Macroscopic Quantum Mechanics and Black Hole Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higher-Dimensional Black Holes: Hidden Symmetries and Separation
Alberta-Thy-02-08 Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables Valeri P. Frolov and David Kubizˇn´ak1 1 Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 ∗ In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hid- den symmetries in four dimensions and introduces Killing and Killing–Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing–Yano 2-form) in 4D flat spacetime one can ‘generate’ 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing–Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of vari- ables for the Hamilton–Jacobi, Klein–Gordon, and Dirac equations in the general Kerr-NUT-(A)dS metrics. PACS numbers: 04.50.Gh, 04.50.-h, 04.70.-s, 04.20.Jb arXiv:0802.0322v2 [hep-th] 27 Mar 2008 I. INTRODUCTION A. Symmetries In modern theoretical physics one can hardly overestimate the role of symmetries. They comprise the most fundamental laws of nature, they allow us to classify solutions, in their presence complicated physical problems become tractable. The value of symmetries is espe- cially high in nonlinear theories, such as general relativity. ∗Electronic address: [email protected], [email protected] 2 In curved spacetime continuous symmetries (isometries) are generated by Killing vector fields. -
The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
S S symmetry Article The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes Mutahir Ali *, Farhad Ali , Abdus Saboor, M. Saad Ghafar and Amir Sultan Khan Department of Mathematics, Kohat University of Science and Technology, Kohat 26000, Pakistan; [email protected] (F.A.); [email protected] (A.S.); [email protected] (M.S.G.); [email protected] (A.S.K.) * Correspondence: [email protected] Received: 5 December 2018; Accepted: 22 January 2019; Published: 13 February 2019 Abstract: This research provides second-order approximate Noether symmetries of geodetic Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the form ee f (t) which perturbs the plane symmetric static spacetime, where e is small a positive parameter that produces perturbation in the spacetime. By considering the perturbation up to second-order in e in plane symmetric spacetime, we find the second order approximate Noether symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second order approximate conservation laws are investigated for plane symmetric gravitational waves like spacetimes. This technique tells about the energy content of the gravitational waves. Keywords: Einstein field equations; time conformal spacetime; approximate conservation of energy 1. Introduction Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of these waves provide us useful information about their sources (black holes and neutron stars). -
Non-Conservation of Carter in Black Hole Spacetimes
Non-conservation of Carter in black hole spacetimes Alexander Granty, Eanna´ E.´ Flanagany y Department of Physics, Cornell University, Ithaca, NY 14853 Abstract. Freely falling point particles in the vicinity of Kerr black holes are subject to a conservation law, that of their Carter constant. We consider the conjecture that this conservation law is a special case of a more general conservation law, valid for arbitrary processes obeying local energy momentum conservation. Under some fairly general assumptions we prove that the conjecture is false: there is no conservation law for conserved stress-energy tensors on the Kerr background that reduces to conservation of Carter for a single point particle. arXiv:1503.05164v2 [gr-qc] 16 Jun 2015 Non-conservation of Carter in black hole spacetimes 2 The validity of conservation laws in physics can depend on the type of interactions being considered. For example, baryon number minus lepton number, B − L, is an exact conserved quantity in the Standard Model of particle physics. However, it is no longer conserved when one enlarges the set of interactions under consideration to include those of many grand unified theories [1], or those that occur in quantum gravity [2]. The subject of this note is the conserved Carter constant for freely falling point particles in black hole spacetimes [3]. As is well known, this quantity is not associated with a spacetime symmetry or with Noether's theorem. Instead it is obtained from a symmetric tensor Kab which obeys the Killing tensor equation r(aKbc) = 0 [4], via a b a K = Kabk k , where k is four-momentum. -
Science & ROGER PENROSE
Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez. -
Gravitational Redshift/Blueshift of Light Emitted by Geodesic
Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 / Published online: 11 February 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer. -
Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music. -
MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 4
MATTERS OF GRAVITY Number 4 Fall 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Report on the APS Topical Group in Gravitation, Beverly Berger ............. 3 Research briefs: Gravitational Microlensing and the Search for Dark Matter: A Personal View, Bohdan Paczynski .......................................... 5 Laboratory Gravity: The G Mystery and Intrinsic Spin Experiments, Riley Newman ............................... 11 LIGO Project update, Stan Whitcomb ....................................... 15 Conference Reports: PASCOS ’94, Peter Saulson .................................................. 16 The Vienna meeting, P. Aichelburg, R. Beig .................................. 19 The Pitt Binary Black Hole Grand Challenge Meeting, Jeff Winicour ......... 20 International Symposium on Experimental Gravitation, Nathiagali, Pakistan, Munawar Karim ....................................... 22 arXiv:gr-qc/9409004v1 2 Sep 1994 10th Pacific Coast Gravity Meeting , Jim Isenberg ........................... 23 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial The newsletter strides on. I had to perform some pushing around and arm-twisting to get articles for this number. I wish to remind everyone that suggestions and ideas for contributions are especially welcome. The newsletter is growing rather weak on the theoretical side. Keep those suggestions coming! I put together this newsletter mostly on a palmtop computer while travelling, with some contributions arriving the very day of publication (on which, to complicate matters, I was giving a talk at a conference, my email reader crashed and our network went down). One of the contributions is a bit longer than the usual format. Again it is my fault for failing to warn the author in due time. -
Gravitational Waves WARNING!!!!
