323 A Table of Frequently Used Radioisotopes

Only decays with the largest branching fractions are listed. For β emitters the maximum of the continuous β-ray spectra are given. ‘→’ denotes the decay to the subsequent element in the ta- ble. EC stands for ‘ capture’, a (= annus, Latin) for years, h for , d for days, min for , s for , and ms for milliseconds.

decay half- β resp. α γ A Z element type life energy (MeV) (MeV) 3 β− . γ 1H 12 3a 0.0186 no 7 γ 4Be EC, 53 d Ð 0.48 10 β− . × 6 γ 4Be 1 5 10 a 0.56 no 14 β− γ 6C 5730 a 0.156 no 22 β+ . 11Na ,EC 2 6a 0.54 1.28 24 β− γ . 11Na , 15 0h 1.39 1.37 26 β+ . × 5 13Al ,EC 7 17 10 a 1.16 1.84 32 β− γ 14Si 172 a 0.20 no 32 β− . γ 15P 14 2d 1.71 no 37 γ 18Ar EC 35 d Ð no 40 β− . × 9 19K ,EC 1 28 10 a 1.33 1.46 51 γ . 24Cr EC, 27 8d Ð 0.325 54 γ 25Mn EC, 312 d Ð 0.84 55 . 26Fe EC 2 73 a Ð 0.006 57 γ 27Co EC, 272 d Ð 0.122 60 β− γ . 27Co , 5 27 a 0.32 1.17 & 1.33 66 β+ γ . 31Ga , EC, 9 4h 4.15 1.04 68 β− γ 31Ga , EC, 68 min 1.88 1.07 85 β− γ . 36Kr , 10 8a 0.67 0.52 89 β− γ 38Sr 51 d 1.49 no 90 → β− . γ 38Sr 28 7a 0.55 no 90 β− γ 39Y 64 h 2.28 no 99m γ 43Tc 6h Ð 0.140

C. Grupen, Introduction to Protection, Graduate Texts in , DOI 10.1007/978-3-642-02586-0 © Springer-Verlag Berlin Heidelberg 2010 324 A Table of Frequently Used Radioisotopes

isotope decay half- β resp. α γ energy A Z element type life energy (MeV) (MeV) 106 → β− . γ 44Ru 1 0a 0.04 no 106 β− γ 45Rh , 30 s 3.54 0.51 112 β− γ . 47Ag , 3 13 h 3.90 0.62 109 → . γ 48Cd EC 1 27 a Ð no 109m γ 47Ag 40 s Ð 0.088 113 γ 50Sn EC, 115 d Ð 0.392 132 β− γ 52Te , 77 h 0.22 0.23 125 γ 53I EC, 60 d Ð 0.035 129 β− γ . × 7 53I , 1 6 10 a 0.15 0.038 131 β− γ . 53I , 8 05 d 0.61 0.36 133 β− γ . 54Xe , 5 24 d 0.35 0.08 134 β− β+ γ . 55Cs , , 2 06 a 0.65 0.61 137 → β− 55Cs 30 a 0.51 & 1.18 0.66 137m γ . 56Ba 2 6min Ð 0.66 133 γ . 56Ba EC, 10 5a Ð 0.36 140 β− γ . 57La , 40 2h 1.34 1.60 144 → β− γ 58Ce , 285 d 0.32 0.13 144 β− γ . 59Pr , 17 5min 3.12 0.69 144 α . × 15 γ 60Nd 2 3 10 a 1.80 no 152 β∓ γ . 63Eu EC, , 13 5a 0.68 0.122 192 β− γ 77Ir EC, , 74 d 0.67 0.32 198 β− γ . 79Au , 2 7d 0.96 0.41 204 β− . γ 81Tl ,EC 3 78 a 0.76 no 207 γ . 83Bi EC, 31 6a 0.48 0.57 222 → α γ . 86Rn , 3 8d 5.48 0.51 218 → α β− . α γ 84Po , 3 1min :6.00 no 214 → β− γ . 82Pb , 26 8min 0.73 0.35 214 β− γ . 83Bi , 19 9min 1.51 0.61 226 α γ 88Ra , 1600 a 4.78 0.19 228 α γ . 90Th , 1 9a 5.42 0.24 234 α γ . × 5 92U , 2 5 10 a 4.77 0.05 A Table of Frequently Used Radioisotopes 325

isotope decay half- β resp. α γ energy A Z element type life energy (MeV) (MeV) 235 α γ . × 8 92U , 7 1 10 a 4.40 0.19 238 α γ . × 9 92U , 4 5 10 a 4.20 0.05 239 α γ 94Pu , 24 110 a 5.15 0.05 240 α γ 94Pu , 6564 a 5.16 0.05 241 α γ 95Am , 432 a 5.49 0.06 252 α γ . 98Cf , 2 6a 6.11 0.04 252 α γ 100Fm , 25 h 7.05 0.096 268 α 109Mt 70 ms 10.70 Ð

Explanatory note The heavy α-ray-emitting radioisotopes can also decay by sponta- neous fission. Half-lives for spontaneous fission are usually rather long. More detailed information about decay modes and level dia- grams can be taken from tables. Corresponding refer- ences are listed under ‘Further Reading’ in the section ‘Tables of and Nuclear Data Sheets’. The most recent information on the table of isotopes can be found in the Internet under http://atom.kaeri.re.kr/ and http://isotopes.lbl.gov/education .

“We will be rich! This isotope decays into !” c by Claus Grupen 326 B Examples of Exemption Limits for Absolute and Specific Activities

There are no universal international values for exemption limits for radioactive sources and radioactive material. Different countries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. The table be- low gives some examples which have been adopted by the new Ger- man radiation-protection ordinance in 2001. The corresponding lim- its in other countries are quite similar, although there are also some important differences in some national regulations. If several sources each with activity Ai and corresponding ex- max emption limit Ai are handled in a , the following con- dition must be fulfilled:

N A i ≤ 1 . Amax i=1 i This prevents the acquisition of several sources each with an activity below the exemption limit thereby possibly circumventing the idea of the exemption limit.

radioisotope exemption limit activity specific in Bq activity in Bq/g

3 9 6 1H 10 10 7 7 3 4Be 10 10 14 7 4 6C 10 10 24 5 11Na 10 10 32 5 3 15P 10 10 40 ∗ 6 2 19K 10 10 54 6 25Mn 10 10 55 6 4 26Fe 10 10 57 6 2 27Co 10 10 60 5 27Co 10 10 B Exemption Limits for Absolute and Specific Activities 327

radioisotope exemption limit activity specific in Bq activity in Bq/g

82 6 35Br 10 10 89 6 3 38Sr 10 10 90 † 4 2 38Sr 10 10 99m 7 2 43Tc 10 10 106 † 5 2 44Ru 10 10 110m 6 47Ag 10 10 109 † 6 4 48Cd 10 10 125 6 3 53I 10 10 129 5 2 53I 10 10 131 6 2 53I 10 10 134 4 55Cs 10 10 137 † 4 55Cs 10 10 133 6 2 56Ba 10 10 152 6 63Eu 10 10 197 7 2 80Hg 10 10 204 4 4 81Tl 10 10 214 6 2 82Pb 10 10 207 6 83Bi 10 10 210 4 84Po 10 10 220 † 7 4 86Rn 10 10 222 † 8 86Rn 10 10 226 † 4 88Ra 10 10 227 † 3 . 89Ac 10 0 1 232 † 4 90Th 10 10 233 4 92U 10 10 235 † 4 92U 10 10 238 † 4 92U 10 10 239 4 94Pu 10 1 240 3 94Pu 10 1 328 B Exemption Limits for Absolute and Specific Activities

radioisotope exemption limit activity specific in Bq activity in Bq/g

241 4 95Am 10 1 244 4 96Cm 10 10 252 4 98Cf 10 10

∗ as naturally occurring isotope unlimited † in equilibrium with its daughter nuclei; the due to these daughter isotopes is taken account of in the exemption limits 329 C Maximum Permitted Activity Concentrations Discharged from Radiation Areas

There are no universal international values for the limits of radioac- tive material that may be released from radiation areas. Different countries have defined limits based on the guidelines as recom- mended by the International Commission on Radiological Protec- tion. These limits generally refer to a maximum annual dose of 0.3 mSv that people from the general public may receive from such discharges. The table below gives some examples which have been adopted by the new German ordinance in 2001. The corresponding limits in other countries are quite similar, but do vary in some national regulations.

maximum permitted radioisotope activity concentration in air in in Bq/m3 in Bq/m3

3 2 7 1H 10 10 7 × 2 × 6 4Be 6 10 5 10 14 × 5 6C 6 6 10 24 × 5 11Na 90 3 10 32 × 4 15P 1 3 10 42 × 2 × 5 19K 2 10 2 10 54 × 5 25Mn 20 2 10 55 5 26Fe 20 10 57 × 5 27Co 30 3 10 60 × 4 27Co 1 2 10 82 5 35Br 50 10 89 × 4 38Sr 4 3 10 90 . × 3 38Sr 0 1 4 10 330 C Maximum Permitted Activity Concentrations Discharged from Radiation Areas

maximum permitted radioisotope activity concentration in air in water in Bq/m3 in Bq/m3 99m × 3 × 6 43Tc 2 10 4 10 106 . 4 44Ru 0 6 10 110m × 4 47Ag 1 4 10 109 × 4 48Cd 4 4 10 125 . × 4 53I 0 5 2 10 129 . × 3 53I 0 03 4 10 131 . × 3 53I 0 5 5 10 134 × 4 55Cs 2 2 10 137 . × 4 55Cs 0 9 3 10 133 × 4 56Ba 4 4 10 152 . × 4 63Eu 0 9 5 10 197 2 × 5 80Hg 10 4 10 204 × 4 81Tl 10 7 10 214 × 5 82Pb 2 3 10 207 × 4 83Bi 1 9 10 210 . 84Po 0 008 30 226 . × 2 88Ra 0 004 2 10 227 × −5 89Ac 7 10 30 232 × −4 × 2 90Th 3 10 2 10 233 . × 3 92U 0 004 2 10 235 . × 3 92U 0 004 3 10 238 . × 3 92U 0 005 3 10 239 × −4 × 2 94Pu 3 10 2 10 240 × −4 × 2 94Pu 3 10 2 10 241 × −4 × 2 95Am 4 10 2 10 244 × −4 × 2 96Cm 6 10 3 10 252 . × 2 98Cf 0 002 2 10 any unknown isotope mixture 10−5 10 C Maximum Permitted Activity Concentrations Discharged from Radiation Areas 331

These limits describe maximum activity concentrations in air re- leased from radiation areas with the danger of , and maxi- mum permitted activity concentrations, which are allowed to be dis- charged as sewage water. Correspondingly, the condition

N ¯ C , i a ≤ 1 Ci i=1 must be respected, where Ci is the maximum permitted activity concentration and ¯ Ci,a the actual released average annual activity concentration.

