Entropy, Information and Complexity Or Which Aims the Arrow of Time?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Entropy, Information, and Conservation of Information
entropy Article On Entropy, Information, and Conservation of Information Yunus A. Çengel Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] Abstract: The term entropy is used in different meanings in different contexts, sometimes in contradic- tory ways, resulting in misunderstandings and confusion. The root cause of the problem is the close resemblance of the defining mathematical expressions of entropy in statistical thermodynamics and information in the communications field, also called entropy, differing only by a constant factor with the unit ‘J/K’ in thermodynamics and ‘bits’ in the information theory. The thermodynamic property entropy is closely associated with the physical quantities of thermal energy and temperature, while the entropy used in the communications field is a mathematical abstraction based on probabilities of messages. The terms information and entropy are often used interchangeably in several branches of sciences. This practice gives rise to the phrase conservation of entropy in the sense of conservation of information, which is in contradiction to the fundamental increase of entropy principle in thermody- namics as an expression of the second law. The aim of this paper is to clarify matters and eliminate confusion by putting things into their rightful places within their domains. The notion of conservation of information is also put into a proper perspective. Keywords: entropy; information; conservation of information; creation of information; destruction of information; Boltzmann relation Citation: Çengel, Y.A. On Entropy, 1. Introduction Information, and Conservation of One needs to be cautious when dealing with information since it is defined differently Information. Entropy 2021, 23, 779. -
ENERGY, ENTROPY, and INFORMATION Jean Thoma June
ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................ -
Lecture 4: 09.16.05 Temperature, Heat, and Entropy
3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6� -
Chapter 3. Second and Third Law of Thermodynamics
Chapter 3. Second and third law of thermodynamics Important Concepts Review Entropy; Gibbs Free Energy • Entropy (S) – definitions Law of Corresponding States (ch 1 notes) • Entropy changes in reversible and Reduced pressure, temperatures, volumes irreversible processes • Entropy of mixing of ideal gases • 2nd law of thermodynamics • 3rd law of thermodynamics Math • Free energy Numerical integration by computer • Maxwell relations (Trapezoidal integration • Dependence of free energy on P, V, T https://en.wikipedia.org/wiki/Trapezoidal_rule) • Thermodynamic functions of mixtures Properties of partial differential equations • Partial molar quantities and chemical Rules for inequalities potential Major Concept Review • Adiabats vs. isotherms p1V1 p2V2 • Sign convention for work and heat w done on c=C /R vm system, q supplied to system : + p1V1 p2V2 =Cp/CV w done by system, q removed from system : c c V1T1 V2T2 - • Joule-Thomson expansion (DH=0); • State variables depend on final & initial state; not Joule-Thomson coefficient, inversion path. temperature • Reversible change occurs in series of equilibrium V states T TT V P p • Adiabatic q = 0; Isothermal DT = 0 H CP • Equations of state for enthalpy, H and internal • Formation reaction; enthalpies of energy, U reaction, Hess’s Law; other changes D rxn H iD f Hi i T D rxn H Drxn Href DrxnCpdT Tref • Calorimetry Spontaneous and Nonspontaneous Changes First Law: when one form of energy is converted to another, the total energy in universe is conserved. • Does not give any other restriction on a process • But many processes have a natural direction Examples • gas expands into a vacuum; not the reverse • can burn paper; can't unburn paper • heat never flows spontaneously from cold to hot These changes are called nonspontaneous changes. -
Package 'Infotheo'
Package ‘infotheo’ February 20, 2015 Title Information-Theoretic Measures Version 1.2.0 Date 2014-07 Publication 2009-08-14 Author Patrick E. Meyer Description This package implements various measures of information theory based on several en- tropy estimators. Maintainer Patrick E. Meyer <[email protected]> License GPL (>= 3) URL http://homepage.meyerp.com/software Repository CRAN NeedsCompilation yes Date/Publication 2014-07-26 08:08:09 R topics documented: condentropy . .2 condinformation . .3 discretize . .4 entropy . .5 infotheo . .6 interinformation . .7 multiinformation . .8 mutinformation . .9 natstobits . 10 Index 12 1 2 condentropy condentropy conditional entropy computation Description condentropy takes two random vectors, X and Y, as input and returns the conditional entropy, H(X|Y), in nats (base e), according to the entropy estimator method. If Y is not supplied the function returns the entropy of X - see entropy. Usage condentropy(X, Y=NULL, method="emp") Arguments X data.frame denoting a random variable or random vector where columns contain variables/features and rows contain outcomes/samples. Y data.frame denoting a conditioning random variable or random vector where columns contain variables/features and rows contain outcomes/samples. method The name of the entropy estimator. The package implements four estimators : "emp", "mm", "shrink", "sg" (default:"emp") - see details. These estimators require discrete data values - see discretize. Details • "emp" : This estimator computes the entropy of the empirical probability distribution. • "mm" : This is the Miller-Madow asymptotic bias corrected empirical estimator. • "shrink" : This is a shrinkage estimate of the entropy of a Dirichlet probability distribution. • "sg" : This is the Schurmann-Grassberger estimate of the entropy of a Dirichlet probability distribution. -
