CH.5. BALANCE PRINCIPLES

Continuum Course (MMC) - ETSECCPB - UPC Overview

 Balance Principles  Convective or Flux by Transport  Local and of a Volume Integral   Spatial Form  Material Form  Reynolds Transport Theorem  Reynolds Lemma  General Balance Equation  Linear Momentum Balance  Global Form  Local Form

2 Overview (cont’d)

Balance  Global Spatial  Local Form  Mechanical Balance  External Mechanical  Mechanical Energy Balance  External Thermal Power  Energy Balance  Thermodynamic Concepts  First Law of Thermodynamics  Internal Energy Balance in Local and Global Forms  Reversible and Irreversible Processes  Second Law of Thermodynamics  Clausius-Planck Inequality

3 Overview (cont’d)

 Governing Equations  Governing Equations  Constitutive Equations  The Uncoupled Thermo-mechanical Problem

4 5.1. Balance Principles

Ch.5. Balance Principles

5 Balance Principles

The following principles govern the way and vary in the neighborhood of a point with . REMARK  The conservation/balance principles: These principles are always  Conservation of mass valid, regardless of the type of material and the range of  Linear momentum balance principle displacements or deformations.  Angular momentum balance principle  Energy balance principle or first thermodynamic balance principle

 The restriction principle:  Second thermodynamic law

 The mathematical expressions of these principles will be given in,  Global (or integral) form  Local (or strong) form

6 5.2. Convective Flux

Ch.5. Balance Principles

7 Convection

 The term convection is associated to mass transport, i.e., particle movement.  Properties associated to mass will be transported with the mass when there is mass transport (particles ) convective transport

 Convective flux of an arbitrary property A through a control surface S :

amountofA crossing S  S unitof time

8 Convective Flux or Flux by Mass Transport

 Consider:  An arbitrary property A of a continuum medium (of any order)  The description of the amount of the property per unit of mass,   x , t  (specific content of the property A ) .  The volume of particles dV crossing a differential surface dS during the interval  tt ,  dt is dV dS dhvn dt dS dm dVvn dSdt

 Then,  The amount of the property per unit of mass crossing the differential  dm surface per unit of time is: ddS  vn S dt

9 Convective Flux or Flux by Mass Transport

 Consider:  An arbitrary property A of a continuum medium (of any tensor order) inflow vn  0 outflow  The specific content of A (the amount vn0 per unit of mass)   x , t  .

 Then,  The convective flux of A through a spatial surface, S , with unit normal n is: v is tdS vn Where: S s  is density

 If the surface is a closed surface, SV  , the net convective flux is: tdS vn = outflow - inflow V V

10 MMC - ETSECCPB - UPC 11/11/2015 Convective Flux

REMARK 1 The convective flux through a material surface is always null.

REMARK 2 Non-convective flux (, diffusion, conduction). Some properties can be transported without being associated to a certain mass of particles. Examples of non-convective transport are: transfer by conduction, electric current flow, etc.

Non-convective transport of a certain property is characterized by the non- convective flux vector (or tensor) qx  , t  : non- convectiveflux qndS; convectiveflux  vn  dS ss non-convective flux convective vector flux vector

11 MMC - ETSECCPB - UPC 11/11/2015 Example

Compute the magnitude  and the convective flux  S which correspond to the following properties: a) volume b) mass c) linear momentum d)

12 tdS  vn Example - Solution S s

a) If the arbitrary property is the volume of the particles: A V

The magnitude “property content per unit of mass” is volume per unit of mass, i.e., the inverse of density:

V 1   M 

The convective flux of the volume of the particles V through the surface S is:

1  vn dS  vn  dS VOLUME FLUX S ss 

13 tdS  vn Example - Solution S s

b) If the arbitrary property is the mass of the particles: A  M

The magnitude “property per unit of mass” is mass per unit of mass, i.e., the unit value:

M  1 M

The convective flux of the mass of the particles M through the surface S is:

1 vn dS  vn  dS MASS FLUX S ss

14 tdS  vn Example - Solution S s

c) If the arbitrary property is the linear momentum of the particles: A  M v

The magnitude “property per unit of mass” is mass velocity per unit of mass, i.e., velocity:

