Neutron-Antineutron Transitions: Exploring B – L Violation with Quarks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Anti)Proton Mass and Magnetic Moment
FFK Conference 2019, Tihany, Hungary Precision measurements of the (anti)proton mass and magnetic moment Wolfgang Quint GSI Darmstadt and University of Heidelberg on behalf of the BASE collaboration spokesperson: Stefan Ulmer 2019 / 06 / 12 BASE – Collaboration • Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies. • CERN Antiproton Decelerator: Measurement of the magnetic moment of the antiproton and proton/antiproton q/m ratio • Hannover/PTB: Laser cooling project, new technologies Institutes: RIKEN, MPI-K, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015) WE HAVE A PROBLEM mechanism which created the obvious baryon/antibaryon asymmetry in the Universe is not understood One strategy: Compare the fundamental properties of matter / antimatter conjugates with ultra-high precision CPT tests based on particle/antiparticle comparisons R.S. Van Dyck et al., Phys. Rev. Lett. 59 , 26 (1987). Recent B. Schwingenheuer, et al., Phys. Rev. Lett. 74, 4376 (1995). Past CERN H. Dehmelt et al., Phys. Rev. Lett. 83 , 4694 (1999). G. W. Bennett et al., Phys. Rev. D 73 , 072003 (2006). Planned M. Hori et al., Nature 475 , 485 (2011). ALICE G. Gabriesle et al., PRL 82 , 3199(1999). J. DiSciacca et al., PRL 110 , 130801 (2013). S. Ulmer et al., Nature 524 , 196-200 (2015). ALICE Collaboration, Nature Physics 11 , 811–814 (2015). M. Hori et al., Science 354 , 610 (2016). H. Nagahama et al., Nat. Comm. 8, 14084 (2017). M. Ahmadi et al., Nature 541 , 506 (2017). M. Ahmadi et al., Nature 586 , doi:10.1038/s41586-018-0017 (2018). -
Interactions of Antiprotons with Atoms and Molecules
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1988 INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES Mitio Inokuti Argonne National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Inokuti, Mitio, "INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES" (1988). US Department of Energy Publications. 89. https://digitalcommons.unl.edu/usdoepub/89 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. /'Iud Tracks Radial. Meas., Vol. 16, No. 2/3, pp. 115-123, 1989 0735-245X/89 $3.00 + 0.00 Inl. J. Radial. Appl .. Ins/rum., Part D Pergamon Press pic printed in Great Bntam INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES* Mmo INOKUTI Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. (Received 14 November 1988) Abstract-Antiproton beams of relatively low energies (below hundreds of MeV) have recently become available. The present article discusses the significance of those beams in the contexts of radiation physics and of atomic and molecular physics. Studies on individual collisions of antiprotons with atoms and molecules are valuable for a better understanding of collisions of protons or electrons, a subject with many applications. An antiproton is unique as' a stable, negative heavy particle without electronic structure, and it provides an excellent opportunity to study atomic collision theory. -
BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = Sb, Bs = S B, Similarly for Bs ’S
Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = sb, Bs = s b, similarly for Bs ’s 0 P − Bs I (J ) = 0(0 ) I , J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass m 0 = 5366.88 ± 0.14 MeV Bs m 0 − mB = 87.38 ± 0.16 MeV Bs Mean life τ = (1.515 ± 0.004) × 10−12 s cτ = 454.2 µm 12 −1 ∆Γ 0 = Γ 0 − Γ 0 = (0.085 ± 0.004) × 10 s Bs BsL Bs H 0 0 Bs -Bs mixing parameters 12 −1 ∆m 0 = m 0 – m 0 = (17.749 ± 0.020) × 10 ¯h s Bs Bs H BsL = (1.1683 ± 0.0013) × 10−8 MeV xs = ∆m 0 /Γ 0 = 26.89 ± 0.07 Bs Bs χs = 0.499312 ± 0.000004 0 CP violation parameters in Bs 2 −3 Re(ǫ 0 )/(1+ ǫ 0 )=(−0.15 ± 0.70) × 10 Bs Bs 0 + − CKK (Bs → K K )=0.14 ± 0.11 0 + − SKK (Bs → K K )=0.30 ± 0.13 0 ∓ ± +0.10 rB(Bs → Ds K )=0.37−0.09 0 ± ∓ ◦ δB(Bs → Ds K ) = (358 ± 14) −2 CP Violation phase βs = (2.55 ± 1.15) × 10 rad λ (B0 → J/ψ(1S)φ)=1.012 ± 0.017 s λ = 0.999 ± 0.017 A, CP violation parameter = −0.75 ± 0.12 C, CP violation parameter = 0.19 ± 0.06 S, CP violation parameter = 0.17 ± 0.06 L ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.06 k ∗ 0 ACP (Bs → J/ψ K (892) )=0.17 ± 0.15 ⊥ ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.10 + − ACP (Bs → π K ) = 0.221 ± 0.015 0 + − ∗ 0 ACP (Bs → [K K ]D K (892) ) = −0.04 ± 0.07 HTTP://PDG.LBL.GOV Page1 Created:6/1/202008:28 Citation: P.A. -
