Studies in Mathematical Physics Essays in Honor of Valentine Bargmann Edited by E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
286365111.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors PROOF OF THE STRONG SCOTT CONJECTURE FOR CHANDRASEKHAR ATOMS RUPERT L. FRANK, KONSTANTIN MERZ, HEINZ SIEDENTOP, AND BARRY SIMON Dedicated to Yakov Sinai on the occasion of his 85th birthday. Abstract. We consider a large neutral atom of atomic number Z, taking rel- ativistic effects into account by assuming the dispersion relation pc2p2 + c4. We study the behavior of the one-particle ground state density on the length scale Z−1 in the limit Z; c ! 1 keeping Z=c fixed and find that the spher- ically averaged density as well as all individual angular momentum densities separately converge to the relativistic hydrogenic ones. This proves the gen- eralization of the strong Scott conjecture for relativistic atoms and shows, in particular, that relativistic effects occur close to the nucleus. Along the way we prove upper bounds on the relativistic hydrogenic density. 1. Introduction 1.1. Some results on large Z-atoms. The asymptotic behavior of the ground state energy and the ground state density of atoms with large atomic number Z have been studied in detail in non-relativistic quantum mechanics. Soon after the advent of quantum mechanics it became clear that the non- relativistic quantum multi-particle problem is not analytically solvable and of in- creasing challenge with large particle number. This problem was addressed by Thomas [51] and Fermi [11, 12] by developing what was called the statistical model of the atom. The model is described by the so-called Thomas{Fermi functional (Lenz [28]) Z ZZ TF 3 5=3 Z 1 ρ(x)ρ(y) (1) EZ (ρ) := 10 γTFρ(x) − ρ(x) dx + dx dy ; 3 jxj 2 3 3 jx − yj R R ×R | {z } =:D[ρ] 2 2=3 where γTF = (6π =q) is a positive constant depending on the number q of spin states per electron, i.e., physically 2. -
Samuel Goudsmit
NATIONAL ACADEMY OF SCIENCES SAMUEL ABRAHAM GOUDSMIT 1 9 0 2 — 1 9 7 8 A Biographical Memoir by BENJAMIN BEDERSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph courtesy Brookhaven National Laboratory. SAMUEL ABRAHAM GOUDSMIT July 11, 1902–December 4, 1978 BY BENJAMIN BEDERSON AM GOUDSMIT LED A CAREER that touched many aspects of S20th-century physics and its impact on society. He started his professional life in Holland during the earliest days of quantum mechanics as a student of Paul Ehrenfest. In 1925 together with his fellow graduate student George Uhlenbeck he postulated that in addition to mass and charge the electron possessed a further intrinsic property, internal angular mo- mentum, that is, spin. This inspiration furnished the missing link that explained the existence of multiple spectroscopic lines in atomic spectra, resulting in the final triumph of the then struggling birth of quantum mechanics. In 1927 he and Uhlenbeck together moved to the United States where they continued their physics careers until death. In a rough way Goudsmit’s career can be divided into several separate parts: first in Holland, strictly as a theorist, where he achieved very early success, and then at the University of Michigan, where he worked in the thriving field of preci- sion spectroscopy, concerning himself with the influence of nuclear magnetism on atomic spectra. In 1944 he became the scientific leader of the Alsos Mission, whose aim was to determine the progress Germans had made in the development of nuclear weapons during World War II. -
Defining Physics at Imaginary Time: Reflection Positivity for Certain
Defining physics at imaginary time: reflection positivity for certain Riemannian manifolds A thesis presented by Christian Coolidge Anderson [email protected] (978) 204-7656 to the Department of Mathematics in partial fulfillment of the requirements for an honors degree. Advised by Professor Arthur Jaffe. Harvard University Cambridge, Massachusetts March 2013 Contents 1 Introduction 1 2 Axiomatic quantum field theory 2 3 Definition of reflection positivity 4 4 Reflection positivity on a Riemannian manifold M 7 4.1 Function space E over M ..................... 7 4.2 Reflection on M .......................... 10 4.3 Reflection positive inner product on E+ ⊂ E . 11 5 The Osterwalder-Schrader construction 12 5.1 Quantization of operators . 13 5.2 Examples of quantizable operators . 14 5.3 Quantization domains . 16 5.4 The Hamiltonian . 17 6 Reflection positivity on the level of group representations 17 6.1 Weakened quantization condition . 18 6.2 Symmetric local semigroups . 19 6.3 A unitary representation for Glor . 20 7 Construction of reflection positive measures 22 7.1 Nuclear spaces . 23 7.2 Construction of nuclear space over M . 24 7.3 Gaussian measures . 27 7.4 Construction of Gaussian measure . 28 7.5 OS axioms for the Gaussian measure . 30 8 Reflection positivity for the Laplacian covariance 31 9 Reflection positivity for the Dirac covariance 34 9.1 Introduction to the Dirac operator . 35 9.2 Proof of reflection positivity . 38 10 Conclusion 40 11 Appendix A: Cited theorems 40 12 Acknowledgments 41 1 Introduction Two concepts dominate contemporary physics: relativity and quantum me- chanics. They unite to describe the physics of interacting particles, which live in relativistic spacetime while exhibiting quantum behavior. -
