Official Nomenclature of US and European Societies of (2018-10)

Assembled by J. M. Dealy and D. Vlassopoulos, with advice from G. G. Fuller, R. G. Larson, J. Mewis, D. J. Read, J. Vermant, N. J. Wagner, and G. McKinley.

TABLE I. Steady simple (viscometric flow)

Name Definition Symbol SI units a Direction of flow (simple shear) π‘₯ m Direction of (simple shear) π‘₯ m Neutral direction (simple shear) π‘₯ m Shear or normal π‘šπ‘Ž F N –1 Velocity 𝑑π‘₯⁄𝑑𝑑 𝑣 m s –2 Acceleration 𝑑𝑣⁄𝑑𝑑 π‘Ž m s Shear b 𝐹⁄𝐴 𝜎 Pa Shear 𝑑π‘₯⁄𝑑π‘₯ 𝛾 – –1 Shear rate |𝑑𝑣⁄|𝑑π‘₯ 𝛾 s c –1 𝑑𝑣⁄𝑑π‘₯ πœ” s |𝜎|⁄𝛾 πœ‚π›Ύ Pa s stress 𝜎 Pa Yield strain 𝛾 – First normal stress difference 𝜎 𝜎 𝑁 Pa normal stress difference 𝜎 𝜎 𝑁 Pa 2 First normal stress coefficient 𝑁/𝛾 𝛹 Pa s 2 Second normal stress coefficient 𝑁/𝛾 𝛹 Pa s Normal stress ratio 𝑁⁄𝑁 𝛹𝛾 – Zero-shear viscosity πœ‚π›Ύ β†’0 πœ‚ Pa s (limiting low shear rate viscosity) 2 Zero-shear first normal stress coefficient 𝛹𝛾 β†’0 𝛹. Pa s Consistency index in power law for viscosity πœ‚πΎπ›Ύ 𝑛 – Constant in power law for viscosity see above equation 𝐾 Pa sn a SI allows either a dot between units or a space, as used here. b A is the area in m2. c In the dynamics community a prefactor of 1/2 is used in the definition of the vorticity.

TABLE II. Linear

Name Definition Symbol Units Simple shear Shear modulus of a πœŽπ›Ύβ„ 𝐺 Pa Relaxation modulus πœŽπ‘‘β„π›Ύ 𝐺𝑑 Pa Relaxation strength in discrete spectrum – 𝑔 Pa Relaxation time in discrete spectrum – 𝜏 s Continuous relaxation spectrum – a 𝐻𝜏 Pa b,c βˆ— Orthogonal superposition complex modulus – πΊπœ”, 𝛾 Pa b,c βˆ— Parallel superposition complex modulus – 𝐺βˆ₯ πœ”, 𝛾 Pa Memory function 𝑑𝐺𝑠⁄𝑑𝑠 π‘šπ‘  Pa s–1 compliance (shear) π›Ύπ‘‘β„πœŽ 𝐽𝑑 Pa–1 –1 Equilibrium compliance of solid π½π‘‘π‘‘β†’βˆž 𝐽 Pa –1 Recoverable compliance 𝐽𝑑 𝑑⁄ πœ‚ 𝐽𝑑 Pa –1 Steady-state compliance of fluid 𝐽𝑑 𝑑⁄ πœ‚ π‘‘β†’βˆž 𝐽 Pa Continuous retardation spectrum d – d 𝐿𝜏 Pa–1 Small-amplitude oscillatory shear