M v    v M

The convective flux of the linear momentum of the particles M v through the surface S is:

  vvndS MOMENTUM FLUX S s

15 tdS  vn Example - Solution S s

d) If the arbitrary property is the kinetic energy of the particles: 1 A  M v2 2 The magnitude “property per unit of mass” is kinetic energy per unit of mass, i.e.: 1 M v2 1 2  v2 M 2 1 The convective flux of the kinetic energy of the particles M v 2 through the surface S is: 2 1  vvn2   dS KINETIC ENERGY FLUX S s 2

16 5.3. Local and Material Derivative of a Volume Integral Ch.5. Balance Principles

17 Derivative of a Volume Integral

 Consider:  An arbitrary property A of a continuum medium (of any tensor order)  The description of the amount of the property per unit of volume (density of the property A ),   x , t  REMARK  and  are related through     .  The total amount of the property in an arbitrary volume V is: Qt Qt    x, t dV V Qtt    The of this volume integral is: Qt  t  Qt  Qt lim t 0 t

18 MMC - ETSECCPB - UPC 11/11/2015 Local Derivative of a Volume Integral

 Consider: Qt  The volume integral Qt    x, t dV V Qtt   Control Volume, V  The local derivative of Qt   is:  xx,,ttdV   tdV local not   REMARK  x,limtdV VV  t 0 derivative t V t The volume is fixed in (control volume).  It can be computed as: xx,ttdV   , tdV  Qt t  Qt VV x,tdV lim lim   tt00  ttV  t [,xxtt  ,] tdV  xx,,tt  t   x , t limV limdV dV tt00ttt  VV   x,t  t 19 Material Derivative of a Volume Integral

 Consider:  The volume integral Qt    x, t dV V

Q tt  The material derivative of Qt   is: Qt   material not d derivative   x,tdV dt VV t   xx,,ttdV  tdV REMARK Vt() t Vt ()  lim  The volume is mobile in space t 0 t and can move, rotate and  It can be proven that: deform (material volume). dd  xvvv,tdV  dV   dV   dV    dV dtt   t dt VVt  V V V V    material local convective derivative of derivative of derivative of the integral the integral the integral

20 5.4. Conservation of Mass

Ch.5. Balance Principles

21 Principle of Mass Conservation

 It is postulated that during a motion there are neither mass sources nor mass sinks, so the mass of a continuum body is a (for any part of the body).

 The total mass M  t  of the system satisfies:

MMttt  0

 Where: M ttdVVV  x,    V tt t M tt  x, ttdVV    V V tt tt tt 22 Conservation of Mass in Spatial Form

 Conservation of mass requires that the material time derivative of the massM t be zero for any region of a material volume, M MMtt   t d tdVVVtlim 0 , t 0 tdtVVVtt  The global or integral spatial form of mass conservation principle: dd xv,tdV ( ) dV dt dt VVt  V dd (,)xvtdV  dV  0  V V ,  t VVV  VV dttt  dt  By a localization process we obtain the local or differential spatial form of mass conservation principle: for V dV(,)x t (localization process) CONTINUITY dt(,)xx (,) t EQUATION ()(,)vxttVt   ()(,)0 vx   x , dt t 23  Conservation of Mass in Material Form

d F 1 d F    Fv  () v Consider the relations:  dt F dt  dV F dV0  The global or integral material form of mass conservation principle can be rewritten as: dd1(,)dtFFX  X t (,) vFXdV ()  dV ((,)) t  dV0 V dt dtF dt  t t VV0  (,)X t F dV0  ||(,)FXt  t t    FX,tdV 0 V V , t  t  000 VV00   The local material form of mass conservation principle reads :    FX,0t  XF  XFX 0 tt0 tt0  t  X Vt0 ,  t F 1 t 24 5.5. Reynolds Transport Theorem

Ch.5. Balance Principles

25 d   v 0 Reynolds Lemma dt

 Consider:  An arbitrary property A of a continuum medium (of any tensor order)  The spatial description of the amount of the property per unit of mass,  x,t  The amount of the property A in the continuum body at time t       for an arbitrary material volume is: Qt    dV VVt 

 Using the material time derivative leads to, dd dd Q t dV()()vv dV  dV dtVV V dt V dt dt t dd    Thus, dt dt =0 () dd   dV dV REYNOLDS dt dt LEMMA VVt  V 26 MMC - ETSECCPB - UPC 11/11/2015 d  xv,tdV  dV dV dt t Reynolds Transport TheoremVVt  V V