© by Claus Grupen 332 Examples of Clearance Levels

There are no universal international values for clearance levels for material containing residual radioactivity. After approved clearance the material is no longer considered as radioactive. Different coun- tries have defined limits based on the guidelines as recommended by the International Commission on Radiological Protection. Clear- ance can only be approved if the residual activity causes insignif- icant exposure to the public (≤ 10 μSv/yr). The table below gives some examples which have been adopted by the new German radia- tion-protection ordinance in 2001. The corresponding limits in other countries are quite similar.

clearance of radioisotope solid material, construction ground area liquids waste, excavation residues (Bq/g) (Bq/g) (Bq/g) 3H 1000 60 3 32P 20 20 0.02 60Co 0.1 0.09 0.03 90Sr∗ 2 2 0.002 137Cs∗ 0.5 0.4 0.06 226Ra∗ 0.03 0.03 † 232Th 0.03 0.03 † 235U∗ 0.5 0.3 † 238U∗ 0.6 0.4 † 239Pu 0.04 0.08 0.04 240Pu 0.04 0.08 0.04 241Am 0.05 0.05 0.06

∗ in equilibrium with daughter isotopes; the radiation exposure due to these daughter isotopes is taken care of in the clearance levels † naturally occurring radioisotopes in the ground with activities around 0.01 Bq/g 333 D Examples of Limits for Surface

There are no universal international values for limits on surface con- taminations in working areas. Because of the higher biological ef- fectiveness the limits for α particles are more stringent compared to those of β- and γ -ray emitters, usually by a factor of 10. Differ- ent countries have defined limits based on the guidelines as recom- mended by the International Commission on Radiological Protec- tion. The table below gives some examples which have been adopted by the new German radiation-protection ordinance in 2001. The cor- responding limits in other countries are quite similar.

radioisotope surface in Bq/cm2 3 7 14 1H, 4Be, 6C 100 18 24 38 9F, 11Na, 17Cl 1 54 60 90 25Mn, 27Co, 38Sr 1 64 76 75 29Cu, 33As, 34Se 10 99m 105 106 43Tc, 45Rh, 44Ru 10 111 109 99 47Ag, 48Cd, 43Tc 100 125 131 129 53I, 53I, 55 Cs 10 134 137 140 55 Cs, 55 Cs, 56Ba 1 152 154 190 63Eu, 63Eu, 77Ir 1 204 197 210 81Tl, 78Pt, 83Bi 100 226 227 233 88Ra, 89Ac, 92U 1 239 240 252 94Pu, 94Pu, 98Cf 0.1 248 96Cm 0.01 β emitter or EC emitter1 with 100 max < . Ee 0 2MeV β or γ emitter 1 in general α emitter or radioisotopes from 0.1 spontaneous fission 334 D Examples of Limits for Surface Contaminations

In case of surface contaminations by different isotopes the following condition must be fulfilled:

N A i ≤ 1 , Amax i=1 i

max where Ai are the observed surface contaminations and Ai the cor- responding limits as given in the table.

© by Claus Grupen

1 EC = 335 E Definition of Radiation Areas

The definition of radiation areas varies somewhat in different coun- tries, see Chap. 6 on ‘International Safety Standards for Radiation Protection’. In the following table the radiation areas according to the ICRP recommendations, adopted by many countries, are given.

controlled area surveyed area exclusion area 6Ð20 mSv/yr 1Ð6 mSv/yr > 3mSv/h radiation-exposed workers (2000 h/yr) cat. A 6Ð20 mSv/yr cat. B 1Ð6 mSv/yr neighborhood outside radiation areas < 1mSv/yr permanent residence limit for the general public for discharges from nuclear facilities1 ≤ 0.3 mSv/yr

1 This limit relates to maximum permitted releases of activity concentra- tions from radiation facilities (nuclear plants, recycling facilities) via air and water, which are limited to 0.3 mSv/yr for the general public. 336

F Radiation Weighting Factors wR

The following radiation weighting factors wR are almost generally accepted in all countries, see also Chap. 6.1 In the early days of radiation protection the biological effect of radiation was taken care of by the so-called quality factors q (see also Chap. 2).

type of radiation and radiation energy range weighting factor wR , all energies 1 and , 1 all energies < 10 keV 5 10 keVÐ100 keV 10 > 100 keVÐ2 MeV 20 > 2 MeVÐ20 MeV 10 > 20 MeV 5 , except recoil protons, 5 energy > 2MeV α particles, fission fragments, 20 heavy nuclei

1 The radiation weighting factors as adopted in the , which are somewhat different, are given in Table 6.1 on page 94. 337

G Tissue Weighting Factors wT

The following tissue weighting factors wT are almost generally ac- cepted in all countries, see also Chaps. 2 and 6.1

organs or tissue tissue weighting factor wT gonads 0.20 marrow 0.12 large intestine 0.12 0.12 stomach 0.12 bladder 0.05 chest 0.05 liver 0.05 esophagus 0.05 gland 0.05 skin 0.01 periosteum (bone surface) 0.01 other organs 0.05 or tissue

1 The tissue weighting factors as adopted in the United States, which are somewhat different, are given in Table 6.2 on page 94. 338 H Physical Constants

Constants, which are exact, are given with their precise values, if possible. They are characterized with an ∗. For experimental values only the significant decimals are given, i.e., the measurement error is less than the last decimal place.

quantity symbol value unit ∗ velocity of c 299 792 458 m/s − constant h 6.626 07 × 10 34 Js − electron charge magnitude e 1.602 177 × 10 19 C −31 electron me 9.109 38 × 10 kg −27 mass m p 1.672 62 × 10 kg − α-particle mass mα 6.644 661 8 × 10 27 kg −27 unified unit mu 1.660 54 × 10 kg −4 electronÐproton mass ratio me/m p 5.446 170 21 × 10 ∗ 2 −12 permittivity of free space ε0 = 1/(μ0 c ) 8.854 187 ...× 10 F/m ∗ −7 2 permeability of free space μ0 4 π × 10 N/A 2 fine-structure constant α = e /(4 πε0 hc¯ ) 1/137.035 999 2 2 −15 classical electron radius re = e /(4 πε0 me c ) 2.817 940 × 10 m −12 Compton λC = h/(mec) 2.426 310 2 · 10 m − gravitational constant γ 6.674 × 10 11 m3/(kg s2) standard gravitational ∗ acceleration g 9.806 65 m/s2 23 −1 NA 6.022 14 × 10 mol − Boltzmann constant k 1.380 65 × 10 23 J/K molar gas constant R (= NA k) 8.3144 J/(K mol) 1 −3 3 molar Vmole 22.414 × 10 m /mol 2 2 Rydberg energy ERy = mec α /213.6057 eV − − − StefanÐBoltzmann constant σ = π2k4/(60 h¯ 3c2) 5.6704 × 10 8 Wm 2 K 4 2 2 −10 Bohr radius a0 = 4πε0h¯ /(mec ) 0.529 177 21 × 10 m Faraday constant F = eNA 96 485.309 C/mol 11 electron charge-to-mass ratio e/me 1.758 820 × 10 C/kg

1 at standard and pressure (T = 273.15 K, p = 101 325 Pa) 339 I Useful Conversions

quantity conversion 1 N = 1kgm/s2 − , energy 1 eV = 1.602 177 × 10 19 J 1 cal = 4.186 J − 1erg= 10 7 J 1kWh= 3.6 × 106 J energy dose 1 Gy = 100 1rad= 10 mGy dose equivalent 1 Sv = 100 rem 1rem= 10 mSv dose 1 R = 258 μC/kg − = 8.77 × 10 3 Gy (in air) − ion-dose rate 1 R/h = 7.17 × 10 8 A/kg activity 1 Ci = 3.7 × 1010 Bq 1Bq= 27.03 pCi pressure 1 bar = 105 Pa 1atm= 1.013 25 × 105 Pa 1Torr= 1mmHg = 1.333 224 × 102 Pa 1kp/m2 = 9.806 65 Pa charge 1 C = 2.997 924 58 × 109 esu1 length 1 m = 1010 Å ◦ temperature θ [ C] = T [K] − 273.15 ◦ ◦ T [ Fahrenheit] = 1.80 θ [ C] + 32 = 1.80 T [K] − 459.67 time 1 d = 86 400 s 1yr= 3.1536 × 107 s

1 esu Ð electrostatic unit 340 J List of Abbreviations

Å Ð angstrom (unit of length); 1 Å = 10−10 m a Ð year (from the Latin word ‘annus’) A Ð ACS Ð American Chemical Society ADR Ð Accord européen relatif au transport international des marchandises dangereuses par la route (European agreement about the transport of dangerous goods via roads) AERB Ð Regulatory Board of India AIDS Ð Acquired Immune Deficiency Syndrome ALARA Ð as low as reasonably achievable arctan Ð arc tangent (Latin: arcus tangens): inverse function of tangent (on pocket calculators usually denoted by tan−1) ALI Ð Annual Limit on Intake ANSTO Ð Australian Nuclear and Technology Organisation ARPANS Ð Australian Radiation Protection and Nuclear Safety atm Ð (unit of pressure) bar Ð unit of pressure, from the Greek βαρoς, ‘weight’ Ð unit of the (total) (= 10−24 cm2) BF3 Ð trifluoride BMU Ð federal ministry for environment in (Bundesministerium für Umwelt) Bq Ð C Ð (unit of the ) cal Ð calory (unit of energy) CASTOR Ð cask for storage and transport of radioactive material CEDE Ð Committed Effective Dose Equivalent CERN Ð Conseil Européenne pour la Recherche Nucléaire (European Center for in Geneva) Ci Ð CW Ð Continuous- lasers d Ð (from the Latin word ‘dies’) DARI Ð Dose Annuelle due aux Internes (annual dose due to internal radiation from the body) DF Ð decontamination factor DIN Ð German institute for engineering standards (Deutsches Institut für Normung) DIS Ð Direct Ion Storage dosimeter J List of Abbreviations 341

DNA Ð deoxyribonucleic DTPA Ð diethylenetriamine pentaacetate e Ð Eulerian number (e = 2.718 281 ...) EC Ð electron capture (mostly from the K ) EDTA Ð ethylenediamine tetraacetate Ð unit of energy (1 g cm2/s2); from the Greek ργ oν,‘work’ ERR Ð Excess Relative Risk esu Ð unit of charge: electrostatic unit EU Ð EURATOM Ð European Atomic Union exp Ð short for the eV Ð electron F Ð (unit of capacitance) FAO Ð Food and Agricultural Organization of the United Nations FWHM Ð Full Width at Half Maximum GBq Ð gigabecquerel GeV Ð giga electron volt GGVS Ð German ordinance for the transport of dangerous goods (Gefahrgut Verordnung Stra§e) GM counter Ð Geiger–Müller counter GSF Ð German research center for environment and health (Forschungszentrum für Umwelt und Gesundheit) GSI Ð Gesellschaft für Schwerionenforschung, , Germany Gy Ð h Ð (from the Latin word ‘hora’) hPa Ð hectopascal HPGe detector Ð High Purity detector HTR Ð high-temperature reactor Hz Ð (1/s) IAD Ð inevitable annual dose IAEA Ð International Atomic Energy Agency IAEO Ð International Atomic Energy Organization ICAO Ð International Civil Aviation Organization (Technical Instructions for Safe Transport of Dangerous Goods by Air) ICNIRP Ð International Commission on Non- Protection ICRP Ð International Commission on Radiological Protection ICRU Ð International Commission on Radiation Units and Measurements ILO Ð International Labor Organization IMDG Ð International Maritime Dangerous Goods code 342 J List of Abbreviations