Mathematisches Forschungsinstitut Oberwolfach Reflection Positivity
Mathematisches Forschungsinstitut Oberwolfach Report No. 55/2017 DOI: 10.4171/OWR/2017/55 Reflection Positivity Organised by Arthur Jaffe, Harvard Karl-Hermann Neeb, Erlangen Gestur Olafsson, Baton Rouge Benjamin Schlein, Z¨urich 26 November – 2 December 2017 Abstract. The main theme of the workshop was reflection positivity and its occurences in various areas of mathematics and physics, such as Representa- tion Theory, Quantum Field Theory, Noncommutative Geometry, Dynamical Systems, Analysis and Statistical Mechanics. Accordingly, the program was intrinsically interdisciplinary and included talks covering different aspects of reflection positivity. Mathematics Subject Classification (2010): 17B10, 22E65, 22E70, 81T08. Introduction by the Organisers The workshop on Reflection Positivity was organized by Arthur Jaffe (Cambridge, MA), Karl-Hermann Neeb (Erlangen), Gestur Olafsson´ (Baton Rouge) and Ben- jamin Schlein (Z¨urich) during the week November 27 to December 1, 2017. The meeting was attended by 53 participants from all over the world. It was organized around 24 lectures each of 50 minutes duration representing major recent advances or introducing to a specific aspect or application of reflection positivity. The meeting was exciting and highly successful. The quality of the lectures was outstanding. The exceptional atmosphere of the Oberwolfach Institute provided the optimal environment for bringing people from different areas together and to create an atmosphere of scientific interaction and cross-fertilization. In particular, people from different subcommunities exchanged ideas and this lead to new col- laborations that will probably stimulate progress in unexpected directions. 3264 Oberwolfach Report 55/2017 Reflection positivity (RP) emerged in the early 1970s in the work of Osterwalder and Schrader as one of their axioms for constructive quantum field theory ensuring the equivalence of their euclidean setup with Wightman fields. -
Partial Differential Equations
CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council pnor to the date this issue of the Nouces was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE ISSUE 778 June 20-21, 1980 Ellensburg, Washington APRIL 21 June 1980 779 August 18-22, 1980 Ann Arbor, Michigan JUNE 3 August 1980 (84th Summer Meeting) October 17-18, 1980 Storrs, Connecticut October 31-November 1, 1980 Kenosha, Wisconsin January 7-11, 1981 San Francisco, California (87th Annual Meeting) January 13-17, 1982 Cincinnati, Ohio (88th Annual Meeting) Notices DEADLINES ISSUE NEWS ADVERTISING June 1980 April 18 April 29 August 1980 June 3 June 18 Deadlines for announcements intended for the Special Meetings section are the same as for News. -
6. L CPT Reversal
6. CPT reversal l Précis. On the representation view, there may be weak and strong arrows of time. A weak arrow exists. A strong arrow might too, but not in current physics due to CPT symmetry. There are many ways to reverse time besides the time reversal operator T. Writing P for spatial reflection or ‘parity’, and C for matter-antimatter exchange or ‘charge conjugation’, we find that PT, CT, and CPT are all time reversing transformations, when they exist. More generally, for any non-time-reversing (unitary) transformation U, we find that UT is time reversing. Are any of these transformations relevant for the arrow of time? Feynman (1949) captured many of our imaginations with the proposal that to understand the direction of time, we must actually consider the exchange of matter and antimatter as well.1 Writing about it years later, he said: “A backwards-moving electron when viewed with time moving forwards appears the same as an ordinary electron, except it’s attracted to normal electrons — we say it has positive charge. For this reason it’s called a ‘positron’. The positron is a sister to the electron, and it is an example of an ‘anti-particle’. This phenomenon is quite general. Every particle in Nature has an amplitude to move backwards in time, and therefore has an anti-particle.”(Feynman 1985, p.98) Philosophers Arntzenius and Greaves (2009, p.584) have defended Feynman’s proposal, 1In his Nobel prize speech, Feynman (1972, pg.163) attributes this idea to Wheeler in the development of their absorber theory (Wheeler and Feynman 1945). -
Arthur Strong Wightman (1922–2013)