 The amount of the property A in the continuum body at time t for an arbitrary fixed control volume is: Qt    dV V  Using the material time derivative leads to,    d   dV dV  v dV dt t  VVt  V V d d   dV  nv  dV  dt   V V dt

 And, introducing the Reynolds Lemma V  and Divergence Theorem: dV d    dV dV  vn dS VVdt t  V eˆ  dV 3 ˆ  REMARK e2 V The Divergence Theorem: eˆ1 vnvvndV   dS   dS VVV 27 d   dV dV vn dS dt t  Reynolds Transport TheoremVV V

 The eq. can be rewritten as:  d    dV dV vn dS REYNOLDS TRANSPORT tdtVV V THEOREM

Net outward flux of A Rate of change of the total through the surface  V that amount of A . within the surrounds the control volume V. d control volume V at time t.  dt

Rate of change of the amount of A in a V material volume which instantaneously dV coincides with the control volume V.

eˆ  dV 3 ˆ  e2 V

eˆ1

28 Reynolds Transport Theorem

 d    dV dV vn dS REYNOLDS TRANSPORT tdtVV V THEOREM (integral form)

d  d     dV dV vn dS dt tdt VV V V   ( v) dV  ( ) dV  dV  V V t  d (  ) dV [ ( v)] dV V V t tdt VV  VV eˆ  dV 3 ˆ  e2 V  d eˆ (   )  ( vx) Vt 1 tdt REYNOLDS TRANSPORT THEOREM (local form)

29 5.6. General Balance Equation

Ch.5. Balance Principles

30 General Balance Equation

 Consider:  An arbitrary property A of a continuum medium (of any tensor order)  The amount of the property per unit of mass,  x,t  The rate of change per unit of time of the amount of A in the control volume V is due to:

a) Generation of the property per unit mas and time time due to a source: kt A (,)x b) The convective (net incoming) flux across the surface of the volume. c) The non-convective (net incoming) flux across the surface of the volume: jx(,)t A  non-convective  So, the global form of the general balance equation is: flux vector     dV k dV vn dS j n dS t AA  VV V V acb

31     dV k dV vn dS j n dS t AA   General BalanceVV Equation  V V

 The global form is rewritten using the Divergence Theorem and the definition of local derivative:    dV vn dS t VV    vjdV k dV  AA   VVt    d   (Reynolds Theorem) dt d AA dV k j dV V V t dt VV  VV  The local spatial form of the general balance equation is: REMARK d d   k  j ()j  0   k dt AA For only convective transport A then dt A and the variation of the contents of in a given particle

is only due to the internal generation  k A .

32 MMC - ETSECCPB - UPC 11/11/2015 Example

If the property A is associated to mass AM  , then:  The amount of the property per unit of mass is   1 .

 The mass generation source term is k M  0 .  The mass conservation principle states mass cannot be generated.

 The non-convective flux vector is j M  0 .  Mass cannot be transported in a non-convective form. d    k  j 0 dt AA 0 0 Then, the local spatial form of the general balance equation is: d     ( ) ( v)0    ()0v dt t  t 11 d Two equivalent forms of  ()vvx 0 Vt the continuity equation. tdt

33 5.7. Linear Momentum Balance

Ch.5. Balance Principles

34 Linear Momentum in

 Applying ’s 2nd Law to the discrete system formed by n particles, the resulting acting on the system is:

nn n dvi Rfatmmiiii    ii11 i  1dt Resulting force mass conservation on the system dm principle: i  0 nn dt d dmi dtP  miivv i dtii11 dt dt

P t linear momentum  For a system in equilibrium, R  0,  t :

dtP   0 P tcnt CONSERVATION OF THE dt LINEAR MOMENTUM

35 n Linear Momentum P tm  iiv in i1

 The linear momentum of a material volume V t of a continuum mediumP with mass M is:

ttdttdVvx ,,, M   x vx  M V

ddVM  

36 Linear Momentum Balance Principle

 The time-variation of the linear momentum of a material volume is equal to the resultant force acting on the material volume.

dtP  d  vR dV t dt dt  Vt

 Where: body RbttdVdS   VV surface forces

 If the body is in equilibrium, the linear momentum is conserved: dtP   R t  0 0 tcnt dt

37 P Global Form of the Linear Momentum Balance Principle

 The global form of the linear momentum balance principle: d dtP   RbttdVdSdVVVt  v  , VV  VVdt  V  VV  dt tt Pt 