ITER Ð International Thermonuclear Experimental Reactor IUPAC Ð International Union for Pure and Applied IUPAP Ð International Union for Pure and J Ð (unit of energy; 1 J = 107 erg) JAZ Ð annual intake (from the German ‘Jahresaktivitätszufuhr’) JET Ð Joint European Torus K Ð (absolute temperature) kBq Ð kilobecquerel Ð released per unit mass (also: kinetic energy released in (or material)) keV Ð kilo electron volt kHz Ð kilohertz (or kilocycle) kJ Ð kilojoule kp Ð kilopond kT Ð kiloton () kV Ð kilovolt Ð Light Amplification by Stimulated Emission of Radiation LD Ð lethal dose LEP Ð Large ElectronÐPositron at CERN LET Ð LINAC Ð linear accelerator ln Ð logarithmus naturalis (natural ) LNT Ð Linear No-Threshold hypothesis mA Ð milliampere MBq Ð megabecquerel μC Ð microcoulomb mCi Ð millicurie μCi Ð microcurie meV Ð milli electron volt MeV Ð mega electron volt mGy Ð milligray μGy Ð microgray mK Ð millikelvin μK Ð microkelvin Ð amount of material which contains 6.022 × 1023 / (= Avogadro number) MOSFET Ð Oxide Field Effect Transistor MOX Ð Mixture of Oxides J List of Abbreviations 343 mrem Ð millirem MRT Ð Radiation mSv Ð millisievert μSv Ð microsievert mV Ð millivolt MW Ð megawatt N Ð (unit of force) NASA Ð National Aeronautics and Space Administration NEA Ð Nuclear Energy Agency NIR Ð Non-Ionizing Radiation NPL Ð National Physical Laboratory nSv Ð nanosievert OECD Ð Organization for Economic Cooperation and Development  Ð Pa Ð (unit of pressure) PBD Ð 2-(4-tert.-butylene-phenyl)- 5-(4-biphenyl-1,3,4-oxadiazole) pCi Ð picocurie PET Ð -Emission pF Ð picofarad (10−12 F) PIPS detector Ð Passive Implanted Planar detector PM Ð photomultiplier PMMA Ð polymethyl methacrylate ppm Ð parts per million (10−6) PTB Ð German national physical laboratory for weights and measures (PhysikalischÐTechnische Bundesanstalt in Braunschweig, equivalent to the British NPL) R Ð rad Ð radiation rad Ð (unit of angle, the full radian is 2π) Radar Ð Detecting and Ranging rem Ð RBE Ð relative biological effectiveness RID Ð règlement international concernant le transport des marchandises dangereuses provision about the transport of dangerous goods RNA Ð ribonucleic acid RTG Ð Radioisotope Thermoelectric Generator SAR Ð specific absorption rate 344 J List of Abbreviations Ð unit of solid angle; the full solid angle corresponds to the surface of the unit sphere: 4 π StrlSchV Ð Strahlenschutzverordnung (German radiation-protection ordinance) Sv Ð TeV Ð tera electron volt TLD Ð thermoluminescence dosimeter TNT Ð trinitrotoluol (explosive) Torr Ð torricelli (unit of pressure, mm column of ) UMTS Ð Universal Mobile Telecommunications System UN Ð United Nations UNSCEAR Ð United Nations Scientific Committee on the Effects of Atomic Radiation UV Ð UVA Ð ultraviolet type A radiation, wavelength 400Ð315 nm UVB Ð ultraviolet type B radiation, wavelength 315Ð280 nm UVC Ð ultraviolet type C radiation, wavelength 280Ð100 nm VÐvolt VDI Ð Verein Deutscher Ingenieure (association of German engineers) WHO Ð World Health Organization W Ð (unit of power), W s watt (unit of energy)

“The perfect final deposit: A !” © by Claus Grupen 345 K List of Elements∗

1 H (Greek: υδωρ, hydor, water 19 K (German: Kalium from the + γινoμαι, geinomai, to engender; Latin: Arabic word al-qali = ash or English: hydrogenium); potash) = 2 δυτρ ς D 1H (Greek: o , 20 Ca (Latin: calx, limestone) = 3 deuteros, second) and T 1H 21 Sc (Latin: from Scandinavia) (Greek: τριτoς tritos, third) are isotopes of 22 Ti (Greek: τιτανoς, Titans, chil- hydrogen dren of the ) 2 He (Greek: ηλιoς, helios, ) 23 V (Vanadis, Scandinavian god- 3 Li (Greek: λιθoς, lithos, stone, dess of beauty) ) 24 Cr , (Greek: χρωμα˜ , chroma, 4 Be (Greek: βηρυλλoς, beryllos, color) ) 25 Mn , (Greek: Mαγνησια, Mag- 5 B boron (Latin: boracium; Arabic: borax) nesia (district in the Greek town Thessaly); 6 C (Latin: carbo, ; French: Latin: magnes, magnet) charbon, charcoal) 26 Fe (Latin: ferrum) 7 N (Greek: νιτρoν, nitron + 27 Co (German: Kobold, goblin, evil γινoμαι, geinomai, to engender, soda spirit) forming; Latin: nitrogenium) 28 Ni (German: Kupfernickel = devil’s 8 O (Greek: oξυς, oxys, acid + ) γινoμαι, geinomai, to engender, acid 29 Cu copper (Greek: κυπριoς, kuprios; Lat- forming; Latin: oxygenium) in: cuprum; metal from the island of Cyprus) 9 F fluorine (Latin: fluere, to flow, to 30 Zn (German: Zink, sharp point) stream) 31 Ga (Latin: Gallia, ) 10 Ne (Greek: νoς, neos, new, young) 32 Ge germanium (Latin: Germania, Germa- 11 Na (Latin: sodanum; Hebrew: ne- ny) ter, soda; German: Natrium; from the Arabic 33 As (Arabic: al-zarnikh, gold-col- word ‘natrun’ = soda) ored) 12 Mg (Greek: Mαγνησια, Mag- 34 Se (Greek: σληνη, selene, nesia (district in the Greek town Thessaly)) ) 13 Al aluminum (Latin: alumen, a bitter salt) 35 Br (Greek: βρoμoς, bromos, 14 Si silicon (Latin: silex, flint) stench) 15 P (Greek: φωσφoρoς, phos- 36 Kr (Greek: κρυπτoς, kryptos, phoros, light bearing, luminous) hidden) 16 S sulphur (Latin: ) 37 Rb (Latin: rubidus, deep red) 17 Cl (Greek: χλωρoς, chloros, 38 Sr (Strontian, village in Scot- light , green-) land) 18 Ar (Greek: αργ oν, argon, inactive, 39 Y (after the Swedish village Yt- idle) terby) ∗ see also www.periodensystem.info/periodensystem.htm resp. www.webelements.com/ or http://elements.vanderkrogt.net/elem/ 346 K List of Elements

40 Zr (Persian: zargûn, gold color) 65 Tb (named after the Swedish vil- 41 Nb (Nιoβη, Niobe, daughter of lage Ytterby) Tantalus) 66 Dy (Greek: δυσπρoσιτoς, 42 Mo (Greek: μoλυβδoς,mo- dysprositos, hard to obtain) lybdos, ore) 67 Ho (Latin: Holmia = ) 43 Tc (Greek: τχνητoς, techne- 68 Er (named after the Swedish vil- tos, artificial) lage Ytterby) 44 Ru (Latin: Ruthenia = Ukraine, 69 Tm (Latin: Thule in Scandinavia) sometimes Russia is meant) 70 Yb (named after the Swedish vil- 45 Rh (Greek: ρoδoν, rodon, rose) lage Ytterby) 46 Pd (Greek: named after Pallas 71 Lu (after the Roman name of Athene, the Greek goddess of wisdom) Paris: Lutetia Parisorum) Παλλας Aθηνη 72 Hf (Latin: Hafnia = K¿benhavn, 47 Ag (Latin: argentum) Copenhagen) 48 Cd (named after ‘Kadmos’, the 73 Ta (Greek: T ανταλoς, Tantalos, founder of the Egyptian city of Thebes). figure in Greek mythology) 49 In (named after the 74 W (Swedish: Tung Sten, heavy spectral color) stone; Wolfram: wolframite, from 50 Sn (Latin: stannum or Indo-European: ‘Wolf Rahm’ (German for wolf’s foam)) stag, dripping) 75 Re (Latin: Rhenus, Rhine) 51 Sb antimonium (Latin: stibium or Greek: 76 Os (Greek: oσμη, osme, stench) στιβι, stibi, cosmetic powder) 77 Ir (Greek: Iρις, Greek goddess of 52 Te (Latin: tellus, earth, ground) the rainbow) 53 I (Greek: ιoιδης, ioeides, 78 Pt (Spanish: platina (del Pinto) = color) small silver (beads) of the river Pinto) 54 Xe (Greek: ξνoς, xenos, strange) 79 Au gold (Latin: aurum) 55 Cs cesium (Latin: caesius = bluish gray) 80 Hg mercury (Greek: υδραργυρoς,hy- 56 Ba (Greek: βαρυς, barys, heavy) drargyros, liquid silver; Latin: hydrargyrum) 57 La (Greek: λανθανω, lan- 81 Tl (Greek: θαλλoς, thallos, thano, to lie hidden) green ) 58 Ce (, asteroid discovered in 82 Pb lead (Latin: plumbum) 1801) 83 Bi (Latin: bisemutum; German: 59 Pr (Greek: πρασιoς + Weisse Masse, white substance) διδυμoς, prasios + didymos, green and 84 Po (Latin: Polonia = Polska, twins) Poland) 60 Nd (Greek: νoς + διδυμoς, 85 At (Greek: αστατoς, astatos, un- neos + didymos, new and twins) stable) 61 Pm (Greek: Πρoμηθυς, 86 Rn (Latin: nitens, shining; named af- named after Prometheus) ter the element , changed to radon 62 Sm (samarskite, mineral named to match the endings of most other noble after V.E. Samarskij-Byhovec) gases) 63 Eu (Latin: Europa, Europe) 87 Fr (Latin: named after France) 64 Gd (gadolinite, mineral named 88 Ra radium (Latin: radius, ray) after Johan Gadolin) 89 Ac (Greek: ακτις, aktis, ray) K List of Elements 347

90 Th (Thor, Scandinavian god of 103 Lr (named after Ernest O. war) Lawrence) 91 Pa (Greek: πρωτoς + ac- 104 Rf (named after Ernest tinium, first element after actinium in the ) uraniumÐactinium decay series) 105 Db (named after , a town in 92 U (named after the Ura- the Moscow region) nus) 106 Sg (named after Glenn T. 93 Np (named after the planet Nep- Seaborg) tun) 107 Bh (named after ) 94 Pu (named after the dwarf 108 Hs (named after the German state Πλ υτων planet Pluto ( o , Plouton), the Hassia, Hessen) Greek god of the underworld) 109 Mt (named after ) 95 Am (Latin: America) 110 Ds (named after Darmstadt, 96 Cm (named after ) atowninGermany) 97 Bk (Berkeley, town in Califor- 111 Rg (named after Wilhelm nia) Conrad Röntgen) 98 Cf (California, state of the USA) 112 Cn (named after Nicolaus 99 Es (named after Albert Ein- Copernicus) † stein) 113 † 100 Fm (named after ) 114 101 Md (named after Dmitri I. 115 † Mendeleyev) 116 † 102 No (named after Alfred Nobel) 118 †

“Prof. Ziolkowski has discovered yet again another radioisotope!”

c by Claus Grupen

† Z = 113, 114, 115, 116, 118: Lawrence LivermoreÐDubna Colabora- tion, Russia, and Berkeley, USA 348 L Decay Chains

Figure L.1 Uranium (238U) (a = annus, year)

Figure L.2 Thorium (232Th) decay chain (a = annus, year) L Decay Chains 349

Figure L.3 Actinium (235U) decay chain (a = annus, year)

