The History of the Aether Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Einstein's Simple Mathematical Trick –And the Illusion of a Constant
Applied Physics Research; Vol. 5, No. 4; 2013 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Einstein’s Simple Mathematical Trick –and the Illusion of a Constant Speed of Light Conrad Ranzan1 1 DSSU Research, Niagara Falls, Canada Correspondence: Conrad Ranzan, Director, DSSU Research, 5145 Second Avenue, Niagara Falls, ON. L2E 4J8, Canada. Tel: 1-905-357-0788. E-mail: [email protected], [email protected] Received: May 24, 2013 Accepted: June 25, 2013 Online Published: July 15, 2013 doi:10.5539/apr.v5n4p85 URL: http://dx.doi.org/10.5539/apr.v5n4p85 Abstract It is shown how Einstein achieves the illusion of lightspeed invariance by employing a simple mathematical trick—and magically abolishing the aether. As if part of a "conspiracy" against man's efforts to obtain knowledge of the physical world, Nature has a “trick” of its own in providing the illusion of lightspeed invariance. The illusion works remarkably well, thanks to length contraction and clock slowing both of which are induced by absolute motion with respect to aether. Einstein’s illusion and Nature’s illusion, however, conceal the physical reality that the one-way speed of light, contrary to a strict interpretation of Einstein’s 2nd postulate, is NOT constant. Keywords: Albert Einstein, DSSU aether theory, special relativity, speed of light, 2nd postulate, absolute motion, absolute space, aether, length contraction, clock retardation As Einstein regarded the situation, the [aether] experiments, seemed to indicate a "conspiracy" on the part of nature against man's efforts to obtain knowledge of the physical world. -
A New Crucial Experiment for Relativity
A New Crucial Experiment for Relativity Steven Zins October 25, 2012 Abstract Dayton Miller performed an experiment in 1925{1926 that, at face value, contradicted relativity theory. The strongest argument against Miller's experiment is that subsequent Michelson-Morley experiments yielded increasing consistency with relativity, disagreeing with Miller's results. But subsequent experiments were not valid replications of Miller's. Specifically, they failed to replicate the medium in the light path and the scale of Miller's experiment. A valid replication must either be exact or be demonstrably equivalent with regard to its cru- cial sensing region. The unexplained effects seen by Miller demand exact replication. The proposed experiment is crucial for special rela- tivity but is more than a replication of Miller. This proposed Crucial Experiment should use a Michelson-Morley apparatus with a 4.25 m arm length as Miller used. The novelty of this experiment is that the light path should be in a chamber that can be operated from near zero to one atmosphere. Predictions: (1) At one atmosphere, the re- sult will agree with Miller's and contradict relativity. (2) Near zero atmospheres, the result will agree with Georg Joos' and agree with relativity. (3) Intermediate pressures will yield intermediate results. 1 Background 1.1 Origins of Ether Maxwell's formulation of electromagnetism in 1860 described the wave mo- tion of electromagnetic radiation including light. The medium that was assumed to transmit the waves was called ether. 1.2 Experiments The Michelson-Morley experiment was a test of an ether theory, specifically to determine the velocity of the Earth through an ether assumed to be fixed 1 in the solar system. -
General Relativity Requires Absolute Space and Time 1 Space
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server General Relativity Requires Amp`ere’s theory of magnetism [10]. Maxwell uni- Absolute Space and Time fied Faraday’s theory with Huyghens’ wave the- ory of light, where in Maxwell’s theory light is Rainer W. K¨uhne considered as an oscillating electromagnetic wave Lechstr. 63, 38120 Braunschweig, Germany which propagates through the luminiferous aether of Huyghens. We all know that the classical kinematics was re- placed by Einstein’s Special Relativity [11]. Less We examine two far-reaching and somewhat known is that Special Relativity is not able to an- heretic consequences of General Relativity. swer several problems that were explained by clas- (i) It requires a cosmology which includes sical mechanics. a preferred rest frame, absolute space and According to the relativity principle of Special time. (ii) A rotating universe and time travel Relativity, all inertial frames are equivalent, there are strict solutions of General Relativity. is no preferred frame. Absolute motion is not re- quired, only the relative motion between the iner- tial frames is needed. The postulated absence of an absolute frame prohibits the existence of an aether [11]. 1 Space and Time Before Gen- According to Special Relativity, each inertial eral Relativity frame has its own relative time. One can infer via the Lorentz transformations [12] on the time of the According to Aristotle, the Earth was resting in the other inertial frames. Absolute space and time do centre of the universe. He considered the terrestrial not exist. Furthermore, space is homogeneous and frame as a preferred frame and all motion relative isotropic, there does not exist any rotational axis of to the Earth as absolute motion. -
