a tunnel, are real events that occur beyond the confines of time and space. In a sec ond type of explanatory model, the traditional model, the events that occur within the NDE are not at all real. Those events are merely the product of neurobiochemical activity that can be explained within the confines of current neurological and psychological theory, for example, as hallucination. In this article, I supplement this dichotomous view of explanatory models of the NDE by proposing yet a third type of explanatory model: the Theory of the Extraneuronal Hyperspace. This theory represents a Linz Audain, J.D., Ph.D., M.D., is a Resident in Internal Medicine at George Washington University, and Chief Executive Officer of The Mandate Corporation. -
Back Or to the Future? Preferences of Time Travelers
Judgment and Decision Making, Vol. 7, No. 4, July 2012, pp. 373–382 Back or to the future? Preferences of time travelers Florence Ettlin∗ Ralph Hertwig† Abstract Popular culture reflects whatever piques our imagination. Think of the myriad movies and books that take viewers and readers on an imaginary journey to the past or the future (e.g., Gladiator, The Time Machine). Despite the ubiquity of time travel as a theme in cultural expression, the factors that underlie people’s preferences concerning the direction of time travel have gone unexplored. What determines whether a person would prefer to visit the (certain) past or explore the (uncertain) future? We identified three factors that markedly affect people’s preference for (hypothetical) travel to the past or the future, respectively. Those who think of themselves as courageous, those with a more conservative worldview, and—perhaps counterintuitively—those who are advanced in age prefer to travel into the future. We discuss implications of these initial results. Keywords: time travel; preferences; age; individual differences; conservative Weltanschauung. 1 Introduction of the future. But what determines whether the cultural time machine’s lever is pushed forward to an unknown 1.1 Hypothetical time traveling: A ubiqui- future or back to a more certain past? tous yet little understood activity Little is known about the factors that determine peo- ple’s preferences with regard to the “direction” of time “I drew a breath, set my teeth, gripped the starting lever travel. Past investigations of mental time travel have typ- with both hands, and went off with a thud” (p. -
Modelling Insight to Ball Eyes for Higher Dimensional Hyperspace Vision
Physical Science & Biophysics Journal MEDWIN PUBLISHERS ISSN: 2641-9165 Committed to Create Value for Researchers Modelling Insight to Ball Eyes for Higher Dimensional Hyperspace Vision Shaikh S* Letter to Editor Aditya Institute of Management Studies and Research (AIMSR), India Volume 5 Issue 2 Received Date: July 16, 2021 Sadique Shaikh, Aditya Institute of Management Studies and *Corresponding author: Published Date: July 26, 2021 Research (IMSR), Jalgaon, India, Email: [email protected] DOI: 10.23880/psbj-16000183 Letter to Editor To understand this complicated conceptual idea let Quality vision even some animals, reptiles, birds and insect has good vision as compare to human eyes. To understand me begin first with the definition of VISION and then after toDIMENSIONS create animated (Figure CONSCIOUSNESS 1). The Vision inis theability help to ofacquire Brain “Dimensional-Vision” some depicts as given below. callsurrounding Observable with Life,input Planet,light, shapes, Universe places, and color Multiverse. to brain and Control to enhance, develop and shape planet earth and Equally Vision also important to grow Brain Intelligence term Dimensions as the ability of Eyes to scan surrounding at present observable Universe. Now I would like to define possibleavailable anglesVision and with geometry Left, Right, and Top,provide Bottom, data toReflection, Brain to Rotation, Transformation, Spinning and Diagonal with all universe and multiverse. For our understanding purpose create high definition Consciousness of environment, planet, understand are 3D Three-Dimensional World as X-Axis, we labeled the Dimensions which we (Human) can see and TIME and Brain create 3D consciousness using X, Y and Z Y-Axis and Z-Axis with additional fourth Dimension virtually Figure 1: has ability to see in three dimensions hence very easily can Axis’s Vision Data after input processed. -
Teleportation
TELEPORTATION ESSAY FOR THE COURSE QUANTUM MECHANICS FOR MATHEMATICIANS ANNE VAN WEERDEN SUPERVISOR DR B.R.U. DHERIN UTRECHT UNIVERSITY JUNE 2010 PREFACE The aim of this essay is to describe the teleportation process in such a way that it will be clear what is done so far, and what is still needed, to develop a teleportation device for humans, which would be my ultimate goal. However much is done already, there are thresholds that still have to be overcome, some of which will need real ingenuity, and others brute computing power, far more than we are now capable of. But I will show why I have confidence that we will reach this goal by describing the astonishing developments in the field of teleportation and the speed with which computing, or technology, evolves. The discovery that teleportation really is possible came about while I was in my thirties, but I was largely unaware of its further developments until I started the research for this essay. Assuming that I am not the only one who did not know, I wrote this essay aimed at people from my age, in their fifties, who, like me, started out without television and computer, I even remember my Mother telling me how she bought a transistor radio for the first time, placed it in a closet and closed the door, just to be amazed that it could still receive signals and play. We saw it all come by, from the first steps on the Moon watched on the television my parents had only bought a few years earlier, I clearly remember asking my Father who, with much foresight, got us out of our beds despite my -