Figure L.4 Neptunium (237Np) decay chain (a = annus, year) 350 M List of Isotopes Frequently Used in Nuclear and

isotope half-life decay main energy application protons stable ≈ 200 MeV 3H 12.3 yrs β−,noγ 0.02 MeV total body water content determination 11B stable and treatment 11C 20.4 min β+,noγ 1.0 MeV Positron-Emission Tomography; PET scans 12C stable ≈ 300 MeV particle therapy per 14C 5730 yrs β−,noγ 0.2 MeV e.g. pancreatic studies 13N10minβ+,noγ 1.2 MeV Positron-Emission Tomography; PET scans 15O2minβ+,noγ 1.7 MeV Positron-Emission Tomography; PET scans 18F 110 min β+,noγ 0.6 MeV Positron-Emission Tomography; PET scans 22Na 2.6 yrs β+ 0.5 MeV ... electrolyte studies γ 1275 keV 24Na 15 h β− 1.4 MeV ... studies of electrolytes within the body γ 2754 keV ... 32P 14.3 d β−,noγ 1.7 MeV treatment against excess of red cells 42K 12.4 h β− 3.5 MeV for measurement of coronary blood flow γ 1525 keV ... 47Ca 4.5 d β− 0.7 MeV... bone metabolism γ 1297 keV ... 51Cr 27.7 d γ 320 keV labeling of red blood cells EC 59Fe 44.5 d β− 0.5 MeV ... metabolism in the spleen γ 1099 keV ... 57Co 272 d γ 122 keV... marker to estimate organ size EC M List of Isotopes Frequently Used in and Radiology 351

isotope half-life decay main energy application 58Co 71 d β+ 0.5 MeV ... gastrointestinal absorption γ 811 keV EC 60mCo 10.5 min γ 59 keV external beam radiotherapy 60Co 5.3 yrs β− 0.3 MeV ... tumor treatment γ 1173 keV γ 1332 keV 62Cu 9.7 min β+ 2.9 MeV ... positron-emitting for PET γ 1173 keV ... 64Cu 12.7 h β− 0.6 MeV study of genetic of diseases β+ 0.7 MeV γ 1346 keV EC 67Cu 61.9 h β− 0.4 MeV ... γ 185 keV ... 64Ga 2.6 min β+ 2.9 MeV ... treatment of pulmonary diseases γ 992 keV ... 67Ga 78.3 h γ 93 keV ... tumor imaging EC, no β+ 68Ga 67.6 min β+ 1.9 MeV ... study thrombosis and atherosclerosis γ 1077 keV ... detection of pancreatic 68Ge 271 d no β+,noγ , EC PET imaging 72As 26 h β+ 2.5 MeV ... planar imaging, SPECT, or PET γ 834 keV ... 75Se 120 d γ 265 keV ... radiotracer used in brain studies EC scanning study of the production of digestive enzymes 81mKr 13 s γ 190 keV pulmonary ventilation EC from 81Rb 82Rb 6.3 h β+ 0.8 MeV ... PET agent in myocardial perfusion imaging γ 776 keV ... from 82Sr 89Sr 50.5 d β− 1.5 MeV ... reducing the pain due to γ 909 keV and bone cancer 90Y 64.1 h β− 2.3 MeV ... cancer γ 2186 keV ... 352 M List of Isotopes Frequently Used in Nuclear Medicine and Radiology

isotope half-life decay main energy application 99Mo 66 h β− 1.2 MeV ... parent of 99mTc γ 740 keV ... 99mTc 6 h γ 141 keV ... skeleton, heart muscle, brain, thyroid, , liver, spleen, , gall bladder, , salivary, and lacrimal glands 103Ru 39.4 d β− 0.2 MeV ... myocardial blood flow γ 497 keV ... 103Pd 17 d γ 357 keV ... brachytherapy for early EC 109Cd 463 d no γ , EC cancer detection, pediatric imaging 111In 2.8 d γ 245 keV ... brain studies EC, no β+ 117mSn 13.6 d γ 159 keV ... bone relief 122I3.6min β+ 3.1 MeV ... brain blood flow studies γ 564 keV ... 123I 13.2 h γ 159 keV ... diagnosis of the thyroid function EC, no β+ 125I 59.4 d γ 35 keV cancer brachytherapy (prostate and brain) EC filtration rate of kidneys 131I8.0d β− 0.6 MeV ... treatment of γ 364 keV ... with beta therapy 132I2.3h β− 2.1 MeV ... marking of red blood cells γ 668 keV ... 130Cs 29.2 min β+ 2.0 MeV ... myocardial localizing agent β− 0.4 MeV γ 536 keV EC 127Xe 36.4 d γ 203 keV ... for brain disorders EC 133Xe 5.3 d β− 0.3 MeV ... lung ventilation studies γ 81 keV ... 137Cs 30.2 yrs β− 0.5 MeV ... brachytherapy γ 662 keV ... 141Ce 32.5 d β− 0.4 MeV ... diagnosis γ 145 keV M List of Isotopes Frequently Used in Nuclear Medicine and Radiology 353

isotope half-life decay main energy application 153Sm 46.3 h β− 0.7 MeV ... prostate and γ 103 keV ... relieving pain of secondary 155Eu 4.8 yrs β− 0.17 MeV ... osteoporosis detection γ 87 keV ... 165Dy 2.4 h β− 1.3 MeV ... treatment of arthritis γ 95 keV ... 166Ho 26.8 h β− 1.9 MeV ... treatment of liver tumors γ 81 keV ... 169Er 9.4 d β− 0.3 MeV ... for relieving arthritis γ 110 keV ... 170Tm 129 d β− 1.0 MeV ... portable blood for γ 84 keV ... 169Yb 32 d γ 63 keV ... cerebrospinal fluid studies in the brain EC 177Lu 6.7 d β− 0.5 MeV ... β radiation for small tumors γ 208 keV ... γ rays for imaging 178Ta 9.3 min β+ 0.9 MeV viewing of heart and blood vessels γ 93 keV ... EC 182Ta 115 d β− 0.5 MeV ... treatment γ 68 keV ... 186Re 3.7 d β− 1.1 MeV ... for pain relief in bone cancer γ 137 keV ... for imaging EC 188Re 17 h β− 2.1 MeV ... β of coronary arteries γ 155 keV ... 191mIr 5 s γ 129 keV ... cardiovascular 192Ir 74 d β− 0.7 MeV ... cancer brachytherapy γ 317 keV ... source supplied EC in wire form 198Au 2.7 d β− 1.0 MeV ... brachytherapy and liver treatment γ 412 keV ... 201Tl 73.1 h γ 167 keV ... diagnosis of EC 213Bi 45.6 min α 5.87 MeV ... β− 1.4 MeV ... Targeted Alpha Therapy (TAT) γ 440 keV ... 354 M List of Isotopes Frequently Used in Nuclear Medicine and Radiology

isotope half-life decay main energy application 226Ra 1600 yrs α 4.78 MeV ... brachytherapy γ 186 keV ... 238Pu 87.7 yrs α 5.50 MeV ... pacemaker (no 236Pu contaminants) γ 43 keV ... sf 241Am 432 yrs α 5.49 MeV ... osteoporosis detection, heart imaging γ 60 keV ... sf 252Cf 2.6 yrs α 6.12 MeV ... brain cancer treatment γ 43 keV ... sf

Abbreviations

PET Ð Positron-Emission Tomography SPECT Ð Single Emission Computed Tomography TAT Ð Targeted Alpha Therapy EC Ð electron capture sf Ð spontaneous fission all γ energies are given in keV for β decays the endpoint energies (i.e. the maximum energies) are given for α decays the discrete energies are given

References:

Radioisotopes in Medicine: www.world-nuclear.org/info/inf55.htm, www.expresspharmaonline.com/20050331/radiopharmaceuticals01.shtml, www..org/nuclearmedicine/frames/medical_radioisotopes /index.html 355 N Critical Organs for Various Radioisotopes

isotope physical half-life effective half-life emitter critical organ 3H 12.3 yrs 10 d β− whole body 7Be 53.3 d 53.3 d γ , EC whole body, 10Be 1.6 × 106 yrs 4 yrs β− whole body 14C 5730 yrs 40 d β− whole body 16N 7.1 s 7.1 s β−, γ lung 18F 110 min 110 min β+ skeleton 22Na 2.6 yrs 11 d β+, γ whole body 24Na 15 h 14 h β−, γ gastrointestinal tract 32Si 172 yrs 100 d β− whole body 32P 14.3 d 14.1 d β− bones 33P 25.3 d 25.3 d β− bones 35S 87.5 d 44 d β− whole body 36Cl 3 × 105 yrs 30 d β− whole body 39Ar 269 yrs 5 min β− lung 40K1.28× 109 yrs 30 d β+, β−, γ whole body 45Ca 163 d 163 d β−, γ bones 47Ca 4.5 d 4.5 d β−, γ bones 51Cr 27.7 d 22.8 d γ , EC lung, gastrointestinal tract 54Mn 312 d 88.5 d γ , EC lung 23 d liver 55Fe 2.7 yrs 1.1 yrs EC spleen 59Fe 44.5 d 41.9 d β−, γ spleen 60Co 5.3 yrs 117 d β−, γ lung 356 N Critical Organs for Various Radioisotopes

isotope physical half-life effective half-life emitter critical organ 63Ni 100 yrs variable β− whole body 64Cu 12.7 h 12 h β+, β−, γ , EC whole body 65Zn 245 d 194 d β+, γ , EC whole body 81 d lung 75Se 120 d 61 d γ , EC lung 10 d kidney 82Br 35.3 h 30.5 h β−, γ whole body 81mKr 13.1 s 13 s γ , EC lung 85Kr 10.7 yrs 5 min β−, γ whole body 86Rb 18.7 d 13 d β−, γ , EC whole body, pancreas, liver 87Rb 4.8 × 1010 yrs 44 d β−, γ , EC whole body, pancreas, liver 85Sr 65 d 65 d γ , EC bones 89Sr 50.5 d 50.5 d β−, γ bones 90Sr 28.6 yrs 18 yrs β− bones 90Y 64.1 h 30 h β−, γ gastrointestinal tract 91Y 58.5 d 58 h β−, γ bones, liver 95Zr 64.0 d 64 d β−, γ bones 99Mo 66.0 h 65 h β−, γ bones, liver 99mTc 6h 4h γ thyroid, gastrointestinal tract 103Ru 39.4 d 35 d β−, γ lung, whole body 105Ru 4.4d 4d β−, γ lung, whole body 106Ru 373.6 d 35 d β− lung, whole body 110mAg 250 d 50 d β−, γ liver 109Cd 463 d 463 d EC kidney 111In 2.8 d 2.8 d γ , EC bone marrow, liver 113mIn 99.5 min 96.6 min γ kidney, gastrointestinal tract 125Sb 2.8 yrs 5 d β−, γ bones, liver 129mTe 33.6 d 20 d β−, γ bones, kidney 132Te 76.3 h 24 h β−, γ bones, kidney 123I 13.2 h 13 h γ ,EC thyroid 125I 59.4 d 41.8 d γ ,EC thyroid N Critical Organs for Various Radioisotopes 357

isotope physical half-life effective half-life emitter critical organ 129I1.6× 107 yrs 80 d β−, γ thyroid 131I 8.0 d 7.6 d β−, γ thyroid 132I2.3h 2h β−, γ thyroid 133I 20.8 h 20 h β−, γ thyroid 134I52min 52min β−, γ thyroid 135I6.6h 6h β−, γ thyroid 133Xe 5.3d 5min β−, γ whole body 134Cs 2.1 yrs 120 d β+, β−, γ muscles, whole body 136Cs 13.2 d 13 d β−, γ muscles, whole body 137Cs 30.2 yrs 110 d β−, γ muscles, whole body 140Ba 12.8 d 10.7 d β−, γ gastrointestinal tract 138 La 1.1 × 1011 yrs 10 yrs β−, γ , EC liver, bones 141Ce 32.5 d 32 d β−, γ bones, liver 144Ce 284.8 d 280 d β−, γ bones, liver 147Pm 2.6 yrs 2.4 yrs β−, γ bones, liver 147Sm 1.1 × 1011 yrs 10 yrs α liver, bones 176Lu 3.8 × 1010 yrs 10 yrs β−, γ bones 186Re 89.3 h 48 h β−, γ , EC muscle tissue 187Re 5 × 1010 yrs 2 d β− muscle tissue 198Au 2.7d 1d β−, γ kidney, gastrointestinal tract 203Hg 46.6 d 11 d β−, γ kidney 201Tl 73.1 h 72 h γ , EC whole body 202Tl 12.2 d 10 d γ , EC whole body 208Tl 3.1min 3min β−, γ whole body 210Pb 22.3 yrs 1.2 yrs β−, γ kidney 6.8 yrs bones 212Pb 10.6 h 10 h β−, γ bones, liver 212Bi 60.6 min 60 min α, β−, γ kidney 214Bi 19.9 min 19 min α, β−, γ kidney 210Po 138.4 d 31.7 d α, γ kidney 66.7 d lung 358 N Critical Organs for Various Radioisotopes