The Physics Surrounding the Michelson-Morley Experiment and a New Æther Theory
The physics surrounding the Michelson-Morley experiment and a new æther theory Israel P´erez Department of Applied Physics, CINVESTAV, M´erida, Yucat´an,M´exico Abstract From the customary view the Michelson-Morley experiment is used to expose the failure of the aether theory. The key point in this experiment is the fringe shift of the interference pattern. Regularly, the fringe shift calculations are only presented from the perspective of the inertial frame where the one-way speed of light is anisotropic which gives a partial vision of the problem. In a spirit of revision of these facts we have meticulously analyzed the physics behind them. As a result, an angular effect which is based on Huyghens principle and plays a fundamental role in the reflection of light waves at moving mirrors is incorporated. Moreover, under the assumption of a null result in the experiment, on the one hand, the fringe shift conditions demand actual relativistic effects; on the other, it is confirmed that Maxwell's electrodynamics and Galilean relativity are incompatible formulations. From these two points at least three inertial theories follow: (1) the special theory of relativity (SR), (2) a new aether theory (NET) based on the Tangherlini transformations and (3) emission theories based on Ritz' modification of electrodynamics. A brief review of their physical content is presented and the problem of the aether detection as well as the propagation of light, within the context of SR and the NET, are discussed. Despite the overwhelming amount of evidences that apparently favors SR we claim that there are no strong reasons to refuse the aether which conceived as a continuous material medium, still stands up as a physical reality and could be physically associated with dark matter, the cosmic background radiation and the vacuum condensates of particle physics. -
Ponderable Aethers, Which Arise in fixed Clock Theories
Prepared for submission to JCAP Ponderable aether Antony J. Speranzaa,b aMaryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 bPerimeter Institute for Theoretical Physics, 31 Caroline Street North, ON N2L 2Y5, Canada E-mail: [email protected] Abstract. We consider a Lorentz-violating theory of gravity where the aether vector is taken to be nondynamical. This “ponderable aether theory” is almost the same as Einstein- aether theory (where the aether vector is dynamical), but involves additional integration constants arising due to the loss of initial value constraints. One of these produces an effective energy density for the aether fluid, similar to the appearance of dark matter in projectable Hoˇrava gravity and the mimetic dark matter theory. Here we investigate the extent to which this energy density can reproduce the phenomenology of dark matter. Although it is indistinguishable from cold dark matter in homogeneous, isotropic cosmology, it encounters phenomenological problems in both spherically symmetric configurations and cosmological perturbations. Furthermore, inflationary considerations lead us to expect a tiny value for the ponderable aether energy density today unless a sourcing effect is added to the theory. The theory then effectively reduces to dynamical Einstein-aether theory, rendering moot the question of whether an aether must be dynamical in order to be consistent. arXiv:1504.03305v1 [gr-qc] 13 Apr 2015 Contents 1 Introduction 1 2 Lorentz-violating structures 3 2.1 Dynamics for Lorentz-violation -
Glossary "The Difference Between Genius and Stupidity Is That Genius Has Its Limits" - Albert Einstein ( 1879 - 1955 )
Relativity Science Calculator - Glossary "The difference between genius and stupidity is that genius has its limits" - Albert Einstein ( 1879 - 1955 ) Aberration [ aberration of (star)light, astronomical aberration, stellar aberration ]: An astronomical phenomenon different from the phenomenon of parallax whereby small apparent motion displacements of all fixed stars on the celestial sphere due to Earth's orbital velocity mandates that terrestrial telescopes must also be adjusted to slightly different directions as the Earth yearly transits the Sun. Stellar aberration is totally independent of a star's distance from Earth but rather depends upon the transverse velocity of an observer on Earth, all of which is unlike the phenomenon of parallax. For example, vertically falling rain upon your umbrella will appear to come from in front of you the faster you walk and hence the more you will adjust the position of the umbrella to deflect the rain. Finally, the fact that Earth does not drag with itself in its immediate vicinity any amount of aether helps dissuade the concept that indeed the aether exists. Star Aberration produces visual distortions of the spatial external ( spacetime ) world, a sort of faux spacetime curvature geometry. See: Celestial Sphere; also Parallax which is a totally different phenomenon. Absolute Motion, Time and Space by Isaac Newton: "Philosophiae Naturalis Principia Mathematica", by Isaac Newton, published July 5, 1687, translated from the original Latin by Andrew Motte ( 1729 ), as revised by Florian Cajori ( Berkeley, -