1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials. -
Pkoduction of RELATIVISTIC ANTIHYDROGEN ATOMS by PAIR PRODUCTION with POSITRON CAPTURE*
SLAC-PUB-5850 May 1993 (T/E) PkODUCTION OF RELATIVISTIC ANTIHYDROGEN ATOMS BY PAIR PRODUCTION WITH POSITRON CAPTURE* Charles T. Munger and Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 .~ and _- Ivan Schmidt _ _.._ Universidad Federico Santa Maria _. - .Casilla. 11 O-V, Valparaiso, Chile . ABSTRACT A beam of relativistic antihydrogen atoms-the bound state (Fe+)-can be created by circulating the beam of an antiproton storage ring through an internal gas target . An antiproton that passes through the Coulomb field of a nucleus of charge 2 will create e+e- pairs, and antihydrogen will form when a positron is created in a bound rather than a continuum state about the antiproton. The - cross section for this process is calculated to be N 4Z2 pb for antiproton momenta above 6 GeV/c. The gas target of Fermilab Accumulator experiment E760 has already produced an unobserved N 34 antihydrogen atoms, and a sample of _ N 760 is expected in 1995 from the successor experiment E835. No other source of antihydrogen exists. A simple method for detecting relativistic antihydrogen , - is -proposed and a method outlined of measuring the antihydrogen Lamb shift .g- ‘,. to N 1%. Submitted to Physical Review D *Work supported in part by Department of Energy contract DE-AC03-76SF00515 fSLAC’1 and in Dart bv Fondo National de InvestiPaci6n Cientifica v TecnoMcica. Chile. I. INTRODUCTION Antihydrogen, the simplest atomic bound state of antimatter, rf =, (e+$, has never. been observed. A 1on g- sought goal of atomic physics is to produce sufficient numbers of antihydrogen atoms to confirm the CPT invariance of bound states in quantum electrodynamics; for example, by verifying the equivalence of the+&/2 - 2.Py2 Lamb shifts of H and I?. -
ANTIMATTER a Review of Its Role in the Universe and Its Applications
A review of its role in the ANTIMATTER universe and its applications THE DISCOVERY OF NATURE’S SYMMETRIES ntimatter plays an intrinsic role in our Aunderstanding of the subatomic world THE UNIVERSE THROUGH THE LOOKING-GLASS C.D. Anderson, Anderson, Emilio VisualSegrè Archives C.D. The beginning of the 20th century or vice versa, it absorbed or emitted saw a cascade of brilliant insights into quanta of electromagnetic radiation the nature of matter and energy. The of definite energy, giving rise to a first was Max Planck’s realisation that characteristic spectrum of bright or energy (in the form of electromagnetic dark lines at specific wavelengths. radiation i.e. light) had discrete values The Austrian physicist, Erwin – it was quantised. The second was Schrödinger laid down a more precise that energy and mass were equivalent, mathematical formulation of this as described by Einstein’s special behaviour based on wave theory and theory of relativity and his iconic probability – quantum mechanics. The first image of a positron track found in cosmic rays equation, E = mc2, where c is the The Schrödinger wave equation could speed of light in a vacuum; the theory predict the spectrum of the simplest or positron; when an electron also predicted that objects behave atom, hydrogen, which consists of met a positron, they would annihilate somewhat differently when moving a single electron orbiting a positive according to Einstein’s equation, proton. However, the spectrum generating two gamma rays in the featured additional lines that were not process. The concept of antimatter explained. In 1928, the British physicist was born. -