isotope physical half-life effective half-life emitter critical organ 220Rn 55.6 s 55 s α, γ lung 222Rn 3.8d 5min α, γ lung 224Ra 3.7 d 3.7 d α, γ bones, bone marrow, lung 226Ra 1600 yrs 41 yrs α, γ bones, bone marrow, lung 228Ra 5.8 yrs 5.7 yrs β−, γ bones, bone marrow, lung 227Ac 21.8 yrs 21 yrs α, β−, γ bones, liver 228Ac 6.1h 6h α, β−, γ bones, liver 228Th 1.9 yrs 1.9 yrs α, γ lung, periosteum (bone surface) 230Th 7.5 × 104 yrs 25 yrs α, γ lung, periosteum (bone surface) 232Th 1.4 × 1010 yrs 25 yrs α, γ lung, bones 234Th 24.1 d 24 d β−, γ lung, periosteum (bone surface) 231Pa 3.3 × 104 yrs 10 yrs α, γ bones 233U1.6× 105 yrs variable, ≤ 14 yrs α, γ bones, lung, kidney 234U2.5× 105 yrs variable, ≤ 14 yrs α, γ , sf bones, lung, kidney 235U7× 108 yrs variable, ≤ 14 yrs α, γ , sf bones, lung, kidney 238U4.5× 109 yrs variable, ≤ 14 yrs α, γ , sf bones, lung, kidney 237Np 2.1 × 106 yrs variable α, γ , sf bones, liver 238Pu 87.7 yrs 46.2 yrs α, γ , sf periosteum (bone surface) liver, lung, blood 239Pu 24110 yrs 100 yrs α, γ , sf periosteum (bone surface) liver, lung, blood 240Pu 6563 yrs 100 yrs α, γ , sf periosteum (bone surface) liver, lung, blood 242Pu 3.8 × 105 yrs 100 yrs α, γ , sf periosteum (bone surface) liver, lung, blood 241Am 432 yrs 84 yrs α, γ , sf bones 242Cm 163 d 162 d α, γ , sf bones, liver, lung 243Cm 29.1 yrs 15 yrs α, γ , sf bones, liver, lung 244Cm 18.1 yrs 15 yrs α, γ , sf bones, liver, lung 249Bk 320 d 316 d α, β−, γ , sf bones 252Cf 2.6 yrs 2.5 yrs α, γ , sf bones 253Es 20.5 d 20.5 d α, γ , sf bones N Critical Organs for Various Radioisotopes 359

Abbreviations sf Ð spontaneous fission EC Ð electron capture

References:

B. Lindskoug, Manual on early medical treatment of possible radiation injury, Safety series no. 47. Recommendations (IAEA, Vienna, 1978); Nuclear Instruments and Methods, Vol. 161, issue 1, p. 172 (1979) Society: www.hps.org/publicinformation/ate/ Edward Chu, Vincent T. DeVita (eds.) ’ Cancer Drug Manual Jones and Bartlett Publishers; Bk and CD-Rom edition 2007 HyperPhysics: http://hyperphysics.phy-astr.gsu.edu/Hbase/hframe.html Radiation Safety Office, G-07 Parran Hall, Pittsburgh, USA www.radsafe.pitt.edu/ManualTraining/Appendix%20C.htm U. Bertsche, Hessisches Ministerium für Umwelt, Wiesbaden, Radionuklide in der Umweltüberwachung, Medizin und Technik, (2001) It has to be mentioned that the values for the effective half-life differ in various publications. Also, the effective half-life varies for different organs and tissues. Therefore the quoted figures just give a rough idea for the effective half-life. 360 O Simplified Table of Isotopes and of Elements

The isotopes (fixed number of protons Z and variable number of neutrons) of various elements are arranged horizontally. (fixed number of neutrons N) are put vertically. In the overview table below, stable, primordial, and unstable nu- clides are displayed with different gray scales, and the cut-out tables are marked by dash-dotted frames; the latter are shown in the order from lighter to heavier isotopes, i.e. from the lower left to the upper right. In the cut-out tables the stable are highlighted by a light gray background and the primordial ones by such a background in the upper half of their small box. Magic numbers are marked by frames of bold solid lines. O Simplified Table of Isotopes and Periodic Table of Elements 361

An isotope is said to be stable, if its half-life is larger than 1010 yrs, which roughly corresponds to the . The is conserved in β decays. Such nuclear decays there- fore describe transitions in the diagonal (isobars) A = Z + N = const (β−: one isotope to the upper left; β+: one isotope to the lower right). α decays change the mass number by 4 units and the nuclear- charge number by 2 units. In the diagram these transitions are ob- tained by N = Z =−2. Decays by spontaneous fission only occur for elements with Z ≥ 90. The decay by spontaneous fission is often in competition to α decay. 362 O Simplified Table of Isotopes and Periodic Table of Elements O Simplified Table of Isotopes and Periodic Table of Elements 363 364 O Simplified Table of Isotopes and Periodic Table of Elements O Simplified Table of Isotopes and Periodic Table of Elements 365 366 O Simplified Table of Isotopes and Periodic Table of Elements

A complete overview of known isotopes is given in “Karls- ruher Nuklidkarte” from 2006 (G. Pfennig, H. Klewe-Nebenius, W. Seelmann-Eggebert, Forschungszentrum Karlsruhe 2006). Up- to-date information one finds also under e.g. www.nucleonica .net. O Simplified Table of Isotopes and Periodic Table of Elements 367 Ar Xe He Ne Rn Kr 4.00 Neon Argon 20.18 39.95 Xenon Radon 83.80 Helium 131.29 222.02 VIIIa Krypton 2 10 18 54 86 36 I F Cl Br At Lr Lu cium Iodine 19.00 35.45 79.90 VIIa 126.90 209.99 Astatine Chlorine Bromine 174.97 262.11 Lawren- 9 17 35 53 85 Lutetium 71 103 S O Se Te Po No Yb Sulfur 16.00 32.07 78.96 VIa 127.60 208.98 Oxygen 173.04 259.10 Selenium Polonium Tellurium 8 16 34 52 84 Nobelium st. 70 Ytterbium 102 P N Bi Sb As Md Tm rus 14.01 30.97 74.92 vium Va Arsenic 121.76 208.98 Bismuth Nitrogen 168.93 258.10 Phospho- Thulium 7 15 33 51 83 Mendele- 69 101 C Si Sn Ge Pb Er Fm Tin Lead nium 12.01 28.09 72.64 Silicon IVa Carbon Germa- 118.71 207.20 Erbium 167.26 257.09 Fermium 6 14 32 50 82 68 100 B In Tl Al Ga Es Ho num ium Boron 10.81 26.98 69.72 Alumi- IIIa Indium 114.82 204.38 Gallium 164.93 252.08 Thallium Einstein- 5 13 31 49 81 Holmium 67 99 Zn Cf Cd Hg Dy Zinc sium 65.39 nium IIb 112.41 200.59 Mercury 162.50 Califor- 251.08 Dyspro- Cadmium 30 48 80 66 98 Ag Rg Cu Au Bk Tb ium Gold Silver 63.55 Ib Copper 107.87 196.97 272.15 158.93 247.07 Terbium Roentgen- 29 47 79 111 Berkelium 65 97 Ni Pt Ds Pd Gd Cm ium Nickel 58.69 Darm- VIIIb 106.42 195.08 271.15 stadtium 157.25 247.07 Curium Platinum Gadolin- Palladium 28 46 78 110 64 96 Ir Co Rh Mt Eu Am ium cium 58.93 Cobalt VIIIb Iridium 102.91 192.22 268.14 Ameri- Meitner- 151.96 243.06 Rhodium 27 45 77 109 Europium 63 95 Fe Os Hs Ru Pu Sm ven. The atomic mass is weighted by the isotopic abundance in the Earth’s cru Iron 55.85 VIIIb 101.07 190.23 277.15 Osmium Hassium 150.36 244.06 26 44 76 108 Ruthenium Samarium 62 94 Plutonium Tc Re Bh Mn Np Pm nese um tium ium 54.94 97.91 VIIb Manga- 186.21 262.12 Techne- Bohrium 144.91 237.05 Rhenium Neptun- 25 43 75 107 Promethi- 61 93 U W Sg Cr Mo Nd ium num ium 52.00 95.94 VIb 183.84 263.12 Seaborg- 144.24 238.03 Tungsten Molybde- Uranium 24 42 74 106 Neodym- Chromium 60 92 V Ta Db Pr Nb Pa ium 50.94 92.91 Vb 180.95 262.11 Niobium Praseo- 140.91 231.04 Dubnium dymium Tantalum Vanadium 23 41 73 105 Protactin- 59 91 Ti Zr Rf Hf Ce Th Periodic Table of Elements 47.87 91.22 IVb 178.49 261.11 Ruther- fordium Hafnium Cerium 140.12 232.04 Titanium Zirconium Thorium 22 40 72 104 58 90 Y Sc La Ac nides num 44.96 88.91 IIIb Lantha- Yttrium 138.91 227.03 Lantha- Scandium 21 39 57-71 89-103 Actinium 57 89 Sr Be Ba Ca Ra Mg sium 9.01 24.31 40.08 87.62 IIa Magne- Barium 137.33 226.03 Radium Calcium Beryllium Strontium 4 12 20 38 56 88 H K Li Fr Cs Na Rb series series 1.01 6.94 22.99 39.10 85.47 Ia Cesium Sodium 132.91 223.02 Lithium Francium Hydrogen Rubidium Potassium 1 3 11 19 37 55 87 For each element the (top left) and atomic mass (bottom) is gi 368 P Decay-Level Schemes

In the following simplified decay-level schemes for some frequently used isotopes in the field of radiation protection are given. For the continuous electron spectra the maximum energies are given. EC stands for electron capture and ‘a’ for annum (year).