Strain amplitude 𝛾𝑑 𝛾 sin πœ”π‘‘ 𝛾 – Loss angle ( angle) πœŽπ‘‘ 𝜎 sinπœ”π‘‘ 𝛿 𝛿 rad Stress amplitude πœŽπ‘‘ 𝜎 sinπœ”π‘‘ 𝛿 𝜎 Pa Complex modulus 𝐺 𝑖𝐺 πΊβˆ— Pa βˆ— βˆ— Absolute magnitude of 𝐺 πœŽβ„π›Ύ |𝐺 | or Pa 𝐺 Storage modulus 𝐺 cos 𝛿 𝐺 Pa Loss modulus 𝐺 sin 𝛿 𝐺 Pa Complex viscosity πœ‚ π‘–πœ‚ πœ‚βˆ— Pa s βˆ— Absolute magnitude of Ξ·* πœŽβ„πœ”π›Ύ |πœ‚ | Pa s Dynamic viscosity (in phase with strain rate) πΊβ„πœ” πœ‚ Pa s Out-of-phase (with strain rate) component of Ξ·* πΊβ„πœ” πœ‚ Pa s Complex compliance 𝐽 𝑖𝐽 π½βˆ— Pa–1 βˆ— –1 Absolute magnitude of J* π›Ύβ„πœŽ 1⁄ 𝐺 |𝐽 | Pa –1 Storage compliance π›Ύβ„πœŽ cos 𝛿 𝐽 Pa –1 Loss compliance π›Ύβ„πœŽ sin 𝛿 𝐽 Pa e e Plateau modulus – 𝐺 Pa Tensile (Uniaxial) Extension c

Net tensile stress 𝜎 𝜎 𝜎 Pa

Hencky strain ln𝐿𝐿⁄ πœ€ – Hencky strain rate 𝑑ln 𝐿⁄𝑑𝑑 πœ€ s–1 Tensile relaxation modulus πœŽπ‘‘β„πœ€ 𝐸𝑑 Pa –1 Tensile creep compliance πœ€π‘‘β„πœŽ 𝐷𝑑 Pa a ⁄ 𝐺 𝑑 𝐻 𝜏 exp 𝑑 𝜏 𝑑 ln 𝜏 b The same subscripts apply to definitions of storage and loss moduli and . c Also applies to nonlinear phenomena in uniaxial extension.

2 d 𝐽 𝑑 𝐿 𝜏 1exp 𝑑/𝜏 𝑑ln𝜏 e Because there is not a true plateau in G(t) or Gβ€²(Ο‰), 𝐺 is inferred from Gβ€²(Ο‰) and G"(Ο‰) using methods reviewed by Liu et al. [ 47, 4461βˆ’4479 (2006)].

TABLE III. Shift factors for time- superposition

Name Definition Symbol SI Units a Vertical shift factor 𝑏𝐺 𝑇, πœ”π‘Ž 𝐺𝑇,πœ” 𝑏 – Horizontal shift factor 𝑏𝐺 𝑇, πœ”π‘Ž 𝐺𝑇,πœ” π‘Ž – First WLF coefficient 𝑐𝑇𝑇 𝑐 – log π‘Ž 𝑐 𝑇𝑇 Second WLF coefficient 𝑐𝑇𝑇 𝑐 K log π‘Ž 𝑐 𝑇𝑇 –1 Activation for flow 𝐸 1 1 𝐸 kJ mol π‘Ž exp 𝑅 𝑇 𝑇 a For rubbers, 𝑏T is given by π‘‡πœŒβ„π‘‡πœŒ, where 𝜌 is mass density, with 𝜌 πœŒπ‘‡ [J. D. Ferry, Viscoelastic properties of , 3rd Ed., Wiley, NY, 1980]. It has also been found to be appropriate for polymers in general.

3 TABLE IV. Nonlinear viscoelasticity in shear

Name Definition Symbol SI Units Stress relaxation (step strain)