Obituary Arthur Strong Wightman (1922–2013) Arthur Wightman, a founding father of modern mathematical physics, passed away on January 13, 2013 at the age of 90. His own scientific work had an enormous impact in clar- ifying the compatibility of relativity with quantum theory in the framework of quantum field theory. But his stature and influence was linked with an enormous cadre of students, scientific collaborators, and friends whose careers shaped fields both in mathematics and theoretical physics. Princeton has a long tradition in mathematical physics, with university faculty from Sir James Jeans through H.P. Robertson, Hermann Weyl, John von Neumann, Eugene Wigner, and Valentine Bargmann, as well as a long history of close collaborations with colleagues at the Institute for Advanced Study. Princeton became a mecca for quantum field theorists as well as other mathematical physicists during the Wightman era. Ever since the advent of “axiomatic quantum field theory”, many researchers flocked to cross the threshold of his open office door—both in Palmer and later in Jadwin—for Arthur was renowned for his generosity in sharing ideas and research directions. In fact, some students wondered whether Arthur might be too generous with his time helping others, to the extent that it took time away from his own research. Arthur had voracious intellectual appetites and breadth of interests. Through his interactions with others and his guidance of students and postdocs, he had profound impact not only on axiomatic and constructive quantum field theory but on the de- velopment of the mathematical approaches to statistical mechanics, classical mechanics, dynamical systems, transport theory, non-relativistic quantum mechanics, scattering the- ory, perturbation of eigenvalues, perturbative renormalization theory, algebraic quantum field theory, representations of C⇤-algebras, classification of von Neumann algebras, and higher spin equations. -
1995 Steele Prizes
steele.qxp 4/27/98 3:29 PM Page 1288 1995 Steele Prizes Three Leroy P. Steele Prizes were presented at The text that follows contains, for each award, the awards banquet during the Summer Math- the committee’s citation, the recipient’s response fest in Burlington, Vermont, in early August. upon receiving the award, and a brief bio- These prizes were established in 1970 in honor graphical sketch of the recipient. of George David Birkhoff, William Fogg Osgood, and William Caspar Graustein Edward Nelson: 1995 Steele Prize for and are endowed under the Seminal Contribution to Research terms of a bequest from The 1995 Leroy P. Steele award for research of Leroy P. Steele. seminal importance goes to Professor Edward The Steele Prizes are Nelson of Princeton University for the following ...for a research awarded in three categories: two papers in mathematical physics character- for a research paper of fun- ized by leaders of the field as extremely innov- paper of damental and lasting impor- ative: tance, for expository writing, 1. “A quartic interaction in two dimensions” in fundamental and for cumulative influence Mathematical Theory of Elementary Particles, and lasting extending over a career, in- MIT Press, 1966, pages 69–73; cluding the education of doc- 2. “Construction of quantum fields from Markoff importance, toral students. The current fields” in Journal of Functional Analysis 12 award is $4,000 in each cate- (1973), 97–112. for expository gory. In these papers he showed for the first time The recipients of the 1995 how to use the powerful tools of probability writing, and for Steele Prizes are Edward Nel- theory to attack the hard analytic questions of son for seminal contribution constructive quantum field theory, controlling cumulative to research, Jean-Pierre Serre renormalizations with Lp estimates in the first influence for mathematical exposition, paper and, in the second, turning Euclidean and John T. -
Ginling College, the University of Michigan and the Barbour Scholarship
Ginling College, the University of Michigan and the Barbour Scholarship Rosalinda Xiong United World College of Southeast Asia Singapore, 528704 Abstract Ginling College (“Ginling”) was the first institution of higher learning in China to grant bachelor’s degrees to women. Located in Nanking (now Nanjing) and founded in 1915 by western missionaries, Ginling had already graduated nearly 1,000 women when it merged with the University of Nanking in 1951 to become National Ginling University. The University of Michigan (“Michigan”) has had a long history of exchange with Ginling. During Ginling’s first 36 years of operation, Michigan graduates and faculty taught Chinese women at Ginling, and Ginlingers furthered their studies at Michigan through the Barbour Scholarship. This paper highlights the connection between Ginling and Michigan by profiling some of the significant people and events that shaped this unique relationship. It begins by introducing six Michigan graduates and faculty who taught at Ginling. Next we look at the 21 Ginlingers who studied at Michigan through the Barbour Scholarship (including 8 Barbour Scholars from Ginling who were awarded doctorate degrees), and their status after returning to China. Finally, we consider the lives of prominent Chinese women scholars from Ginling who changed China, such as Dr. Wu Yi-fang, a member of Ginling’s first graduating class and, later, its second president; and Miss Wu Ching-yi, who witnessed the brutality of the Rape of Nanking and later worked with Miss Minnie Vautrin to help refugees in Ginling Refugee Camp. Between 2015 and 2017, Ginling College celebrates the centennial anniversary of its founding; and the University of Michigan marks both its bicentennial and the hundredth anniversary of the Barbour Gift, the source of the Barbour Scholarship. -