A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action
Article A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action Ivan Kennedy 1,2,*, Harold Geering 2, Michael Rose 3 and Angus Crossan 2 1 Sydney Institute of Agriculture, University of Sydney, NSW 2006, Australia 2 QuickTest Technologies, PO Box 6285 North Ryde, NSW 2113, Australia; [email protected] (H.G.); [email protected] (A.C.) 3 NSW Department of Primary Industries, Wollongbar NSW 2447, Australia; [email protected] * Correspondence: [email protected]; Tel.: + 61-4-0794-9622 Received: 23 March 2019; Accepted: 26 April 2019; Published: 1 May 2019 Abstract: A convenient practical model for accurately estimating the total entropy (ΣSi) of atmospheric gases based on physical action is proposed. This realistic approach is fully consistent with statistical mechanics, but reinterprets its partition functions as measures of translational, rotational, and vibrational action or quantum states, to estimate the entropy. With all kinds of molecular action expressed as logarithmic functions, the total heat required for warming a chemical system from 0 K (ΣSiT) to a given temperature and pressure can be computed, yielding results identical with published experimental third law values of entropy. All thermodynamic properties of gases including entropy, enthalpy, Gibbs energy, and Helmholtz energy are directly estimated using simple algorithms based on simple molecular and physical properties, without resource to tables of standard values; both free energies are measures of quantum field states and of minimal statistical degeneracy, decreasing with temperature and declining density. We propose that this more realistic approach has heuristic value for thermodynamic computation of atmospheric profiles, based on steady state heat flows equilibrating with gravity. -
The Enthalpy, and the Entropy of Activation (Rabbit/Lobster/Chick/Tuna/Halibut/Cod) PHILIP S
Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 430-432, February 1973 Temperature Adaptation of Enzymes: Roles of the Free Energy, the Enthalpy, and the Entropy of Activation (rabbit/lobster/chick/tuna/halibut/cod) PHILIP S. LOW, JEFFREY L. BADA, AND GEORGE N. SOMERO Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92037 Communicated by A. Baird Hasting8, December 8, 1972 ABSTRACT The enzymic reactions of ectothermic function if they were capable of reducing the AG* character- (cold-blooded) species differ from those of avian and istic of their reactions more than were the homologous en- mammalian species in terms of the magnitudes of the three thermodynamic activation parameters, the free zymes of more warm-adapted species, i.e., birds or mammals. energy of activation (AG*), the enthalpy of activation In this paper, we report that the values of AG* are indeed (AH*), and the entropy of activation (AS*). Ectothermic slightly lower for enzymic reactions catalyzed by enzymes enzymes are more efficient than the homologous enzymes of ectotherms, relative to the homologous reactions of birds of birds and mammals in reducing the AG* "energy bar- rier" to a chemical reaction. Moreover, the relative im- and mammals. Moreover, the relative contributions of the portance of the enthalpic and entropic contributions to enthalpies and entropies of activation to AG* differ markedly AG* differs between these two broad classes of organisms. and, we feel, adaptively, between ectothermic and avian- mammalian enzymic reactions. Because all organisms conduct many of the same chemical transformations, certain functional classes of enzymes are METHODS present in virtually all species. -
The Arrow of Time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, Journal Homepage P.O
The arrow of time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, journal homepage P.O. Box 871504, Tempe, AZ 852871504, USA. www.euresisjournal.org [email protected] Abstract The arrow of time is often conflated with the popular but hopelessly muddled concept of the “flow” or \passage" of time. I argue that the latter is at best an illusion with its roots in neuroscience, at worst a meaningless concept. However, what is beyond dispute is that physical states of the universe evolve in time with an objective and readily-observable directionality. The ultimate origin of this asymmetry in time, which is most famously captured by the second law of thermodynamics and the irreversible rise of entropy, rests with cosmology and the state of the universe at its origin. I trace the various physical processes that contribute to the growth of entropy, and conclude that gravitation holds the key to providing a comprehensive explanation of the elusive arrow. 1. Time's arrow versus the flow of time The subject of time's arrow is bedeviled by ambiguous or poor terminology and the con- flation of concepts. Therefore I shall begin my essay by carefully defining terms. First an uncontentious statement: the states of the physical universe are observed to be distributed asymmetrically with respect to the time dimension (see, for example, Refs. [1, 2, 3, 4]). A simple example is provided by an earthquake: the ground shakes and buildings fall down. We would not expect to see the reverse sequence, in which shaking ground results in the assembly of a building from a heap of rubble. -