 Introducing tn    and using the Divergence Theorem, tn dS dS   dV VV V  So, the global form is rewritten:  bt dV dS VV  VV d   bv +dV dV  V V , t dt 38 VV  Vtt  VV MMC - ETSECCPB - UPC 11/11/2015 Local Form of the Linear Momentum Balance Principle

 Applying Reynolds Lemma to the global form of the principle: ddv   bv dV dV dV V V , t dt dt VV  Vtt  VV  VV

 Localizing, the local spatial form of the linear momentum balance principle reads: VdVt(,)x dtvx(,)  (,)xbxtt  (,)  axx (,) tVt  , dt LOCAL FORM OF THE LINEAR MOMENTUM BALANCE (CAUCHY’S EQUATION OF MOTION)

39 5.8. Angular Momentum Balance

Ch.5. Balance Principles

40 Angular Momentum in Classical Mechanics

 Applying Newton’s 2nd Law to the discrete system formed by n particles, the resulting acting on the system is:

nn dvi MrfrOiiiitm ii11dt =0 nn n ddddri L rviiimm ii v  rv iii m dtii11 dt dt i  1 dt  v Lt i angular momentum dtL  M t  O dt

 For a system in equilibrium, M O  0,  t : dtL CONSERVATION OF THE 0 t Ltcnt dt ANGULAR MOMENTUM

41 Angular Momentum in Continuum Mechanics

 L The angular momentum of a material volume V t of a continuum medium with mass M is: tttdtttdVrx ,, vx M  rx ,,,  x vx  M V

ddVM  

 Where r is the vector with respect to a fixed point.

42 Angular Momentum Balance Principle

 The time-variation of the angular momentum of a material volume with respect to a fixed point is equal to the resultant with respect this fixed point. dtL  d rv dV M t dt dt  O VVt 

 Where: torque due to body forces MrbrttdVdS   O  VV torque due to surface forces

43 Global Form of the Angular Momentum Balance Principle

 The global form of the angular momentum balance principle: d rb dV rt dS rv dV dt  VVVVt

 Introducing tn    and using the Divergence Theorem, rt dS rn dS  rTT n dS  r  n dS VV  V  V   r T dV V  It can be proven that, REMARK T e is the Levi-Civita rrm  ijk  permutation symbol. ˆ memmi i; ie ijk jk

44 MMC - ETSECCPB - UPC 11/11/2015 Global Form of the Angular Momentum Balance Principle

 Applying Reynolds Lemma to the right-hand term of the global form equation: Reynold's Lemma dd d rv dV rv  dV  rv  dV dt dt  dt VVtt VV V ddrv=0 d v vrdV r dV dt dt dt VV v

 Then, the global form is rewritten: dv rb e eˆ dV  r  dV ijk jk i VVdt

45 Local Form of the Angular Momentum Balance Principle

 Rearranging the equation: =0 (Cauchy’s Eq.) dv rbm    dV 0(,), mx0 t dV   V  V  t  VV VVdt

 Localizing

mx(,)tm 0ie ijk jk 0 ; i ,,j kVt 1,2,3;  x t , i 10ee  123 23 132 32 23 32   11  11 12 13     i 20ee   12 22 23  231 31 213 13 31 13   11     13 23 33  i 30ee312 12 321 21 12 21    11 T  (,)xxxtt (,) Vtt ,  OF THE CAUCHY’S STRESS TENSOR 46 MMC - ETSECCPB - UPC 11/11/2015 5.9. Mechanical Energy Balance

Ch.5. Balance Principles

47 Power

 Power, Wt  , is the performed in the system per unit of time.

 In some cases, the power is an exact time-differential of a function (then termed) energy E : dtE  Wt dt  It will be assumed that the continuous medium absorbs power from the exterior through:  Mechanical Power: the work performed by the mechanical actions (body and surface forces) acting on the medium.  Thermal Power: the heat entering the medium.