Concerning Relativity Books. Published in June 2013 INTERVIEW WITH
Interview for Hungarian “Physical Review” concerning relativity books. Published in June 2013 INTERVIEW WITH EDWIN F. TAYLOR, SENIOR RESEARCH SCIENTIST, EMERITUS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY (FSZ: Fizikai Szemle, EFT: Edwin F. Taylor) FSZ: Spacetime Physics, the book you co-authored with John Archibald Wheeler, has many fans among physicists throughout the world, and Hungary is no exception. (The Hungarian edition was first published in 1974; the second printing of this edition came out in 2006 [1].) In 1972 you published an account of your collaboration with John Wheeler on the 1963 edition of Spacetime Physics and your personal impressions about John Wheeler (including his emotional reaction to the news of his mentor Niels Bohr’s death in November 1962) [2]. Your collaboration and friendship with Wheeler started during your sabbatical at Princeton University in 1962. One of your assignments was to prepare lecture notes for a freshman physics course that Wheeler taught to a class of 35 students. He started the course with 6 weeks of relativity! What had been your main areas of interest in physics before you met John Wheeler? Had you been particularly interested in relativity, or was it Wheeler’s presentation of it during that introductory physics course in 1962 which made it a lifelong passion for you? EFT: My father, Lloyd W. Taylor, was a physics textbook writer, so it came naturally to me. My first book, Introductory Mechanics, arrived from the publisher when I was on a junior faculty sabbatical at Princeton University; that book included some chapters on special relativity. Wheeler arranged for me to assist him in this honors introductory class [3]. -
A Contribuição De Chien Shiung Wu Para a Teoria Quântica
UNIVERSIDADE FEDERAL DA BAHIA UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO, FILOSOFIA E HISTÓRIA DAS CIÊNCIAS ANGEVALDO MENEZES MAIA FILHO PARA UMA HISTÓRIA DAS MULHERES NA CIÊNCIA: A CONTRIBUIÇÃO DE CHIEN SHIUNG WU PARA A TEORIA QUÂNTICA Salvador 2018 ANGEVALDO MENEZES MAIA FILHO PARA UMA HISTÓRIA DAS MULHERES NA CIÊNCIA: A CONTRIBUIÇÃO DE CHIEN SHIUNG WU PARA A TEORIA QUÂNTICA Dissertação apresentada ao Programa de Pós- Graduação em Ensino, Filosofia e História das Ciências, da Universidade Federal da Bahia e da Universidade Estadual de Feira de Santana como requisito parcial para a obtenção do título de Mestre em Ensino, Filosofia e História das Ciências. Orientadora: Profa. Dra. Indianara Lima Silva Salvador 2018 ANGEVALDO MENEZES MAIA FILHO PARA UMA HISTÓRIA DAS MULHERES NA CIÊNCIA: A CONTRIBUIÇÃO DE CHIEN SHIUNG WU PARA A TEORIA QUÂNTICA Dissertação apresentada como requisito parcial para obtenção do grau de mestre em 19 de abril de 2018, Programa de Pós-Graduação em Ensino, Filosofia e História das Ciências, da Universidade Federal da Bahia e da Universidade Estadual de Feira de Santana. 19 de abril de 2018 Banca Examinadora _______________________________________________ Professora Doutora Indianara Lima Silva _______________________________________________ Professora Doutora Maria Margaret Lopes _______________________________________________ Professor Doutor Olival Freire Júnior AGRADECIMENTOS Como não poderia deixar de ser, os agradecimentos revelam o quão importante são as pessoas que nos cercam e o quanto pode ser difícil, no meu caso, absolutamente impossível, realizar um trabalho individualmente. Agradeço a Josenice Assunção Maia e Angevaldo Maia, pessoas que tive a sorte de ter enquanto genitores me apoiando incondicionalmente desde sempre, confiando e acreditando nas minhas escolhas, a maior e inesgotável fonte de amor que pude encontrar na vida. -
On a Paley-Wiener Theorem for the Zs-Akns Scattering Transform
University of Kentucky UKnowledge Theses and Dissertations--Mathematics Mathematics 2013 ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING TRANSFORM Ryan D. Walker University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Walker, Ryan D., "ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING TRANSFORM" (2013). Theses and Dissertations--Mathematics. 9. https://uknowledge.uky.edu/math_etds/9 This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work.