Electron - Positron Annihilation
Electron - Positron Annihilation γ µ K Z − − − + + + − − − + + + − − − − + + + − − − + + + + W ν h π D. Schroeder, 29 October 2002 OUTLINE • Electron-positron storage rings • Detectors • Reaction examples e+e− −→ e+e− [Inventory of known particles] e+e− −→ µ+µ− e+e− −→ q q¯ e+e− −→ W +W − • The future:Linear colliders Electron-Positron Colliders Hamburg Novosibirsk 11 GeV 12 GeV 47 GeV Geneva 200 GeV Ithaca Tokyo Stanford 12 GeV 64 GeV 8 GeV 12 GeV 30 GeV 100 GeV Beijing 12 GeV 4 GeV Size (R) and Cost ($) of an e+e− Storage Ring βE4 $=αR + ( E = beam energy) R d $ βE4 Find minimum $: 0= = α − dR R2 β =⇒ R = E2, $=2 αβ E2 α SPEAR: E = 8 GeV, R = 40 m, $ = 5 million LEP: E = 200 GeV, R = 4.3 km, $ = 1 billion + − + − Example 1: e e −→ e e e− total momentum = 0 θ − total energy = 2E e e+ Probability(E,θ)=? e+ E-dependence follows from dimensional analysis: density = ρ− A density = ρ+ − + × 2 Probability = (ρ− ρ+ − + A) (something with units of length ) ¯h ¯hc When E m , the only relevant length is = e p E 1 =⇒ Probability ∝ E2 at SPEAR Augustin, et al., PRL 34, 233 (1975) 6000 5000 4000 Ecm = 4.8 GeV 3000 2000 Number of Counts 1000 Theory 0 −0.8 −0.40 0.40.8 cos θ Prediction for e+e− −→ e+e− event rate (H. J. Bhabha, 1935): event dσ e4 1 + cos4 θ 2 cos4 θ 1 + cos2 θ ∝ = 2 − 2 + rate dΩ 32π2E2 4 θ 2 θ 2 cm sin 2 sin 2 Interpretation of Bhabha’sformula (R. -
QCD at Colliders
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders !Renormalisation in QCD !Asymptotic Freedom and Confinement in QCD !Lepton and Hadron Colliders !R = (e+e!!hadrons)/(e+e!"µ+µ!) !Measuring Jets !Fragmentation 1 From Last Lecture: QCD Summary • QCD: Quantum Chromodymanics is the quantum description of the strong force. • Gluons are the propagators of the QCD and carry colour and anti-colour, described by 8 Gell-Mann matrices, !. • For M calculate the appropriate colour factor from the ! matrices. 2 2 • The coupling constant #S is large at small q (confinement) and large at high q (asymptotic freedom). • Mesons and baryons are held together by QCD. • In high energy collisions, jets are the signatures of quark and gluon production. 2 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into Gluona flux tube self-Interactions” ande- Confinementq , + , What happens whenGluon try self-interactions to separate two are believedcoloured to giveobjects e.g. qqe q rise to colour confinement , Qualitativeq picture: q •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube” e- q •Form a flux tube, What of happensinteracting when gluons try to separate of approximately two coloured constant objects e.g. qq energy density q q •Require infinite energy to separate coloured objects to infinity •Form a flux tube of interacting gluons of approximately constant •Coloured quarks and gluons are always confined within colourless states energy density •In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) Prof. -
Charm Meson Molecules and the X(3872)
Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality. -
Antineutron Oscillation Theory
RecentRecent ProgressProgress inin Neutron-Neutron- AntineutronAntineutron OscillationOscillation TheoryTheory MichaelMichael WagmanWagman (UW/INT)(UW/INT) QuarkQuark ConfinementConfinement andand thethe HadronHadron SpectrumSpectrum XIIXII withwith MichaelMichael Buchoff,Buchoff, EnricoEnrico Rinaldi,Rinaldi, ChrisChris Schroeder,Schroeder, andand JoeJoe WasemWasem (LLNL),(LLNL), andand SergeySergey SyritsynSyritsyn (Jefferson(Jefferson Lab/StonyLab/Stony Brook)Brook) 1 Neutron-Antineutron Oscillations violates fundamental symmetries of baryon number and , sensitive to different physics than proton decay Testable signature of possible BSM baryogenesis mechanisms explaining matter-antimatter asymmetry 2 Neutron-Antineutron Phenomenology Similarities to kaon, neutrino oscillations Magnetic fields, nuclear interactions modify transition rate Mohapatra (2009) 3 Experimental Constraints 4 Experimental Outlook European Spallation Source could have 1000 times ILL sensitivity, probe 30 times higher within next decade 5 Neutron-Antineutron Theory: The Standard Model and Beyond Theory must make robust predictions for to reliably interpret the constraints from these experiments Lattice QCD Renormalization Group BSM QCD max lattice BSM strong resolution physics? 