48 External Mechanical Power

 The external mechanical power is the work done by the body forces and surface forces per unit of time.  In spatial form it is defined as: Pt  bv dV tv dS e VV

dr b dV dt  v dr t  dS dt  v

49 Mechanical Energy Balance

 Using tn   and the Divergence Theorem, the traction contribution reads, Divergence Theorem  tvvndS dS  v dV  vv:  dV VV  V  V  n  l  Taking into account the identity ldw   : spatial velocity =0 tensor :l :d  :w

 So, tvdS  v dV : d dV VV  V

50 dv b Mechanical Energy Balance dt

 Substituting and collecting terms, the external mechanical power in spatial form is, tv dS V  Pte  bv dV  vddV : dV  V VV dv bvdV :: d dV    v dV  d dV VVVVdv dt    dd112 dt vv  (v)   dt22 dt v v

Reynold's Lemma dd11 P t(v)22 dVdV:d (v) dVdV :d e   VVdt22 dt VV

51 Mechanical Energy Balance. Theorem of the expended power. Stress power

d 1 P tdVdSdVdVbv tvv2  :d e VV dt 2 VVt  V

external mechanical power K P kinetic energy  entering the medium stress power d Pt K  t P Theorem of the expended e dt  mechanical power REMARK The stress power is the mechanical power entering the system which is not spent in changing the kinetic energy. It can be interpreted as the work by unit of time done by the stress in the deformation process of the medium. A rigid will produce zero stress power ( d0  ) .

52 External Thermal Power

 The external thermal power is incoming heat in the continuum medium per unit of time.  The incoming heat can be due to:  Non-convective across the volume’s surface. incoming heat qx(,)tdS n   unit of time V heat conduction flux vector

 Internal heat sources heat generated by an internal source  rtdV(,)x    unit of time V specific internal heat production

53 External Thermal Power

 The external thermal power is incoming heat in the continuum medium per unit of time.  In spatial form it is defined as: Qt rdV qn dS( r q) dV e  VVV  nq dS V  q) dV V where: qx ,t is the heat flux per unit of spatial surface . rtx, is an internal heat source rate per unit of mass.

54 Total Power

 The total power entering the continuous medium is:

d 1 P Qv2 dV  :d dV  r dV  q  n dS eedt 2 VVt  V V V

55 5.10. Energy Balance

Ch.5. Balance Principles

56 Thermodynamic Concepts

 A is a macroscopic region of the continuous medium, always formed by the same collection of continuous matter (material volume). It can be: ISOLATED SYSTEM OPEN SYSTEM Thermodynamic space

MATTER

HEAT

 A thermodynamic system is characterized and defined by a set of

thermodynamic variables  1,  2, ....n which define the thermodynamic space

 The set of thermodynamic variables necessary to uniquely define a system is called the thermodynamic state of a system.

57 Thermodynamic Concepts

 A thermodynamic process is the energetic development of a thermodynamic system which undergoes successive thermodynamic states, changing from an initial state to a final state  Trajectory in the thermodynamic space.  If the final state coincides with the initial state, it is a closed cycle process.

 A state function is a scalar, vector or tensor entity defined univocally as a function of the thermodynamic variables for a given system.  It is a property whose value does not depend on the path taken to reach that specific value.

58 State Function

Is a function    1 ,..., n uniquely valued in terms of the “thermodynamic state”

or, equivalently, in terms of the thermodynamic variables   12 ,,,   n 

 Consider a function    12 ,  , that is not a state function, implicitly defined in the thermodynamic space by the differential form:

 f112 ,,df 1 212  d  2  The thermodynamic processes  1 and  2 yield:  BA   f212(, ) 2  11  '    B B 12  BA'2122  f (, )  22  For  to be a state function, the differential form must an exact differential:    d  , i.e.,   must be integrable:   The necessary and sufficient condition for this is the equality of cross-derivatives: f  ,..., f ,...,  in1 jn1 ij,1,... n  d  59 ji First Law of Thermodynamics

POSTULATES: 1. There exists a state function E  t  named total energy of the system, such that its material time derivative is equal to the total power entering the system: dd1 EtPtQt:v    2 dV  :d dVrdV   q n dS dtee dt 2 VVt  V V V   Qt() Pte() e

2. There exists a function U  t  named the internal energy of the system, such that:  It is an extensive property, so it can be defined in terms of a specific internal energy (or internal energy per unit of mass) ut  x ,  : U tudV:   REMARK V dE and d K are exact differentials,  The variation of the total energy of the system is: therefore, so is ddd UEK   . dd d EKUttt  Then, the internal energy is a dt dt dt state function. 60 Global Form of the Internal Energy Balance