Gravity and Antigravity (1) Page 1 of 29
Gravity and antigravity (1) Page 1 of 29 Gravity and Antigravity David Pratt Feb 2001, Feb 2005 Part 1 of 2 Contents (Part 1) 1. Gravity and mass (02/06) 2. Shielding, electrogravity, antigravity 3. Explaining gravity (Part 2) 4. Levitation and technology 5. Human levitation 6. Theosophical writings 1. Gravity and mass It is said to have been the sight of an apple falling from a tree that, around 1665, gave Isaac Newton the idea that the force that pulls an apple to earth is the same as that which keeps the moon in its orbit around the earth. The reason the moon does not fall to earth is because of the counteracting effect of its orbital motion. If the moon were to cease its orbital motion and fall to earth, the acceleration due to gravity that it would experience at the earth’s surface would be 9.8 m/s² – the same as that experienced by an apple or any other object in free fall. Newton’s universal law of gravitation states that the gravitational force between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. To calculate the gravitational force (F), their masses (m 1 and m 2) and the gravitational constant (G) are multiplied together, and the result is divided by the square of the distance (r) between them: F = http://ourworld.compuserve.com/homepages/dp5/gravity.htm 15.12.2006 Gravity and antigravity (1) Page 2 of 29 Gm 1m2/r². According to newtonian theory, the gravitational force between two or more bodies is therefore dependent on their masses. -
A New Cosmology, Based Upon the Hertzian Fundamental Principle of Mechanics by Pascal M
A new cosmology, based upon the Hertzian fundamental principle of mechanics by Pascal M. .Rapier Director Newtonian Science Foundation, 3154 Deseret Dr. Richmond, Calif. PRESENTADO POR EL ACADÉMICO D. JULIO PALACIOS RESUMEN Con el reciente descubrimiento de la explosión de la «estrella neutrónicaj>, y con la invalidación de la teoría de la relatividad de Einstein por el experimento de Kantor, ¡a cosmologia newtoniana adquiere capital importancia. Esta cosmología se basa en el principio fundamental de Mecánica de Hertz : Todo sistema libre, persiste r» su estado de reposo o de movimiento uniforme en el camino más corto. En consecuencia, el corrimiento hacia el rojo de las rayas espectrales resulta ser debido a una degradación de la energía, degradación que es inherente a la propa- gación de la luz, y no a un efecto de Doppler, ad hoc, como se había admitido. Ea relación entre dicho corrimiento y la luminosidad, observada en las galaxias lejanas, se deduce de dicho principio y sirve para confirmarlo. Se demuestra además que la energía que llena todo el espacio y que se atribuye a los neutrinos, es el resultado de reacciones nucleares consistentes en la emisión de partículas beta y del corrimiento hacia el rojo. Esta energía es responsable de las explosiones de las «estrellas neutrónicas». Tales explosiones sirven para recrear hidrógeno virgen a partir de los detritus estelares y para distribuirlo por todo el universo, con lo que hay una creación continua de nuevas estrellas. En consecuen- cia, dunque el universo fuese infinitamente viejo, no tiene porqué «venirse abajo». Además, la cosmología newtoniana exige que el espacio sea estable, que no se ex- panda, y que sea homogéneo, euclideo e infinito. -
Basic Concepts for a Fundamental Aether Theory1
BASIC CONCEPTS FOR A FUNDAMENTAL AETHER THEORY1 Joseph Levy 4 square Anatole France, 91250 St Germain-lès-Corbeil, France E-mail: [email protected] 55 Pages, 8 figures, Subj-Class General physics ABSTRACT In the light of recent experimental and theoretical data, we go back to the studies tackled in previous publications [1] and develop some of their consequences. Some of their main aspects will be studied in further detail. Yet this text remains self- sufficient. The questions asked following these studies will be answered. The consistency of these developments in addition to the experimental results, enable to strongly support the existence of a preferred aether frame and of the anisotropy of the one-way speed of light in the Earth frame. The theory demonstrates that the apparent invariance of the speed of light results from the systematic measurement distortions entailed by length contraction, clock retardation and the synchronization procedures with light signals or by slow clock transport. Contrary to what is often believed, these two methods have been demonstrated to be equivalent by several authors [1]. The compatibility of the relativity principle with the existence of a preferred aether frame and with mass-energy conservation is discussed and the relation existing between the aether and inertial mass is investigated. The experimental space-time transformations connect co-ordinates altered by the systematic measurement distortions. Once these distortions are corrected, the hidden variables they conceal are disclosed. The theory sheds light on several points of physics which had not found a satisfactory explanation before. (Further important comments will be made in ref [1d]). -
Open Access Proceedings Journal of Physics: Conference Series
Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - Fabrication of Diamond-Glass Composite Micro-gravity measurements during the total solar under Micro-Gravity Tatsuo Noma and Akira Sawaoka eclipse of 9 March 2016 in Indonesia - Magnetic compensation of the gravity by using superconducting axisymmetric coils: spherical harmonics method To cite this article: Agus Laesanpura et al 2016 J. Phys.: Conf. Ser. 771 012003 C Lorin and A Mailfert - Groundwater storage change detection using micro-gravimetric technology Mohammed El-Diasty View the article online for updates and enhancements. This content was downloaded from IP address 167.205.22.105 on 18/01/2018 at 01:59 International Symposium on Sun, Earth, and Life (ISSEL) IOP Publishing Journal of Physics: Conference Series 771 (2016) 012003 doi:10.1088/1742-6596/771/1/012003 Micro-gravity measurements during the total solar eclipse of 9 March 2016 in Indonesia Agus Laesanpura1, Taufiq Hidayat 2, Dady Abdurachman1, Putra Mahasena2, Premana W. Premadi 2, Hesti Wulandari2, Yudi Suharyadi3, Achmad Sjarmidi4 1Geophysic Engineering Study Program, ITB 2Bosscha Observatory and Astronomy Research Division, FMIPA, ITB 3Analysis Research Division, FMIPA, ITB 4School of Life Sciences and Technology, ITB E-mail: [email protected] Abstract. Since 1950s, several authors have reported the so-called anomalous gravity during the total solar eclipses through various experiments. To address this issue, in the moment of the total solar eclipse of 9 March 2016 passing most regions in Indonesia, we undertook microgravity measurements using two precise gravimeters. The measurements were made at two locations: (1) Poso (central Sulawesi), a location close to the centre passage of the total eclipse and (2) Lembang (West Java), the site of Bosscha Observatory, where the partial solar eclipse occurred. -
A New Confirmation of the Allais Effect During the Solar Eclipse of 31 May 2003
THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 5, Number 3/2004, pp. 000-000 A NEW CONFIRMATION OF THE ALLAIS EFFECT DURING THE SOLAR ECLIPSE OF 31 MAY 2003 Ieronim MIHĂILĂ, Nicolae MARCOV, Varujan PAMBUCCIAN, Ovidiu RACOVEANU University of Bucharest, Faculty of Mathematics and Informatics, Str. Academiei 14, 010014 Bucharest, Romania Corresponding author: Ieronim MIHĂILĂ, E-mail: [email protected] During the solar eclipse of 31 may 2003, the Allais effect was studied in Bucharest, using a Foucault pendulum. The effect was determined calculating the difference of the azimuth during the eclipse (Ae) and the azimuth outside the eclipse (Ar). The motion of the plane of oscillation became slower after the maximum of the eclipse, the deviation | Ae − Ar | reaching approximately 1.7° by the end of the eclipse, and afterwards it reached the maximum value of order of 2.8° − 2.9°. On the other hand, in the neighbourhood of the maximum of the eclipse the period of oscillation suffered a little growth, the relative increase being of about 2.6 × 10−6. Key words: Foucault effect, Allais effect, eclipse, gravitation. 1. PRELIMINARIES During the total solar eclipse of 11 August 1999, at the University of Bucharest, the existence of the Allais effect was confirmed [1]. This effect, which constitutes a disturbance of the Foucault effect, consists in a decrease of the angular rotation velocity of the oscillation plane of the pendulum during the solar eclipse. It was discovered by Professor Maurice Allais, in Paris, during the Sun eclipses from 1954 [2] and 1959 [3]. -
1 Fresnel's (Dragging) Coefficient As a Challenge to 19Th Century Optics
1 Fresnel’s (Dragging) Coefficient as a Challenge to 19th Century Optics of Moving Bodies John Stachel Center for Einstein Studies, Boston University, Boston, MA 02215, U.S.A., [email protected] 1.1 Introduction It has been suggested that, during the latter half of the 19th century up to about 1890, the optics of moving bodies was considered to be a more-or-less unproblematic branch of physics. In view of the continuing success of Fresnel’s formula for the dragging coefficient (hereafter called Fresnel’s coefficient) in explaining all new experimental optical data to order v/c, “There were simply no major problems to solve here, or so it was generally thought” (Buchwald 1988, 57). These words are the summation of the following quotation: “In 1851 Armand Fizeau was able to measure the Fresnel “drag” coefficient, and in 1873 Wilhelm Velt- mann demonstrated that no optical experiment with a terrestrial source of light can, to first order, detect motion through the ether if the drag coefficient obtains. Conse- quently, to this degree of accuracy, Fresnel’s original theory which requires a very slight transport of the ether by transparent bodies was quite satisfactory (ibid.)” (Schaffner 1972) includes a similar comment: “...Fresnel was able to formulate a simple and elegant explanation of Arago’s results on the basis of the wave theory of light; an explanation which not only accounted for aberration effects then known but which was subsequently confirmed in a number of ways throughout the nineteenth century (ibid., 24).” As we shall see, both Buchwald and Schaffner conflate the continued empirical success of Fresnel’s formula with the ultimately unsuccessful attempts by Fresnel and others to find a satisfactory theoretical explanation of the formula.