Figure P.1 Decay-level scheme of 22Na

Characteristic rays of 55Mn: Kα = 5.9keV Figure P.2 Decay-level scheme of 55Fe Kβ = 6.5keV P Decay-Level Schemes 369

Conversion electrons: K(γ1) = 0.115 MeV L(γ1) = 0.121 MeV (γ ) = . (γ ) = . Figure P.3 K 2 0 0073 MeV L 2 0 0136 MeV Decay-level scheme of 57Co K(γ3) = 0.1294 MeV L(γ3) = 0.1341 MeV

Figure P.4 Decay-level scheme of 60Co 370 P Decay-Level Schemes

Figure P.5 Decay-level scheme of 90Sr

Figure P.6 Decay-level scheme of 106Ru P Decay-Level Schemes 371

Conversion electrons: K(γ ) = 0.0625 MeV L(γ ) = 0.0842 MeV M(γ ) = 0.0873 MeV Kα Xrays:0.022 MeV Figure P.7 Kβ Xrays:0.025 MeV Decay-level scheme of 109Cd

Conversion electrons: K(γ ) = 0.624 MeV L(γ ) = 0.656 MeV

Figure P.8 Decay-level scheme of 137Cs 372 P Decay-Level Schemes

Conversion electrons: K(γ1) = 0.976 MeV L(γ1) = 1.048 MeV K(γ2) = 0.482 MeV L(γ2) = 0.554 MeV K(γ3) = 1.682 MeV L(γ3) = 1.754 MeV K(γ4) = 1.352 MeV L(γ4) = 1.424 MeV K(γ5) = 0.810 MeV L(γ5) = 0.882 MeV

Figure P.9 Decay-level scheme of 207Bi P Decay-Level Schemes 373

Conversion electrons:

K(γi ) kinematically impossible L(γ1) = 0.0210 MeV L(γ2) = 0.0039 MeV (γ ) = . L 3 0 0108 MeV Figure P.10 L(γ4) = 0.0371 MeV Decay-level scheme of 241Am 374 Q Introduction into the Basics of Mathematics

“The in preparing for his work needs three things: mathematics, mathematics, and mathematics.” Wilhelm Conrad Röntgen

Correlations and laws in natural science can most elegantly be rep- resented by diagrams and elementary mathematical functions. The description of physics relations in mere words Ð like the simple law on the between two massive bodies Ð as it was standard three centuries ago (e.g. in Newton’s Philosophiae Naturalis Prin- cipia Mathematica, 1687), is hard to understand and lacks the preci- sion of mathematical notation. On the other hand, basic mathemat- ical relations are not easily accessible to everyone, and it requires some experience and basic knowledge of getting used to them. , however, is governed by some natural laws and func- tions which cannot easily be described in words. Instead they are best represented by simple mathematical formulae. In the following, therefore, some basic concepts are explained, which are relevant for many aspects associated with radiation protection and radioactivity and which allow a precise representation of correlations and laws for data and facts.

Q.1 Derivatives and Integrals

The temporal and spatial change of a quantity is called its deriva- tive. This feature will be explained for the example of a pathÐtime diagram. Figure Q.1 shows the uniform motion of some object as a function of space x and time t. The constant slope of this line Ð expressed by the ratio x/t Ð is the constant velocity v. If the velocity is not constant, the current value of the velocity depends on the size of the finite time and space intervals t and x. Such a non-linear pathÐtime relation is plotted in Fig. Q.2. difference quotient The ratio x/t for very small values of intervals to the concept of the instantaneous velocity at the time t1. If the exact value of the velocity at the time t1 is required, one has to select infinitesi- mally small space and time intervals. To characterize such infinites- imal intervals Leibniz proposed the notation dx/dt. The quantity dx/dt therefore describes the slope of the pathÐtime relation at the Q.1 Derivatives and Integrals 375

Figure Q.1 Relation between space and time for a uniform motion Figure Q.2 Example of a non-linear relation between space and time

particular time t1, which is the instantaneous velocity at the time t1. Newton, who independently of Leibniz discovered this ‘’, introduced as notation for the time derivative a dot over the spatial symbol: x˙. Therfore we have the equivalence notation convention dx ≡˙x . (Q.1) dt Leibniz’ way to characterize the time derivative by dx/dt has advanced the development of calculus (differential and cal- culus) substantially in continental Europe, while Newton’s notation using dots on top of quantities Ð which was kept in England due to Newton’s authority Ð hindered and delayed the advancement of cal- culus significantly. This was due to the fact that Leibniz’ notation could be inverted without problems (see integration below), while this turned out to be difficult with the dot over the symbol. Presently both notations are used only for time derivatives of physical quantities. Of course, both notations are equivalent. Figure time derivative Q.2 clearly shows that for a non-linear pathÐtime relation the veloc- ity v = dx/dt changes with time. The object (e.g. a car starting at a traffic light when it turned green) accelerates from t = 0, where the acceleration is the change of velocity per time: acceleration dv acceleration a = =˙v. (Q.2) dt Starting from considerations of the difference quotient, one can derive simple rules for the way how to differentiate special func- tions. For a polynomial

x(t) = a + bt+ ct2 (Q.3) one gets dx(t) = b + 2 ct , (Q.4) dt 376 Q Introduction into the Basics of Mathematics

as can be easily seen from Figs. Q.1 and Q.2 (the slope of a constant a is zero, the slope of a linear function bt is equal to b, and the slope of a parabola ct2 is obtained to be 2 ct).1 In general, a power-law relation is differentiated as

d − tn = ntn 1 . (Q.5) dt In this rule t must not necessarily be the time, but it can be any variable. The inverse of differentiation is the integration. Let us consider the particular velocityÐtime relation v(t) = at, which is the straight line with slope a as shown in Fig. Q.3. The integral over the velocityÐtime relation in the limits from t = 0tot = t1 is the area under the curve v(t) = atin these limits, Figure Q.3 i.e. the shaded area. This can be worked out, in this example, from Example of a linear velocityÐtime the area of the rectangular triangle with the along the time axis relation t1 and the height v1 = at1 divided by 2, t at 1 1 1 = at2 . (Q.6) 2 2 1 For this operation one uses as shorthand the integral over the func- 2 integration = determination tion v = atin the limits from t = 0tot = t1: of an area  t1 t1 = 1 2 = 1 2 . atdt at at1 (Q.7) 0 2 0 2 power-law integration The general rule for integrating a polynomial reads:

 + t + t1 tn 1 1 tn 1 tn t = = 1 . d + + (Q.8) 0 n 1 0 n 1 In case of an integration without giving limits the result of the inte- gral is naturally only determined up to a constant, which can only be fixed by the integration limits (boundary conditions):  tn+1 tn dt = + const . (Q.9) n + 1

   2  2 c (t+ t )2−c (t− t )2 c (t2+t t+ t )−c (t2−t t+ t ) 1 2 2 = 4 4 = 2 ctt = t t t 2 ct 2 In general, the integral over a linear function between two arbitrary limits t1 and t2 is worked out to be:    t2 t2 1 2 1 2 1 2 1 2 2 atdt = at = at − at = a t − t . 2 2 2 2 1 2 2 1 t1 t1 Q.2 Exponential Function 377

Formally, the consistency of this prescription can be verified by differentiating the result of the integration on the right-hand side. The differentiation of a constant (in this case the integration con- stant) gives zero (a constant has no slope), and thus the initial func- tion tn is again retrieved.

Q.2 Exponential Function

In the number of decayed nuclei N is propor- radioactive decay tional to the number of existing nuclei N and the observation time t. Obviously the number of nuclei decreases by decay. This results in a minus sign as in the following relation:

N ∼−N t . (Q.10)

Since the decay rate changes in time, a differential notation is ap- propriate, dN ∼−N dt . (Q.11) The introduction of a constant of proportionality leads to the identity

dN =−λ N dt , (Q.12) where λ is the decay constant. Such a relation Ð one of the most basic differential equations Ð is solved by the so-called exponential function3 −λt N = N0 e . (Q.13) The number e, first introduced by Leonhard Euler, has the numerical value of e = 2.718 28 .... N0 denotes the number of originally existing nuclei, i.e. at t = 0. An example for the exponential function is plotted in Fig. Q.4. The exponential function describes a large number of natural processes, Figure Q.4 for example, the attenuation of γ rays in matter or the variation Example for the exponential of the atmospheric pressure with altitude. For technical reasons the variation of a quantity (e.g. decay rate) with time function e−λt is occasionally also printed as exp(−λt). The exponential function has a very remarkable property: the slope of the function et , i.e. its derivative, is also an exponential, that means, it reproduces exactly itself, properties of the exponential function d et = et . (Q.14) dt   3 dN =−λ ⇒ dN =− λ ⇒ =−λ + N dt N dt ln N t const (see also −λ + −λ Eq. (Q.25)). eln N = N = e t const = e t econst; boundary condition const −λt N(t = 0) = e = N0 ⇒ N = N0 e . 378 Q Introduction into the Basics of Mathematics

It is the only function with this astonishing feature. If there is a pa- rameter α as factor in the exponent, one has

d α α e t = α e t . (Q.15) dt In the same way the integration of the function et retrieves the ex- ponential function,  et dt = et + const , (Q.16)

rules for exponentials and correspondingly  1 αt t = αt + . e d α e const (Q.17)

The known rules for powers also apply to exponentials, e.g.

α β α+β e e = e . (Q.18)

Q.3 Natural Logarithm

It is desirable that the human senses can perceive a large dynamic 1 range of impressions. Therefore nature, or the evolution of life, has arranged that the sensual perception is proportional to the logarithm

x 0 of the stimulus (WeberÐFechner law). The logarithm is a weakly

ln rising monotonic function (Fig. Q.5). –1 The logarithm is the inverse function to the exponential. Equa- tion y = 0 123 45 e x (Q.19) x is exactly fulfilled, if Figure Q.5 y = ln x . (Q.20) Graphical representation of a logarithmic variation of a The logarithm was also the basis for slide rules, which have by quantity x now been overcome by pocket calculators. Slide rules were based on the property that the logarithm reduces multiplication to addition rules for and powers to multiplication,4

4 If one is willing to memorize a few numbers, one can easily approximate in one’s head all logarithms. For the natural logarithm one should memo- rize ln 2 = 0.6931 and ln 10 = 2.30. Thus, e.g. ln 8000 = ln 8+ln 1000 = 3ln2+ 3ln10 ≈ 2.1 + 6.9 = 9.0. Analogously, one can proceed with the common logarithm (to the base 10), if one is ready to remember just one value, namely lg 2 = 0.3010; see also Footnote 6. Q.3 Natural Logarithm 379

ln(xy) = ln x + ln y , (Q.21) x ln = ln x − ln y , (Q.22) y ln xn = n ln x . (Q.23)

A plot of the logarithmic function (Fig. Q.5) shows that its slope is large for small x and low for large x. The derivative of the loga- rithm is obtained to be5 integration and differential of the natural logarithm d 1 ln x = (seealsolnx from Fig. Q.5). (Q.24) dx x Since the integration is the inverse operation to differentiation, one has  1 dx = ln x + const . (Q.25) x With these rules also the radioactive decay law can now be un- derstood: From −λt N = N0 e (Q.26) one obtains by differentiating

dN −λ =−λ N e t =−λ N , (Q.27) dt 0 which can be rewritten as

dN =−λ N dt (Q.28)

(compare (Q.12)). One can easily recognize that the handling of differentials fol- lows the standard and normal rules of calculation. So far only the natural logarithm (to the base e) has been intro- duced. It is, however, possible to define logarithms also for other bases (e.g for the base 10: common, Briggs, or decadic logarithm).6 The fact that the logarithm linearizes powers can be used to sim- plify graphical representations. The exponential which characterizes simplifying diagrams radioactive decay, can be linearized by subdividing the axis that de- by using appropriate scales scribes the number of nuclei that have not decayed in a logarithmic fashion: Because of 5 y = ; = ; dlnx = dy = 1 = 1 = 1 = 1 e x y ln x dx dx dx dey ey x dy dy 6 The natural (or Napierian) logarithm is usually abbreviated as ln x (‘log- arithmus naturalis’); in mathematics it is frequently written as log x,even though this notation is not unique. The common, Briggs, or decadic log- arithm to the base 10 is mostly denoted by lg x. Since the natural loga- rithm has been introduced as the inverse function to the exponential, one has ln e = 1; analogously lg 10 = 1. 380 Q Introduction into the Basics of Mathematics

−λ N = N e t (Q.29) ln N0 0 and 1 ln N = ln N0 − λt (Q.30)

N(t) ln one obtains a straight line with a slope of −λ and an intersect ln N0 (Fig. Q.6). 10–1 In an analogous way powers Ð plotted on double logarithmic paper (logÐlog paper) Ð result is straight lines. The 0 123 4 t y = xn (Q.31) Figure Q.6 Linearization of an exponential in a leads to semilogarithmic plot ln y = n ln x , (Q.32) which is a straight line with slope n if both axes are subdivided logarithmically, i.e. if ln y is plotted against ln x.