 Introducing the expression for the total power into the first

postulate:  K dd1 EtdVdVrdVdSv2  :d q n dt dt 2 VVt  V V V

 Comparing this to the expression in the second postulate: dd d EKUttt  dt dt dt

 The internal energy of the system must be: dd GLOBAL FORM U tudVdVrdVdS :d q n dt dt  OF THE INTERNAL VVt  V V V ENERGY BALANCE Qt  Pt   , e stress power external thermal power 61 Local Spatial Form of the Internal Energy Balance

 Applying Reynolds Lemma to the global form of the balance equation, and using the Divergence Theorem: dd du U t u dV dV   :d dV r dV q n dS dt dtV  VV   V  VV  dt  VV  VV  VV tt tt  U()t q dV V du dV :d dV r dV q dV V V t VVdt  VV  VV  VV  Then, the local spatial form of the linear momentum balance principle is obtained through localization  VdVt  (,) x as: du LOCAL FORM OF THE  :d  rVt q x , ENERGY BALANCE dt (Energy equation)

62 Second Law of Thermodynamics

 The total energy is balanced in all thermodynamics processes following: ddEKU d Pt Q t  eedt dt dt  In an isolated system (no work can enter or exit the system) dE ddUK Pt Q t 0   0 eedt dt dt

 However, it is not established if the energy exchange can happen in both senses or not: ddUK ddUK 00  00 dt dt dt dt

 There is no restriction indicating if an imagined arbitrary process is physically possible or not.

63 Second Law of Thermodynamics

 The concept of energy in the first law does not account for the observation that natural processes have a preferred direction of progress. For example:

 If a brake is applied on a spinning wheel, the is reduced due to the conversion of kinetic energy into heat (internal energy). This process never occurs the other way round.

 Spontaneously, heat always flows to regions of lower temperature, never to regions of higher temperature.

64 MMC - ETSECCPB - UPC 11/11/2015 Reversible and Irreversible Processes

 A reversible process can be “reversed” by means of infinitesimal changes in some property of the system.  It is possible to return from the final state to the initial state along the same path.  A process that is not reversible is termed irreversible. REVERSIBLE PROCESS IRREVERSIBLE PROCESS

 The second law of thermodynamics allows discriminating: IMPOSSIBLE thermodynamic processes REVERSIBLE POSSIBLE IRREVERSIBLE

65 Second Law of Thermodynamics

POSTULATES: 1. There exists a state function  x,t denoted absolute temperature, which is always positive.

2. There exists a state function S named entropy, such that:  It is an extensive property, so it can be defined in terms of a specific entropy or entropy per unit of mass s : St()   s(,)x tdV V  The following inequality holds true: nd dd r q Global form of the 2 S() t s dV dVn dS Law of dt dt   VV V Thermodynamics  = reversible process > irreversible process

66 Second Law of Thermodynamics

SECOND LAW OF THERMODYNAMICS IN CONTINUUM MECHANICS The rate of the total entropy of the system is equal o greater than the rate of heat per unit of temperature

nd dd r q Global form of the 2 S() t s dV dVn dS Law of dt dt   VV V Thermodynamics  = reversible process e t > irreversible process rate of the total amount of the entity heat, per unit Qt rdV qn dS of time, (external thermal power) entering into the e    VV system

r q rate of the total amount of the entity heat per unit tdVdS n e  of absolute temperature, per unit of time (external VV heat/unit of temperature power) entering into the system

67 Second Law of Thermodynamics

 Consider the decomposition of entropy into two (extensive) counterparts:  Entropy generated inside the continuous medium:

ie St  S   t S   t dS dSie dS  dt dt dt

 Entropy generated by interaction with the outside medium:

ii StdV   s,  x  V StdVee   s,  x  V

68 Second Law of Thermodynamics

e  If one establishes, dS r q   dV  n dS e  dt VV

 Then the following must hold true: dSie dS  dS r q  dV n dS dt dt dt VV  e  And thus, dS dt dSie dS dS dS r q   dV  n dS0 V V t dt dt dt dt VV  VV

REPHRASED SECOND LAW OF THERMODYNAMICS : The internally generated entropy of the system , St i () , never decreases along time

69 Local Spatial Form of the Second Law of Thermodynamics

 The previous eq. can be rewritten as:

ddi  rq  s dV s dV dVn dS0 V V t dt dt Vtt VVtt  V VV  VV  VV  Applying the Reynolds Lemma and the Divergence Theorem:

dsi ds r q dV dV dV  dV0 V V t VVdt  VV dt   VV  VV 

 Then, the local spatial form of the second law of thermodynamics is: nd dsi ds r q Local (spatial) form of the 2    0,x Vt Law of Thermodynamics dt dt   (Clausius-Duhem inequality)