Strain amplitude 𝛾 – Relaxation modulus (nonlinear) πœŽπ‘‘β„π›Ύ 𝐺𝑑, 𝛾 Pa Damping function in shear 𝐺𝑑, 𝛾 ⁄𝐺𝑑 β„Žπ›Ύ – First normal stress relaxation function 𝑁𝑑, 𝛾 Pa Second normal stress relaxation function 𝑁𝑑, 𝛾 Pa First normal stress relaxation coefficient 𝑁𝑑, 𝛾 ⁄𝛾 𝛹𝑑, 𝛾 Pa Second normal stress relaxation coefficient 𝑁𝑑, 𝛾 ⁄𝛾 𝛹𝑑, 𝛾 Pa Start-up of steady shear (at fixed shear rate) growth function πœŽπ‘‘, 𝛾 Pa Shear stress growth coefficient πœŽπ‘‘, 𝛾⁄𝛾 πœ‚π‘‘, 𝛾 Pa s First normal stress growth function 𝜎 𝜎 𝑁 𝑑, 𝛾 Pa 2 First normal stress growth coefficient 𝑁 𝑑, 𝛾⁄𝛾 𝛹 𝑑, 𝛾 Pa s Second normal stress growth function 𝜎 𝜎 𝑁 𝑑, 𝛾 Pa 2 Second normal stress growth coefficient 𝑁 𝑑, 𝛾⁄𝛾 𝛹 𝑑, 𝛾 Pa s Stress Ratio π‘π›Ύβ„πœŽπ›Ύ 𝑆𝑅 – Cessation of steady shear (𝛾 0 from 𝑑0) Shear stress decay function πœŽπ‘‘, 𝛾 Pa Shear stress decay coefficient πœŽπ‘‘, 𝛾⁄𝛾 πœ‚π‘‘, 𝛾 Pa s First normal stress decay function 𝜎 𝜎 𝑁 𝑑, 𝛾 Pa 2 First normal stress decay coefficient 𝑁 𝑑, 𝛾⁄𝛾 𝛹 𝑑, 𝛾 Pa s Second normal stress decay function 𝜎 𝜎 𝑁 𝑑, 𝛾 Pa 2 Second normal stress decay coefficient 𝑁 𝑑, 𝛾⁄𝛾 𝛹 𝑑, 𝛾 Pa s Creep and creep recovery (recoil) Creep compliance 𝛾𝑑, 𝜎 β„πœŽ 𝐽𝑑, 𝜎 Pa–1 a –1 Steady-state compliance 𝐽𝑑 β†’ ∞, 𝜎 𝐽𝜎 Pa Recoverable strain 𝛾𝑑,𝜎 𝛾𝑑, 𝜎 𝛾𝑑 ,𝜎 – (after 𝑑 when πœŽβ†’0) 𝑑𝑑 𝑑 𝑑𝑑 Ultimate recoil 𝛾𝑑 β†’βˆž,𝜎 π›ΎπœŽ – a –1 Steady-state recoverable compliance π›ΎπœŽβ„πœŽ 𝐽𝜎 Pa a Although measured in different ways, the steady-state compliance and the steady-state recoverable compliance should be equal to each other according to the Boltzmann principle.

4 TABLE V. Nonlinear viscoelasticity in extension.

Name Definition Symbol SI Units Tensile (uniaxial) extension a strain 𝐿𝐿⁄𝐿 πœ€ – a Engineering stress 𝐹⁄𝐴 𝜎 Pa Young’s modulus of a solid πœŽπœ€β„ E Pa Net tensile stress (true) 𝜎 𝜎 𝜎 Pa Hencky strain ln𝐿𝐿⁄ Ξ΅ or πœ– – Hencky strain rate 𝑑ln 𝐿⁄𝑑𝑑 πœ€ or πœ– s–1 Tensile stress growth function 𝜎 𝑑, πœ€ Pa Tensile stress growth coefficient 𝜎 𝑑, πœ€πœ€β„ πœ‚ 𝑑, πœ€ Pa s Extensional viscosity πœ‚ 𝑑, πœ€ π‘‘β†’βˆž πœ‚πœ€ Pa s –1 Tensile creep compliance πœ€π‘‘β„πœŽ 𝐷𝑑, 𝜎 Pa Recoverable strain πœ€π‘‘,𝜎 πœ€π‘‘, 𝜎 πœ€π‘‘ ,πœ€ – (after 𝑑 where 𝜎E β†’0) 𝑑𝑑 𝑑 𝑑𝑑 Biaxial extension (symmetrical)