“Don’t worry, it takes an infinite amount of time to sink completely.” © by Claus Grupen 381 Further Reading

Literature on the History of Radioactivity and on Interactions of Radiation with Matter

W. C. Röntgen “A New Type of Radiation”; in German: “Eine Neue Art von Strahlen”, Sitzungsberichte der Würzburger Physik.-medic. Gesellschaft, Würzburg (1895) 1Ð12 H. A. Becquerel “Sur les radiations invisibles émises pars les corps phosphorescents” (About the invisible radiation emitted from phosphorescent bodies), Les Comptes Rendus de l’Académie des de Paris 122, 501Ð503 (1896) P. Curie, Mme. M. Curie, and G. Bémont “Sur une nouvelle substance fortement radio-active, contenue dans la pechblende (On a New, Strongly Radio-active Substance Contained in Pitch- blende”), Comptes Rendus de l’Académie des Sciences, Paris (1898) (26 December), Vol. 127, pp. 1215Ð1217. H. A. Becquerel “On Radioactivity, a New Property of Matter”, Nobel-Lectures in Physics (1901Ð1921), Elsevier Publishing Company, Amsterdam (1967) P. Curie “Radioactive Substances, Especially Radium”, Nobel-Lectures in Physics (1901Ð1921), Elsevier Publishing Company, Amsterdam (1967) Mme P. Curie Marie Sklodowska “Traité de Radioactivité” (Treatise on Radioactivity), Gauthier- Villars, Paris (1910) M. Curie “Radioactivity”; in German: “Die Radioaktivität”, Akad. Verlagsgesellschaft, Leipzig (1912) M. Curie “Radium and the New Concepts in Chemistry”, Nobel-Lectures in Chemistry (1901Ð 1921), Elsevier Publishing Company, Amsterdam (1967) E. Rutherford “Radioactive Substances and their Radiations”; in German: “Radioaktive Sub- stanzen und ihre Strahlungen”, in E. Marx “Handbuch der Radiologie”, Akad. Verlagsgesellschaft, Leipzig (1913) F. Soddy “Chemistry of Radioelements”; in German: “Chemie der Radioelemente”, Verlag. J. A. Barth, Leipzig (1914) K. W. Kohlrausch, eds. W. Wien, F. Harms “Radioactivity”, in German: “Radioaktivität”, Akad. Verlagsgesellschaft, Leipzig (1928) 382 Further Reading

R. D. Evans “The ”, McGraw-Hill Book Co., New York (1955) K. Siegbahn “Alpha-, Beta- and -Ray ”, Vol. 1/2, North-Holland, Amster- dam (1968) H. F. “Fundamentals of Radiation Protection”, John Wiley & Sons, New York (1969) P. Marmier, E. Sheldon “Physics of Nuclei and Particles”, Academic Press, New York (1969) A.Martin,S.A.Harbison“An Introduction to Radiation Protection”, J. W. Arrowsmith Ltd., Bristol (1986) W. S. C. Williams “Nuclear and Particle Physics”, Clarendon Press, Oxford (1991) J. E. Martin “Physics for Radiation Protection”, John Wiley & Sons, New York (2000) G. I. “Invisible Rays: A History of Radioactivity”, Sutton Publishing, Phoenix Mill, Eng- land (2002) B. R. Martin “Nuclear and Particle Physics”, John Wiley & Sons, The Atrium, Chichester, England (2005) J. Magill, J. Galy “Radioactivity – – Radiation. Featuring the Universal Chart: With the Fold-out Karlsruhe Chart of the Nuclides”, Springer, Berlin, Heidelberg (2005) “Review of Particle Properties”, Eur. Phys. J. C15 (2000), K. Hagiwara et al., Phys. Rev. D66 (2002) 010001; http://pdg.web.cern.ch/pdg/; W.-M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33 (2006) 1Ð1232; http://pdg.lbl.gov “Radiation Protection”, http://web.wn.net/~usr/ricter/web/radpro.html M. F. L’Annunziata “Radioactivity: Introduction and Early History”, Elsevier Science, Amster- dam (2007)

Literature on Radiation Detectors and Radiation Protection

C. B. Braestrup, H. O. Wyckoff “Radiation Protection”, Charles Thomas, Springfield (1958) W. J. Price “Nuclear Radiation Detectors”, McGraw-Hill Book Co., New York (1964) W. H. Tait “Radiation Detection”, Butterworths, London (1980) D. C. Stewart “Handling Radioactivity”, John Wiley & Sons, New York (1981) J. R. Greening “Fundamentals of Radiation ”, Taylor and Francis, London (1985) R. L. Kathren “Radiation Protection”, Taylor and Francis, London (1985) J. E. Turner “Atoms, Radiation, and Radiation Protection”, Pergamon Press, New York (1986); “Atoms, Radiation, and Radiation Protection”, Wiley-VCH, Weinheim (1995 and 2007) S. E. Hunt “ for Engineers and Scientists”, John Wiley & Sons, New York (1987) K. R. Kase et al. “The Dosimetry of Ionizing Radiation”, Academic Press, San Diego (1990) Further Reading 383

M. Oberhofer “Advances in Radiation Protection” Kluwer Academic Publishers Group, Dordrecht (1991) C. F. G. Delaney, E. C. Finch “Radiation Detectors”, Oxford Science Publ., Clarendon Press, Ox- ford (1992) W. R. Leo “Techniques for Nuclear and Particle Physics Experiments”, Springer, Berlin (1994) W. H. Hallenbeck “Radiation Protection”, Taylor and Francis, London (1994) G. Gilmore, J. Hemingway “Practical Gamma-Ray Spectrometry”, John Wiley & Sons, New York (1995) C. Grupen “Particle Detectors”, Cambridge University Press, Cambridge (1996) M. C. O’Riordan (ed.) “Radiation Protection Dosimetry. Becquerel’s Legacy: A Century of Ra- dioactivity”, Publishing, London (1996) J. Sabol, P. S. Weng “Introduction to Radiation Protection Dosimetry”, World Scientific, Singa- pore (1996) G. F. Knoll “Radiation Detection and Measurement”, John Wiley & Sons, New York (1999); Wiley Interscience, New York (2000) R. K. Bock, A. Vasilescu “The BriefBook”, Springer, Berlin, Heidelberg (1999, 2007); On-line version: http://rkb.home.cern.ch/rkb/titleD.html D. Green “The Physics of Particle Detectors”, Cambridge University Press, Cambridge (2000) F. A. Smith “A Primer in Applied Radiation Physics”, World Scientific, Singapore (2000) J. E. Martin “Physics for Radiation Protection: A Handbook”, Wiley-VCH, Weinheim (2006) A.Martin,S.A.Harbison“An Introduction to Radiation Protection”, Oxford University Press, A Hodder Arnold Publication, New York City (2006) K. Kleinknecht “Detectors for ”, Cambridge University Press, Cambridge (2007) Syed Naeem Ahmed, “Physics & Engineering of Radiation Detection”, Elsevier, Amsterdam (2007) M. W. Charles, J. R. Greening “Fundamentals of Radiation Dosimetry, Third Edition”, Taylor and Francis, London (2008) C. Grupen, B. Shwartz “Particle Detectors”, 2nd edition, Cambridge University Press, Cambridge (2008) International Commission on Radiation Units and Measurements (ICRU) www.icru.org/ic_ basic.htm 384 Further Reading

Literature on Technical Aspects of Radiation Protection and Radiation- Protection Regulations

See also references in Chap. 6 on ‘International Safety Standards for Radiation Protection’. K. L. Miller and W. A. Weidner “CRC Handbook of Management of Radiation Protection Pro- grams” 3. edition, CRC Press, Boca Raton, Florida (1986) and later editions “Council Directive 96/29/EURATOM (1996) laying down basic safety standards for the protec- tion of health of workers and the general public against the dangers arising from ionizing ra- diation”, The Council of the European Union, http://eur-lex.europa.eu/LexUriServ /site/en/consleg/1996/L/01996L0029-20000513-en.pdf (1996) “Council Directive 97/43/EURATOM (1997) on health protection of individuals against the dangers of ionizing radiation in relation to medical exposures” http://ec.europa.eu/en ergy/nuclear/radioprotection/doc/legislation/9743_en.pdf J. S. Walker “Permissible Dose” Univ. California Press, Berkeley (2000) Health and Safety Executive “Work with Ionising Radiation; Ionising Radiations Regulations 1999: Approved Code of Practice” HSE Books, Norwich, England (2000) E. Seeram “Rad Tech’s Guide to Radiation Protection (Rad Tech Series)” Wiley-Blackwell, Malden, Massachusetts, 1. edition (2001) J. Shapiro, “Radiation Protection: A Guide for Scientists, Regulators and Physicians” 4. edition, Harvard University Press, Cambridge, Massachusetts (2002) Organization for Economic Co-Operation and Development, “Nuclear legislation. Analytical study. Regulations governing nuclear installations and radiation protection”, OECD Nuclear Energy Agency, Paris (2003) “Handbook for Implementation of EU Environmental Legislation – Nuclear safety and radiation protection”, http://ec.europa.eu/environment/enlarg/handbook/ nuclear.pdf (last update 2006) US Environmental Protection Agency “Radiation Protection” www.epa.gov/radiation/ (last update 2007) L. A. Burchfield, “Radiation Safety, Protection and Management: For Homeland Security and Emergency Response”, Wiley-Interscience, New York (2008) The International Commission on Radiological Protection, ICRP; www.icrp.org/ (2008)

Literature on Environmental Radioactivity

A. W. Wolfendale “Cosmic rays”, George Newnes Ltd., London (1963) J. R. Cooper, K. Randle, R. S. Sokhi “Radioactive Releases in the Environment: Impact and Assessment”, John Wiley & Sons Inc., New York (1969) Further Reading 385

O. C. Allkofer “Introduction to Cosmic Radiation”, Thiemig, München (1975) L. M. Libby “The Uranium People”, Crane Russak, New York (1979) A. W. Klement (ed.) “CRC Handbook on Environmental Radiation”, CRC Press, Boca Raton (1982) M. Eisenbud “Environmental Radioactivity”, Academic Press, Orlando (1986) R. L. Kathren “Radioactivity in the Environment”, Harwood Acad. Publ., New York (1986) C. R. Cothern et al. “Environmental Radon”, Plenum Press, New York (1987) M. Eisenbud “Environmental Radioactivity from Natural, Industrial and Military Sources”, Academic Press, New York (1987) R. F. Mould “. The Real Story”, Pergamon Press, Oxford (1988) V. M. Chernousenko “Chernobyl”, Springer, Berlin (1991) R. Bertell “No Immediate Danger – Prognosis for a Radioactive Earth”, The Book Publ. Comp., Summertown, Tn. (1995) R. Tykva & J. Sabol “Low-Level Environmental Radioactivity: Sources and Evaluation”, Tech- nomic Publishing, Basel (1995) M. Eisenbud & Th. F. Gesell “Environmental Radioactivity”, Academic Press, San Diego (1997) L. I. Dorman “Cosmic Rays in the Earth’s Atmosphere and Underground”, Kluwer Academic Publishers, Dordrecht (2004)