= reversible process > irreversible process

70 Local Spatial Form of the Second Law of Thermodynamics

 Considering that, q 11 REMARK  qq2    (Stronger postulate) Internally generated entropy can i  The Clausius-Duhem inequality can be written as be generated locally, s  , or by i   local  s i   s thermal conduction, scond , and i   ds ds r 11 both must be non-negative. qq2  0 dt dt  si i local  scond CLAUSIUS-PLANCK HEAT FLOW r 1 1 s  q 0   q 0 INEQUALITY  INEQUALITY 2

Because density and absolute temperature are always positive, it is deduced that q     0 , which is the mathematical expression for the fact that heat flows by conduction from the hot parts of the medium to the cold ones. 71 Alternative Forms of the Clausius-Planck Inequality

 Substituting the internal energy balance equation given by du not ur  :dq  qd ru  :   dt

into the Clausius-Planck inequality,

i  ssrlocal :0q

yields,  su :0d  us  :0d  Clausius-Planck Inequality in terms of the specific internal energy

72 Alternative Forms of the Clausius-Planck Inequality

 The Helmholtz free energy per unit of mass or specific free energy,  , is defined as:  :us

 Taking its material time derivative,  : us   s us  s

and introducing it into the Clausius-Planck inequality in terms of the specific internal energy: us  :0d  s   :0d  REMARK Clausius-Planck Inequality For infinitesimal deformation, d   , in terms of the and the Clausius-Planck inequality specific free energy becomes: ()  s  : 0

73 5.11. Governing Equations

Ch.5. Balance Principles

74 Governing Equations in Spatial Form

Conservation of Mass.   v 0 1 eqn.  Continuity Equation.

Linear Momentum Balance.   bv  3 eqns.  First Cauchy’s Motion Equation.

T Angular Momentum Balance.   3 eqns. Symmetry of .

Energy Balance.  ur  :dq 1 eqn. First Law of Thermodynamics.

us :d 0 Second Law of Thermodynamics. 1 Clausius-Planck Inequality. 2 restrictions  q  0 2 Heat flow inequality 8 PDE + 2 restrictions

75 Governing Equations in Spatial Form

 The fundamental governing equations involve the following variables:  density 1 variable

v velocity vector field 3 variables

 Cauchy’s stress tensor field 9 variables

u specific internal energy 1 variable q heat flux per unit of surface vector field 3 variables

 absolute temperature 1 variable 19 scalar s specific entropy 1 variable unknowns

 At least 11 equations more (assuming they do not involve new unknowns), are needed to solve the problem, plus a suitable set of boundary and initial conditions.

76 Constitutive Equations in Spatial Form

 v,,  Thermo-Mechanical Constitutive Equations. 6 eqns.

Entropy ss v,,  Constitutive Equation. 1 eqn.

Thermal Constitutive Equation. qqv, K  Fourier’s Law of Conduction. 3 eqns.

uf ,,,v   Heat State Equations. (1+p) eqns. Fipi , ,  0 1,2,...,  Kinetic (19+p) PDE + set of new thermodynamic (19+p) unknowns variables:   12 , ,..., p  . REMARK 1 REMARK 2 The strain tensor is not considered an unknown as they These equations are can be obtained through the motion equations, i.e.,    v . specific to each material.

77 The Coupled Thermo-Mechanical Problem

Conservation of Mass.    v 0 1 eqn.  Continuity Mass Equation.

16 scalar Linear Momentum Balance. 10 3 eqns. unknowns First Cauchy’s Motion Equation. equations

  ((),)v  Mechanical constitutive equations. 6eqns.

Energy Balance. 1 eqn. First Law of Thermodynamics.

Second Law of Thermodynamics. 2 restrictions. Clausius-Planck Inequality.

78 MMC - ETSECCPB - UPC The Uncoupled Thermo-Mechanical Problem

 The mechanical and thermal problem can be uncoupled if

 The temperature distribution   x , t  is known a priori or does not intervene in the thermo-mechanical constitutive equations.

 The constitutive equations involved do not introduce new thermodynamic variables,      .

 Then, the mechanical problem can be solved independently.

79 The Uncoupled Thermo-Mechanical Problem

Conservation of Mass.    v 0 1 eqn.  Continuity Mass Equation.