Thermodynamics
ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 6. Thermodynamics January 26, 2011 Contents 1 Laws of thermodynamics 2 1.1 The zeroth law . .3 1.2 The first law . .4 1.3 The second law . .5 1.3.1 Efficiency of Carnot engine . .5 1.3.2 Alternative statements of the second law . .7 1.4 The third law . .8 2 Mathematics of thermodynamics 9 2.1 Equation of state . .9 2.2 Gibbs-Duhem relation . 11 2.2.1 Homogeneous function . 11 2.2.2 Virial theorem / Euler theorem . 12 2.3 Maxwell relations . 13 2.4 Legendre transform . 15 2.5 Thermodynamic potentials . 16 3 Worked examples 21 3.1 Thermodynamic potentials and Maxwell's relation . 21 3.2 Properties of ideal gas . 24 3.3 Gas expansion . 28 4 Irreversible processes 32 4.1 Entropy and irreversibility . 32 4.2 Variational statement of second law . 32 1 In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The most important concepts are the second law and the notion of Entropy. (reading assignment: Reif x 3.10, 3.11) In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to make quantitative predictions. We will deal with partial derivatives and Legendre transforms. (reading assignment: Reif x 4.1-4.7, 5.1-5.12) 1 Laws of thermodynamics Thermodynamics is a branch of science connected with the nature of heat and its conver- sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines, Thermodynamics: physics of heat.) Historically, it grew out of efforts to construct more efficient heat engines | devices for ex- tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics). -
A Flow-Based Entropy Characterization of a Nated Network and Its Application on Intrusion Detection
A Flow-based Entropy Characterization of a NATed Network and its Application on Intrusion Detection J. Crichigno1, E. Kfoury1, E. Bou-Harb2, N. Ghani3, Y. Prieto4, C. Vega4, J. Pezoa4, C. Huang1, D. Torres5 1Integrated Information Technology Department, University of South Carolina, Columbia (SC), USA 2Cyber Threat Intelligence Laboratory, Florida Atlantic University, Boca Raton (FL), USA 3Electrical Engineering Department, University of South Florida, Tampa (FL), USA 4Electrical Engineering Department, Universidad de Concepcion, Concepcion, Chile 5Department of Mathematics, Northern New Mexico College, Espanola (NM), USA Abstract—This paper presents a flow-based entropy charac- information is collected by the device and then exported for terization of a small/medium-sized campus network that uses storage and analysis. Thus, the performance impact is minimal network address translation (NAT). Although most networks and no additional capturing devices are needed [3]-[5]. follow this configuration, their entropy characterization has not been previously studied. Measurements from a production Entropy has been used in the past to detect anomalies, network show that the entropies of flow elements (external without requiring payload inspection. Its use is appealing IP address, external port, campus IP address, campus port) because it provides more information on flow elements (ports, and tuples have particular characteristics. Findings include: i) addresses, tuples) than traffic volume analysis. Entropy has entropies may widely vary in the course of a day. For example, also been used for anomaly detection in backbones and large in a typical weekday, the entropies of the campus and external ports may vary from below 0.2 to above 0.8 (in a normalized networks. -
Chaos, Dissipation, Arrow of Time, in Quantum Physics I the National Institute of Standards and Technology Was Established in 1988 by Congress to "Assist
Chaos, Dissipation, Arrow of Time, in Quantum Physics i The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization . of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058. Technology Services Manufacturing Engineering Laboratory • Manufacturing Technology Centers Program • Precision -
What Is Quantum Thermodynamics?
What is Quantum Thermodynamics? Gian Paolo Beretta Universit`a di Brescia, via Branze 38, 25123 Brescia, Italy What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? For everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions) allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. How- ever, as already recognized by Schr¨odinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism of ordinary quantum theory, so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility, we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior) and maximal-entropy-generation non-equilibrium dynamics. In this long introductory paper we discuss the background and formalism of Quantum Thermo- dynamics including its nonlinear equation of motion and the main general results regarding the nonequilibrium irreversible dynamics it entails.