Gravitational Waves WARNING!!!! ⚫ Terminology is treacherous! ⚫ There are gravitational waves (our topic) and there are gravity waves (a topic for a surfing class). Mix them to your peril. Gravitational waves ⚫ Movie The History ⚫ The history of gravitational waves is rocky. Einstein argued in 1916 that gravitational waves must exist – if the space-time is dynamic, there must be ripples on it. ⚫ Einstein derived the approximate formula for the gravitational waves from two orbiting bodies. ⚫ In 1922 Eddington (that one) argued that gravitational waves were not real and just a mathematical artefact. The History ⚫ In 1936 Einstein wrote a paper with Nathan Rosen reversing his original view; they concluded that all gravitational waves should collapse into black holes. ⚫ The paper was submitted to Physics Review but was returned after the referee pointed out a mistake in it. ⚫ Einstein got berserk in response, writing an angry letter to the editor and promising never to publish in Physics Review again. The History ⚫ Einstein was later persuaded by Infeld of his mistake and corrected the paper. Rosen never conceded. ⚫ In 1957 Richard Feymann (a very famous particle physicist) presented a “sticky bead” argument that convinced most people that gravitational waves are real. The Challenge ⚫ The primary challenge with gravitational waves is that in GR there is no (unambiguous) mathematical expression for its energy. ⚫ Since locally space-time is Minkowski, in the local inertial reference frame the energy of gravitational waves is zero. I.e., that energy is non-local, one cannot claim that the energy of gravitational waves is … at his location, only that the total energy is such and such. -
Highlights of Modern Physics and Astrophysics
Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of -
Bruce Winstein 1943–2011
Bruce Winstein 1943–2011 A Biographical Memoir by Melvyn J. Shochet and Michael S. Turner ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. BRUCE daRRELL WINSTEIN September 25, 1943–February 28, 2011 Elected to the NAS, 1995 Bruce D. Winstein began his career as an experimental high-energy physicist and became renowned for making the most precise measurements of CP (“charge parity”) violation in the neutral K meson system. His results illu- minated the tiny asymmetry between matter and anti- matter that is essential for the existence of matter in the universe. He was associated with the University of Chicago from 1972 until his death in 2011, first as a senior research associate and finally as the Samuel K. Allison Distinguished Service Professor. Late in his career Winstein became a cosmologist, focusing on the polar- ization of the cosmic microwave background (CMB) radiation. Bringing to cosmology the techniques from By Melvyn J. Shochet high-energy physics, he made highly accurate measure- and Michael S. Turner ments of CMB polarization. Winstein was also instru- mental in establishing the Kavli Institute for Cosmo- logical Physics at the University of Chicago. Outside of physics, he was an avid fan of avant-garde film, twice teaching a course on the films of Michelangelo Antonioni. Early years Bruce was born in Los Angeles, CA, to Saul and Sylvia Winstein. His father was a distinguished physical organic chemist, elected to the National Academy of Sciences in 1955 and a faculty member at UCLA from 1941 until his death in 1969. -
Mathematics People
NEWS Mathematics People “In 1972, Rainer Weiss wrote down in an MIT report his Weiss, Barish, and ideas for building a laser interferometer that could detect Thorne Awarded gravitational waves. He had thought this through carefully and described in detail the physics and design of such an Nobel Prize in Physics instrument. This is typically called the ‘birth of LIGO.’ Rai Weiss’s vision, his incredible insights into the science and The Royal Swedish Academy of Sci- challenges of building such an instrument were absolutely ences has awarded the 2017 Nobel crucial to make out of his original idea the successful Prize in Physics to Rainer Weiss, experiment that LIGO has become. Barry C. Barish, and Kip S. Thorne, “Kip Thorne has done a wealth of theoretical work in all of the LIGO/Virgo Collaboration, general relativity and astrophysics, in particular connected for their “decisive contributions to with gravitational waves. In 1975, a meeting between the LIGO detector and the observa- Rainer Weiss and Kip Thorne from Caltech marked the tion of gravitational waves.” Weiss beginning of the complicated endeavors to build a gravi- receives one-half of the prize; Barish tational wave detector. Rai Weiss’s incredible insights into and Thorne share one-half. the science and challenges of building such an instrument Rainer Weiss combined with Kip Thorne’s theoretical expertise with According to the prize citation, gravitational waves, as well as his broad connectedness “LIGO, the Laser Interferometer with several areas of physics and funding agencies, set Gravitational-Wave Observatory, is the path toward a larger collaboration. -
Nobel Laureate Kip Thorne, Nobel Prize 2017. LIGO and Gravitational
Abstract: My 60 Year Romance with the Warped Side of the Universe - And What It Has Taught Me about Physics Education Already in the 1950s and 60s, when I was a student, Einstein’s general relativity theory suggested that there might be a “warped side” of our universe: objects and phenomena made not from matter, but from warped spacetime. These include, among others, black holes, wormholes, backward time travel, gravitational waves, and the big-bang birth of the universe. I have devoted most of my career to exploring this warped side through theory and computer simulations, and to developing plans and technology for exploring the warped side observationally, via gravitational waves. Most of my classroom teaching, mentoring, writing, and outreach to nonscientists, has revolved around the warped side; and from this I have developed some strong views about physics education. In this talk I will discuss those views, in the context of personal anecdotes about my warped-side research, teaching, mentoring, writing, and outreach. Bio: Kip Thorne was born in 1940 in Logan, Utah, USA, and is currently the Feynman Professor of Theoretical Physics, Emeritus at the California Institute of Technology (Caltech). From 1967 to 2009, he led a Caltech research group working in relativistic astrophysics and gravitational physics, with emphasis on relativistic stars, black holes, and especially gravitational waves. Fifty three students received their PhD’s under his mentorship, and he mentored roughly sixty postdoctoral students. He co-authored the textbooks Gravitation (1973, with Charles Misner and John Archibald Wheeler) and Modern Classical Physics (2017, with Roger Blandford), and was sole author of Black Holes and Time Warps: Einstein’s Outrageous Legacy.