Biaxial strain ln𝑅𝑅⁄ πœ€ – –1 Biaxial strain rate 𝑑ln 𝑅⁄𝑑𝑑 πœ€ s Net stretching stress 𝜎 𝜎 𝜎 Pa Biaxial stretch growth function 𝜎 𝑑, πœ€ Pa Biaxial stretch growth coefficient 𝜎 𝑑, πœ€ β„πœ€ πœ‚ 𝑑, πœ€ Pa s Biaxial stress decay coefficient 𝜎 𝑑, πœ€ β„πœ€ πœ‚ 𝑑, πœ€ Pa s Biaxial extensional viscosity 𝜎 π‘‘β†’βˆž,πœ€ β„πœ€ πœ‚πœ€ Pa s –1 Biaxial creep compliance πœ€π‘‘β„πœŽ 𝐷𝑑, 𝜎 Pa a In the mechanics literature, the same symbols are often used for both engineering and true stress and strain, but they are only equivalent in the limit of very small deformations.

TABLE VI.

Name Definition Symbol SI Units Capillary a Apparent wall shear stress 𝑃𝑅2𝐿⁄ 𝜎 Pa –1 Apparent wall shear rate 4𝑄⁄ πœ‹π‘… 𝛾 s Wall shear stress 𝜎 π‘Ÿπ‘… 𝜎 Pa –1 Wall shear rate π‘‘π‘£β„π‘‘π‘Ÿ π‘Ÿπ‘… 𝛾 s Cone-plate rheometers Cone angle Figure 1 𝛽 rad Angular rotation Figure 1 πœ‘ rad π‘‘πœ‘β„ 𝑑𝑑 𝛺 rad s–1 b 2πœ‹π‘… πœŽβ„3 𝑀 N m Normal thrust Figure 1 𝐹 N a 𝑃 = driving (reservoir) (exit pressure neglected) b Approximation valid for 𝛽 0.1 rad.

5

Figure 1. Symbols describing cone-plate geometry.

TABLE VII. Solutions

Name Definition Symbol SI units Concentration 𝑐 kg m–3 a Overlap π‘βˆ— kg m3 a concentration Solvent viscosity πœ‚ Pa s Relative viscosity πœ‚πœ‚β„ πœ‚ – Specific viscosity πœ‚ 1 πœ‚ – 3 –1 b Reduced viscosity πœ‚β„π‘ πœ‚ m kg 3 –1 b Intrinsic viscosity limπœ‚ ,𝛾 β†’0,𝑐→0 πœ‚ m kg c Viscosity of matrix πœ‚ Pa s Solvent contribution 𝛔 Pa to the stress Polymeric 𝛔 Pa contribution to the stress tensor a Units of g mL–1 are often used. b Units of mL g–1 are often used. c Often used for nanocomposites, i.e., in a viscoelastic matrix.

6 TABLE VIII. Suspensions

Name Definition Symb SI ol Units fraction solid 𝑉⁄𝑉 πœ™ – Maximum packing fraction πœ™ – a Suspending medium viscosity πœ‚ Pa s Effective viscosity of suspension 𝛴⁄𝛾 πœ‚ Pa s Relative viscosity of suspension πœ‚πœ‚β„ πœ‚ – contribution to Ξ· πœ‚ Pa s Local stress tensor πˆπ’™, 𝑑 Pa Total bulk stress 𝚺 𝚺 𝚺 Pa Fluid (suspending medium) contribution 𝚺 Pa Particle contribution 𝚺 Pa First normal stress difference 𝛴 𝛴 𝑁 Pa Second normal stress difference 𝛴 𝛴 𝑁 Pa Dimensionless first normal stress difference π‘β„πœ‚π›Ύ 𝛢 – Dimensionless second normal stress π‘β„πœ‚π›Ύ 𝛢 – difference Particle pressure 𝛴 𝛴 𝛴 𝛱 Pa Hydrodynamic particle stress 𝛴 Pa Interparticle stress 𝛴 Pa Brownian stress 𝛴 Pa a Sometimes the subscript f is used to indicate the fluid viscosity, but it seems more adequate to use m which stands for β€œmedium” if the suspending fluid is itself rheologically complex or β€œmatrix” in nanocomposites. Also, ΞΌ is often used to denote fluid viscosity.