6 Baryogenesis Baryon asymmetry and produced by same interactions in several BSM theories Post-sphaleron baryogenesis in e.g. left-right symmetric theories predicts there is a theoretical upper bound on Babu, Dev, Fortes, and Mohapatra (2013) Planck Mohapatra and Marshak (1980) 7 Six-Quark -
Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects
Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects D. G. Phillips IIo,x, W. M. Snowe,b,∗, K. Babur, S. Banerjeeu, D. V. Baxtere,b, Z. Berezhianii,y, M. Bergevinz, S. Bhattacharyau, G. Brooijmansc, L. Castellanosaf, M-C. Chenaa, C. E. Coppolaag, R. Cowsikai, J. A. Crabtreeq, P. Dasah, E. B. Deeso,x, A. Dolgovg,p,ab, P. D. Fergusonq, M. Frostag, T. Gabrielag, A. Galt, F. Gallmeierq, K. Ganezera, E. Golubevaf, G. Greeneag, B. Hartfiela, A. Hawarin, L. Heilbronnaf, C. Johnsone, Y. Kamyshkovag, B. Kerbikovg,k, M. Kitaguchil, B. Z. Kopeliovichae, V. B. Kopeliovichf,k, V. A. Kuzminf, C-Y. Liue,b, P. McGaugheyj, M. Mockoj, R. Mohapatraac, N. Mokhovd, G. Muhrerj, H. P. Mummm, L. Okung, R. W. Pattie Jr.o,x, C. Quiggd, E. Rambergd, A. Rayah, A. Royh, A. Rugglesaf, U. Sarkars, A. Saundersj, A. P. Serebrovv, H. M. Shimizul, R. Shrockw, A. K. Sikdarah, S. Sjuej, S. Striganovd, L. W. Townsendaf, R. Tschirhartd, A. Vainshteinad, R. Van Kootene, Z. Wangj, A. R. Youngo,x aCalifornia State University, Dominguez Hills, Department of Physics, 1000 E. Victoria St., NSMB-202, Carson, CA 90747, USA bCenter for the Exploration of Energy and Matter, 2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA cColumbia University, Department of Physics, 538 West 120th St., 704 Pupin Hall, MC 5255, New York, NY 10027, USA dFermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA eIndiana University, Department of Physics, 727 E. Third St., Swain Hall West, Room 117, Bloomington, IN 47405, USA fInstitute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia gInstitute of Theoretical and Experimental Physics, Bolshaya Cheremushkinskaya ul. -
Atsuko K. Ichikawa, Kyoto University
EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION Atsuko K. Ichikawa, Kyoto University INTRODUCTION OF MYSELF • Got PhD by detecting doubly-strange nuclei using emulsion • After that, working on accelerator-based long- baseline neutrino oscillation experiments in Japan, especially on neutrino production, neutrino detector in accelerator-site and analysis. • Recently, started a high- pressure Xenon gas project for double-beta decay search 2 CONSTITUENTS OF THIS WORLD How can we distinguish btw. u, c and t Electric d, s and b charge e, and e, and Same spin, same charge… Only by mass! Except for ’s. + (Higgs, dark matter, dark energy…..?) Fig. from FNAL home page 3 HOW CAN WE DISTINGUISH NEUTRINOS? - IT IS TWO SIDES OF COINS- Neutrinos do interact with matter and 4 HOW CAN WE DISTINGUISH NEUTRINOS? - IT IS TWO SIDES OF COINS- Neutrinos do interact with matter and • An electron neutrino changes to an electron. We call this • A muon neutrino changes to a muon. categorization • A tau neutrino changes to atau. ‘flavor’. And it was believed that electron neutrino only changes to electron, never into muon nor tau before the neutrino oscillation was found. 5 NEUTRINOS DO INTERACT, BUT …. photon Concrete Wall X-ray ~1cm High Energy Mean Free path ~10cm of particles High Energy proton ~30cm ~1GeV muon ~200cm ~1GeV neutrino (atmospheric, accelerator) ~108 km≒distance btw. Solar and earth ~1MeV neutrino (solar, reactor) ~1014 km≒100 light-year 6 SUPER-KAMIOKANDE 7 SUPER-KAMIOKANDE • Since April 1996 • Water Cherenkov detector w/