10 scalar Linear Momentum Balance. Mechanical 3 eqns. unknowns First Cauchy’s Motion Equation. problem

 ((),v  ) Mechanical constitutive equations. 6eqns.

Energy Balance. 1 eqn. First Law of Thermodynamics. Thermal problem Second Law of Thermodynamics. 2 restrictions. Clausius-Planck Inequality.

80 The Uncoupled Thermo-Mechanical Problem

 Then, the variables involved in the mechanical problem are:

 density 1 variable

Mechanical v velocity vector field 3 variables variables  Cauchy’s stress tensor field 6variables

u specific internal energy 1 variable q heat flux per unit of surface vector field 3 variables Thermal variables  absolute temperature 1 variable

s specific entropy 1 variable

81 Summary

Ch.5. Balance Principles

82 Summary

 The convective flux of A  t  through a spatial surface S with unit normal n is: A t tdS  vn is an arbitrary property S s Where: x,t is the description of the amount of the property per unit of mass.

 Time derivatives of a volume integral:

not  local   x,tdV inflow derivative   vn  0 t V outflow vn0 not d material   x,tdV derivative   dt V

d  xv,tdV  dV dV dt t VVt  V V

83 Summary (cont’d)

 Conservation of mass: the mass of a continuum body is a conserved quantity. d dV  v dV 0 Global spatial form dt VV Local spatial form    v 0 (Continuity Equation)

 Reynolds Lemma: dd   dV dV dt dt VVt  V

 Reynolds Transport Theorem:          dV dVvvn dS  dV dS t VVV VV Divergence Theorem

84 Summary (cont’d)

 Linear Momentum Balance: d  bt dV dS v dV Global spatial form dt  VVVVt dv Local spatial form  bx + Vt ,  dt (Cauchy’s Equation of Motion)

 Angular Momentum Balance: d rb dV rt dS rv dV Global spatial form dt  VVVVt

T Local spatial form x Vt, (Symmetry of the Cauchy stress tensor)

85 Summary (cont’d)

 Mechanical Energy Balance: d 1 P tbv dV tv dSv2 dV  :d dV e VV dt 2 VVt  V external mechanical power K P entering the medium kinetic energy stress power

 External Thermal Power: qx ,t is the heat flux per unit of Qt  rdV qn dS Where: e  spatial surface area. VV rtx,  is an internal heat source rate per unit of mass.

 Total Power PQee

86 Summary (cont’d)

 First Law of Thermodynamics. Internal Energy Balance.

Pt   Qte   dd tudVdVrdVdS :d q n Global spatial form dt dt  VVt  V V V

du Local spatial form  :d  rVt q x , dt (Energy Equation)

 Second Law of Thermodynamics. = reversible process > irreversible process dd r q SdVdVdSs n Global spatial form dt dt VV V

i  ds ds r q    0,x Vt Local spatial form dt dt  (Clausius-Duhem inequality)

 r 1 CLAUSIUS-PLANK s   q 0  INEQUALITY

87 Summary (cont’d)

 Governing equations of the thermo-mechanical problem: Conservation of Mass.   v 0 1 eqn.  Continuity Mass Equation.

Linear Momentum Balance.   bv   3 eqns.  First Cauchy’s Motion Equation. Angular Momentum Balance. Symmetry 8 PDE + T 3 eqns.   of Cauchy Stress Tensor. 2 restrictions Energy Balance.  ur  :dq 1 eqn. First Law of Thermodynamics.

us :d 0  Second Law of Thermodynamics. 1 2 restrictions 2 q  0 Clausius-Planck Inequality.

 19 scalar unknowns:  , v ,  , u , q ,  , s .

88 Summary (cont’d)

 Constitutive equations of the thermo-mechanical problem: Thermo-Mechanical 6 eqns.   v,,  Constitutive Equations.

Entropy ss v,,  Constitutive Equation. 1 eqn. (19+p) PDE + (19+p) unknowns Thermal Constitutive Equation. Fourier’s qqv ,  K  Law of Conduction. 3 eqns.

uf ,,,v  Heat State Equations. (1+p) eqns. Kinetic Fi ,,  0ip 1,2,...,

set of new thermodynamic

variables:    12 , ,..., p  .  The mechanical and thermal problem can be uncoupled if the temperature distribution is known a priori or does not intervene in the constitutive eqns. and if the constitutive eqns. involved do not introduce new thermodynamic variables.

89