TABLE IX. Interfacial and surface rheology

Name Definition Symbol SI Units a Interfacial or surface 𝜎, Pa m Surface pressure 𝜎, 𝜎,𝐹 ⁄𝐴 𝛱 Pa m Interfacial shear stress 𝐹⁄𝐿 𝜎 Pa m Interfacial shear strain 𝑑π‘₯⁄𝑑π‘₯ 𝛾 – –1 Interfacial shear rate 𝑑𝑣⁄𝑑π‘₯ 𝛾 s Interfacial dilatational strain ln𝐴⁄𝐴 𝛼 – Interfacial dilatational strain rate 𝑑ln 𝐴⁄𝑑𝑑 𝛼 s–1 Interfacial concentration – 𝛀 kg m–2 Steady shear and dilatation Interfacial shear viscosity πœŽβ„π›Ύ πœ‚ Pa s m Interfacial dilatational viscosity πœŽβ„π›Ό πœ… Pa s m Simple shear Interfacial shear modulus πœŽβ„π›Ύ 𝐺 Pa m Relaxation modulus (shear) πœŽπ‘‘β„π›Ύ 𝐺𝑑 Pa m

7 Pure dilatation Interfacial dilatational modulus πœŽβ„π›Ό 𝐾 Pa m Dilatational storage modulus πœŽπ‘‘β„π›Ό 𝐾𝑑 Pa m b Gibbs (surfactants) π‘‘πœŽ,⁄𝑑ln 𝐴 𝐾 Pa m Small-amplitude oscillatory shear Strain amplitude 𝛾 𝛾 sinπœ”π‘‘ 𝛾 – Phase angle (loss angle) 𝜎 𝑑 𝜎 sinπœ”π‘‘ 𝛿 𝛿 rad Stress amplitude 𝐹 ⁄𝐿 𝜎 Pa m Complex interfacial shear modulus 𝐺′𝑖𝐺′′ πΊβˆ— Pa m βˆ— βˆ— Absolute magnitude of 𝐺 𝜎 ⁄𝛾 |𝐺 | Pa m Storage modulus |πΊβˆ—| cos 𝛿 𝐺′ Pa m Loss modulus |πΊβˆ—| sin 𝛿 𝐺′′ Pa m Complex shear viscosity πœ‚β€²π‘–πœ‚β€²β€² πœ‚βˆ— Pa s m βˆ— βˆ— Absolute magnitude of πœ‚ 𝜎 β„πœ”π›Ύ |πœ‚ | Pa s m Dynamic shear viscosity (in phase with strain 𝐺′′⁄ πœ” πœ‚β€² Pa s m rate) Out-of-phase (with strain rate) component of πΊβ€²πœ”β„ πœ‚β€²β€² Pa s m πœ‚βˆ— Small-amplitude oscillatory dilatation Dilatational strain amplitude 𝛼 𝛼 sinπœ”π‘‘ 𝛼 – Complex dilatational modulus b 𝐾′𝑖𝐾′′ πΎβˆ— Pa m βˆ— b βˆ— Absolute magnitude of 𝐾 𝜎 ⁄𝛼 |𝐾 | Pa m Storage dilatational modulus b 𝐾′ 𝐾′ Pa m Loss dilatational modulus b 𝐾′′ 𝐾′′ Pa m Complex dilatational viscosity πœ…β€²π‘–πœ…β€²β€² πœ…βˆ— Pa s m βˆ— βˆ— Absolute magnitude of πœ… 𝜎 β„πœ”π›Ώ |πœ… | Pa s m Dynamic dilatational viscosity 𝐾′′⁄ πœ” πœ…β€² Pa s m Out-of-phase component of πœ…βˆ— πΎβ€²πœ”β„ πœ…β€²β€² Pa s m Other properties Creep compliance (shear) π›Ύπ‘‘β„πœŽ 𝐽𝑑 Pa–1 m–1 –1 –1 Equilibrium compliance of solid 𝐽 π‘‘π‘‘β†’βˆž 𝐽 Pa m –1 –1 Recoverable compliance 𝐽 𝑑 𝑑⁄ πœ‚ 𝐽 𝑑 Pa m –1 –1 Steady-state compliance of fluid 𝐽 𝑑 𝑑⁄ πœ‚ π‘‘β†’βˆž 𝐽 Pa m Extensional viscosity πœ‚π‘‘, πœ€ π‘‘β†’βˆž πœ‚πœ€ Pa s m a In some cases the symbols 𝛼 or 𝛀 are used to denote (not to be confused with interfacial dilatational strain or surface concentration, respectively). b Sometimes the symbol 𝐸 is used instead of 𝐾, but this should not be confused with Young’s modulus. The use of 𝐾 for a modulus is recommended.