The Philosophy and Physics of Time Travel: the Possibility of Time Travel
University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well Honors Capstone Projects Student Scholarship 2017 The Philosophy and Physics of Time Travel: The Possibility of Time Travel Ramitha Rupasinghe University of Minnesota, Morris, [email protected] Follow this and additional works at: https://digitalcommons.morris.umn.edu/honors Part of the Philosophy Commons, and the Physics Commons Recommended Citation Rupasinghe, Ramitha, "The Philosophy and Physics of Time Travel: The Possibility of Time Travel" (2017). Honors Capstone Projects. 1. https://digitalcommons.morris.umn.edu/honors/1 This Paper is brought to you for free and open access by the Student Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Honors Capstone Projects by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact [email protected]. The Philosophy and Physics of Time Travel: The possibility of time travel Ramitha Rupasinghe IS 4994H - Honors Capstone Project Defense Panel – Pieranna Garavaso, Michael Korth, James Togeas University of Minnesota, Morris Spring 2017 1. Introduction Time is mysterious. Philosophers and scientists have pondered the question of what time might be for centuries and yet till this day, we don’t know what it is. Everyone talks about time, in fact, it’s the most common noun per the Oxford Dictionary. It’s in everything from history to music to culture. Despite time’s mysterious nature there are a lot of things that we can discuss in a logical manner. Time travel on the other hand is even more mysterious. -
18Th EANA Conference European Astrobiology Network Association
18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures. -
Pluto and Charon
National Aeronautics and Space Administration 0 300,000,000 900,000,000 1,500,000,000 2,100,000,000 2,700,000,000 3,300,000,000 3,900,000,000 4,500,000,000 5,100,000,000 5,700,000,000 kilometers Pluto and Charon www.nasa.gov Pluto is classified as a dwarf planet and is also a member of a Charon’s orbit around Pluto takes 6.4 Earth days, and one Pluto SIGNIFICANT DATES group of objects that orbit in a disc-like zone beyond the orbit of rotation (a Pluto day) takes 6.4 Earth days. Charon neither rises 1930 — Clyde Tombaugh discovers Pluto. Neptune called the Kuiper Belt. This distant realm is populated nor sets but “hovers” over the same spot on Pluto’s surface, 1977–1999 — Pluto’s lopsided orbit brings it slightly closer to with thousands of miniature icy worlds, which formed early in the and the same side of Charon always faces Pluto — this is called the Sun than Neptune. It will be at least 230 years before Pluto history of the solar system. These icy, rocky bodies are called tidal locking. Compared with most of the planets and moons, the moves inward of Neptune’s orbit for 20 years. Kuiper Belt objects or transneptunian objects. Pluto–Charon system is tipped on its side, like Uranus. Pluto’s 1978 — American astronomers James Christy and Robert Har- rotation is retrograde: it rotates “backwards,” from east to west Pluto’s 248-year-long elliptical orbit can take it as far as 49.3 as- rington discover Pluto’s unusually large moon, Charon. -
Solar System
Lecture 2 Solar system Beibei Liu (刘倍⻉) Introduction to Astrophysics, 2019 What is planet? Definition of planet 1. It orbits the sun (central star) 2. It has sufficient mass to have its self-gravity to overcome rigid bodies force, so that in a hydrostatic equilibrium (near round and stable shape) 3. Its perturbations have cleared away other objects in the neighbourhood of its orbit. asteroid, comet, moon, pluto? Moon-Earth system: Tidal force Tidal locking (tidal synchronisation): spin period of the moon is equal to the orbital period of the Earth-Moon system (~28 days). Moon-Earth system: Tidal force Earth rotation is only 24 hours Earth slowly decreases its rotation, and moon’s orbital distance gradually increases Lunar and solar eclipse Blood moon, sun’s light refracted by earth’s atmosphere. Due to Rayleigh scattering, red color is easy to remain Solar system Terrestrial planets Gas giant planets ice giant planets Heat source of the planet 1. Gravitational contraction: release potential energy 2. Decay of radioactive isotope,such as potassium, uranium 3. Giant impacts, planetesimal accretion Melting and differentiation of planet interior Originally homogeneous material begin to segregate into layers of different chemical composition. Heavy elements sink into the centre. Interior of planets Relative core size Interior of planets Metallic hydrogen: high pressure, H2 dissociate into atoms and become electronic conducting. Magnetic field is generated in this layer. Earth interior layers Crust (rigid): granite and basalt Silicate mantle: flow and convection Fe-Ni core: T~4000-9000K Magnetic field is generated by electric currents due to large convective motion of molten metal in outer core and mantle Earth interior layers Tectonics motion Large scale movement of plates in Earth’s lithosphere.