8 TABLE X. Molecular description of entangled polymers

π‘Ž tube diameter (typically in nm); average entanglement spacing / mesh size βŒ©π‘… βŒͺ𝑀⁄𝑀 a 𝑏 Kuhn segment length 𝑓 tension in a chain segment (typically in N)

𝑓max maximum tension in a chain segment –23 –1 π‘˜B Boltzmann’s constant, 1.38 Γ— 10 J K 𝐿 mean tube contour length 𝑀 molecular b, kg mol–1 –1 𝑀C critical molecular weight for effect of entanglements on πœ‚, kg mol –1 𝑀C molecular weight for effect of entanglements on 𝐽 , kg mol c 𝑀e molecular weight between entanglements πœŒπ‘…π‘‡β„ 𝐺 a 𝑁K number of Kuhn segments in equivalent freely jointed chain d 𝑝 packing length π‘€β„βŒ©π‘… βŒͺπœŒπ‘A 𝑝 parameter to denote degree of branch point hopping within tube (fraction of tube diameter) 𝑅 end-to-end distance of polymer 𝑅max fully extended chain length 𝑠 tube contour variable (curvilinear coordinate along tube) 𝑺 tube orientation tensor e 𝑍 number of entanglement segments per molecule 𝑀𝑀⁄e

Greek letters

𝛼 dilution exponent for 𝑀e 𝜁 coefficient 𝜁 monomer friction coefficient πœ† chain stretch; stretch ratio πœ‰ correlation length; characteristic size scale (blob) 𝜏d reptation (tube disengagement) time 𝜏e Rouse time of an entanglement strand 𝜏R⁄3πœ‹ 𝑍 th 𝜏p relaxation time of the 𝑝 mode (𝑝 is the mode index) 𝜏r Rouse reorientation relaxation time 𝜏R Rouse stress relaxation time πœπ‘ 𝑏 ⁄ 6πœ‹ π‘˜B𝑇 f 𝜏s stretch relaxation time a 𝑏K and 𝑁K are defined by the following relationships: βŒ©π‘… βŒͺ 𝑏K𝑁K; 𝑅 𝑏K𝑁K b IUPAC recommends molar mass (MM), which has SI units of g mol–1. But molecular weight (MW) is widely used, and ACS accepts both terms. However, MW is formally a dimensionless ratio that is numerically very close to MM (g mol–1), and one cannot β€œchange its units”. The number often called β€œmolecular weight (kg mol–1)” is formally MW/1000 (no units). This quantity should more properly be called molar mass with units of kg mol–1. But it is so widely called molecular weight that it seems hopeless to try to change it now. c This is the definition originally proposed by John Ferry. The following alternative definition was introduced much later in the context of Doi-Edwards model. It should be used in the ⁄ context of the development of, or comparisons with tube-model theories: 𝑀 πœŒπ‘…π‘‡ 𝐺 . d For a discussion of 𝑝 see Fetters et al. [Macromolecules 27, 4639 (1994)].

9 e In tube-model theory, 𝑍 is called β€œnumber of tube segments” and is defined based on the 𝑀 of footnote (c), i.e., using the Doi-Edwards factor. Hence, when comparing with or using tube models, the factor should be used. f The Rouse reorientation relaxation time was called the rotational relaxation time by Doi and Edwards and is conjectured to be equal to 2𝜏R.

Table XI. Stress and strain

Total stress tensor 𝝈 Extra stress tensor 𝝉 Strain tensor for linear viscoelasticity 𝜸 Cauchy tensor π‘ͺ Finger tensor 𝑩 or π‘ͺ Doi-Edwards strain tensor 𝑸 Rate-of-strain tensor a 𝜸 𝛁𝐯𝛁𝐯 Vorticity tensor 𝛀𝛁𝐯𝛁𝐯

a An alternative definition, equal to 𝜸 , is widely used in and is acceptable, but the symbol 𝑫 should be used for this tensor to avoid confusion: 𝑫≑ 𝛁𝐯 𝛁𝐯 , and in the community a factor of is also used as a prefactor in the defintion of the vorticity tensor 𝛀.

Table XII. Dimensionless groups used to describe experimental regimes

Bingham Number a 𝐡𝑛 ο‚Ί (yield stress) / (shear stress) Boussinesq Number π΅π‘ž ο‚Ί (surface shear stress) / [(bulk subphase shear stress) Γ— (perimeter length along which the surface shear stress acts)] Capillary number πΆπ‘Ž ⁄ πœ‚π‘£, 𝜎 ο‚Ί (viscous ) / (surface forces) or πΆπ‘Ž πœ‚π›Ύπ‘…πœŽβ„ , Deborah Number b,c 𝐷𝑒 ο‚Ί (characteristic time of fluid) / (duration of ) [e.g., 𝐷𝑒 πœπœ”] PΓ©clet Number 𝑃𝑒́ π›Ύπ‘Ž ⁄𝐷 ο‚Ί (rate of ) / (rate of ) [π‘Ž = particle radius, 𝐷 = particle diffusion coefficient] d Poisson ratio πœˆπ‘‘πœ€transverseβ„π‘‘πœ€axial ο‚Ί negative ratio of transverse to axial strain 𝑅𝑒 β„πœŒπ‘£π‘‘ πœ‚ ο‚Ί (inertial forces) / (viscous forces) [d = characteristic length scale] Weissenberg Number b,e,f π‘Šπ‘– ο‚Ί (characteristic time of fluid) Γ— (rate of deformation) [e.g., π‘Šπ‘– πœπœ€ or πœπ›Ύ ] a Sometimes the wall shear stress is specifically used in the denominator of the definition, or the ratio (viscosity ο‚΄ velocity)/length. b The definitions and uses of these groups are explained in detail in β€œWeissenberg and Deborah Numbers – Their definition and use”, Rheol. Bulletin (The Society of Rheology), 79(2) p.14 (2010).

10 c Specific Deborah numbers are often used, depending on the choice of characteristic time. Popular examples are: Deborah number based on Rouse relaxation time (𝐷𝑒R) and Deborah number based on longest relaxation time (𝐷𝑒d). d The Poisson ratio is also defined as function of Young’s and shear modulus (πœˆπΈβ„ 1 2𝐺 ) in three dimensions (and differently in two dimensions). e The Weissenberg number has sometimes been considered to be π‘β„πœŽ. However, this is a ratio of dependent rather than independent variables and thus describes data rather than experimental conditions. The quantity π‘β„πœŽ is often called the stress ratio. f Specific Weissenberg numbers are often used, depending on the characteristic time. Popular examples are: Weissenberg number based on Rouse relaxation time (π‘Šπ‘–R) and Weissenberg number based on longest relaxation time (π‘Šπ‘–d).

Table XIII. Frequently used constants

23 –1 𝑁A Avogadro’s number, 6.023 ο‚΄ 10 mol 𝑅 Ideal constant, 8.314 J mol–1 K–1 –23 –1 π‘˜B Boltzmann’s constant, 1.38 Γ— 10 J K

11