Literature on Biological Effects and Applications of Radiation

W. D. Claus (ed.) “Radiation Biology and Medicine”, Addison-Wesley, Reading (1958) W. V. Mayneord “Radiation and Health”, The Nuffield Provincial Hospital Trust (1964) G. Z. Morgan, J. E. Turner “Principles of Radiation Protection, A Textbook of Health Physics”, John Wiley & Sons, New York (1967) T. D. Luckey “Hormesis with Ionizing Radiation”, CRC Press, Boca Raton, Florida (1980) N. A. Dyson “Nuclear Physics with Applications in Medicine and Biology”, John Wiley & Sons, New York (1981) United Nations “Ionizing Radiation: Sources and Biological Effects”, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, New York (1982) J. E. Coggle “Biological Effects of Radiation”, Taylor & Francis, London (1983) J. D. Boice Jr., J. F. Fraumeni Jr. “Radiation . Epidemiology and Biological Sig- nificance”, Progress in and Therapy, Vol. 26, Raven Press, New York (1984) 386 Further Reading

W. R. Hendee “Health Effects of Low Level Radiation”, Appleton-Century-Crofts, Norwalk, Conn. (1984) F. Sauli “Applications of Gaseous Detectors in , Medicine and Biology”, Nucl. In- str. Meth. A323 (1992) 1 N. A. Dyson “Radiation Physics with Applications in Medicine and Biology”, Ellis Horwood, New York (1993) R. Wootton (ed.) “Radiation Protection of Patients”, Cambridge University Press, Cambridge (1993) M. E. Noz, G. Q. Maguire Jr. “Radiation Protection in Health Science”, World Scientific, Singa- pore (1995) P. F. Sharp, H. G. Gemmell, F. W. Smith “Practical Nuclear Medicine”, Oxford University Press, Oxford (1998) W. R. Hendee (ed.) “Biomedical Uses of Radiation”, Wiley-VCH, Weinheim (1999) N. Birsen and K. K. Kadyrzhanov (eds.) “Environmental Protection Against Radioactive Pollu- tion” Kluwer Academic Publishers, Dordrecht (2002) C. J. Martin, D. G. Sutton “Practical Radiation Protection in Healthcare”, Oxford University Press, Oxford (2002) S. Forshier “Essentials of Radiation Biology and Protection”, Delmar Thomson Learning, Flo- rence, USA (2002) S. R. Cherry, J. Sorenson, M. Phelps “Physics in Nuclear Medicine”, Saunders/Elsevier Science, Philadelphia, Pa. (2003) F. M. Khan “The Physics of ”, Lippincott Williams & Wilkins, Philadelphia, Pa. (2003) C. J. Martin “ and Radiation Protection”, John Wiley & Sons, New York (2003) M. H. Lombardi “Radiation Safety in Nuclear Medicine”, Taylor & Francis Ltd, London (2006) P. J. Hoskin “Radiotherapy in Practice: Radioisotope Therapy”, Oxford University Press, Oxford (2007) M. G. Stabin “Radiation Protection and Dosimetry: An Introduction to Health Physics”, Springer, Heidelberg (2007) J. V. Trapp, T. Kron “An Introduction to Radiation Protection in Medicine”, Institute of Physics Publishing, Bristol (2008); Taylor and Francis, London (2007) M. E. Noz, G. Q. Maguire “Radiation Protection in the Health Sciences”, World Scientific, Singapore (2007) S. Forshier “Essentials of Radiation Biology and Protection”, 2. edition, Cengage Learning Services, Delmar (2008) Further Reading 387

“Radiation and Health Physics”, www.umich.edu/~radinfo/ “Health Physics/Radiation Protection”, www.umr.edu/~ehs/radiological.htm International Commission on Radiological Protection (ICRP), www.icrp.org/

Literature on Plants

S. Glasstone “Principles of Engineering”, D. van Nostrand Comp., Princeton (1955) S. Villani (ed.) “Uranium Enrichment”, Springer, Heidelberg (1979) W. Marshall “Nuclear Power Technology”, Vol. 1: Reactor Technology, Vol. 2: Cycle, Vol. 3: Nuclear Radiation, Clarendon Press, Oxford (1983) E. Pochin “Nuclear Radiation: Risks and Benefits”, Clarendon Press, Oxford (1983) B. Ma “Nuclear Reactor Materials and Applications”, Van Nostrand Reinhold Comp., New York (1983) J. G. Collier, G. F. Hewitt “Introduction to Nuclear Power”, Taylor and Francis, Abingdon, UK (1987) R. L. Murray “Nuclear Energy”, Pergamon Press, New York (1988) Uranium Institute “The Safety of Nuclear Power Plants” Uranium Institute, London (1988) C. Salvetti, R. A. Ricci, E. Sindoni (eds.) “Status and Perspectives of Nuclear Energy: Fission and Fusion”, North-Holland, Amsterdam (1992) R. Murray “Nuclear Energy”, Pergamon Press, Oxford (1993) D. Bodansky “Nuclear Energy, Principles, Practices, and Prospects”, American Institute of Physics, Woodbury, New York (1996) R. Murray “Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes”, Butterworth-Heinemann (Reed Elsevier Group), Woburn, USA (2001) W. M. Stacey “”, Wiley, New York (2001) R. E. H. Clark, D. H. Reiter (eds.) “ Research”, Springer Series in , Vol. 78, New York (2005) K. Miyamoto “Plasma Physics and Controlled Nuclear Fusion”, Springer Series on Atomic, Op- tical, and Plasma Physics, Vol. 38, New York (2005) L. C. Woods “Theory of Transport: New Aspects for Nuclear Fusion Reactor Design”, Wiley, New York (2005) I. Hore-Lacy “Nuclear Energy in the 21st Century: World Nuclear University Press”, Academic Press, New York (2006) 388 Further Reading

A. M. Herbst and G. W. Hopley “Nuclear Energy Now: Why the Time Has Come for the World’s Most Misunderstood Energy Source”, Wiley, New York (2007) Watt Committee Energy “Nuclear Energy: A Professional Assessment”, Taylor and Francis, Abingdon, UK (2007) D. Bodansky “Nuclear Energy: Principles, Practices, and Prospects”, 2. edition, Springer, New York (2008)

Literature on Radiation Sources

M. Oberhofer “Safe Handling of Radiation Sources”, Verlag K. Thiemig, München (1982) United Nations Publication “Ionizing Radiation Sources and Biological Effects”, Renouf Publ. Co. Ltd., United Nations Publications, Geneva (1982) F. D. Sowby “Protection Against Ionizing Radiation from External Sources Used in Medicine” Elsevier Science and Technology, Amsterdam (1982) W. Scharf “Particle Accelerators”, Applications in Technology and Research, John Wiley & Sons Inc., New York (1989) H. Bergmann, H. Sinzinger (eds.) “Radioactive Isotopes in Clinical Medicine and Research”, Birkhäuser, Basel (1995) National Research Council, Committee On Biomedical Institute Of Medicine, F. J. Manning (eds.) “Isotopes for Medicine and the Life Sciences”, National Academy Press, Washington (1995) F. Hinterberger “Physics of Particle Accelerators”, in German: “Physik der Teilchenbeschleu- niger”, Springer, Heidelberg (1997) R. B. Firestone, “Table of Isotopes, 2 Volume Set”, John Wiley & Sons, New York (1998) E. J. Morton “Radiation Sources and Radiation Interactions” SPIE Press, Colorado (1999) K. Wille “The Physics of Particle Accelerators”, Oxford University Press, Oxford (2000) United Nations Scientific Committee on the Effects of Atomic Radiation “Sources and Effects of Ionizing Radiation: Sources”, Stationery Office Books, Norwich, UK (2001) V. Vylet, G. Stevenson “Accelerator Radiation Protection”, Ramtrans Publishing, Ashford, Eng- land (2001) G. Faure, T. M. Mensing “Isotopes: Principles and Applications”, John Wiley & Sons, New York (2004) B. Fry “Stable Isotope Ecology”, Springer, Heidelberg (2006) H. Wiedemann (ed.) “Advanced Radiation Sources and Applications”, Proceedings of the NATO Advanced Research Workshop, held in Nor-Hamberd, Yerevan, Armenia (2004), Nato Science Se- ries, Springer, Dordrecht (2006) H. Wiedemann “ Physics”, Springer, Berlin (2007) Further Reading 389

Literature on Non-Ionizing Radiation

J. Law and J. W. Haggith “Practical Aspects of Non-ionizing Radiation Protection”, Hilger in collaboration with the Hospital ’ Association, Bristol (1982) R. Doll “Electromagnetic Fields and the Risk of Cancer: Report of an Advisory Group on Non-ionising Radiation”, National Radiological Protection Board (NRPB), London (1992) D. Hughes “Management of Protection Against Ionising and Non-ionising Radiations”, Hyper- ion Books, New York (1995) European Communities “Non-ionizing Radiation”, European Communities, Luxembourg (1997) R. Matthes, J. H. Bernhardt & A. F. McKinlay (eds.) “Guidelines on Limiting Exposure to Non- Ionizing Radiation: A Reference Book”, International Commission on Non-Ionizing Radiation Protection, Oberschleissheim (2000) IARC (International Agency for Research on Cancer) and WHO “Non-Ionizing Radiation, Part 1: Static and Extremely Low- (ELF) Electric and Magnetic Fields”, (IARC Mono- graphs) World Health Organisation (2002) A. W. Wood & C. Roy “Non-Ionizing Radiation Protection”, Wiley-Interscience, New York (2005, 2008)

Tables of Isotopes and Nuclear Data Sheets

C. M. Lederer, V. S. Shirley “Table of Isotopes”, John Wiley & Sons, New York (1979) R. C. Weast, M. J. Astle (eds.) “Handbook of Chemistry and Physics”, CRC Press, Boca Raton (1986) and following editions, 87th edition (2007) E. Browne, R. B. Firestone, V. S. Shirley “Table of Radioactive Isotopes”, John Wiley & Sons, New York (1986) G. Pfennig, H. Klewe-Nebenius, W. Seelmann-Eggebert “Karlsruher Nuklidkarte”, Forschungs- zentrum Karlsruhe 1995, New edition at Marktdienste Haberbeck, Lage, Germany (2006) Particle Data Group “Review of Particle Properties”, Eur. Phys. J. C15 (2000); K. Hagiwara et al., Phys. Rev. D66 (2002) 010001; http://pdg.web.cern.ch/pdg/; W.-M. Yao et al. J. Phys. G: Nucl. Part. Phys. 33 (2006) 1Ð1232; http://pdg.lbl.gov “Applied Nuclear Physics Data”, http://atom.kaeri.re.kr/, http://isotopes .lbl.gov/education 390 Photo Credit for Commercial Products and other Copyrighted Material

We would like to thank the following companies and institutions for providing photographic mate- rial, images, and diagrams:

AEA Technology QSA GmbH see QSA Global GmbH

AREVA Saint-Quentin-Yvelines, Cedex, France 1, rue des Hérons 78182 Saint-Quentin-Yvelines Cedex France www.sogefibre.com

Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 USA www.anl.gov/ see also www.chemcases.com/nuclear/nc-05.htm automess Automation und Me§technik GmbH Daimlerstrasse 27 68526 Ladenburg Germany www.automess.de/

BAM Federal Institute for Materials Research and Testing Unter den Eichen 44Ð46 D-12203 Berlin Germany www.tes.bam.de/e_ram/pdf/BAM-PM_16-78.pdf www.tes.bam.de/ram/bauart/bauart-2.htm Photo Credit for Commercial Products and other Copyrighted Material 391

BERTHOLD TECHNOLOGIES GmbH & Co. KG Calmbacher Strasse 22 75323 Bad Wildbad Germany Berthold Technologies U.S.A. LLC 99 Midway Lane, Oak Ridge, TN 37830 USA Representatives in 8 countries www.berthold.com

BICRON RADIATION MEASUREMENT PRODUCTS 6801 Cochran Road Solon, Ohio 44139, USA

Budker Institute Novosibirsk Dr. Boris Shwartz Novosibirsk, Russia www.ipp.ac.cn/qy/WS97/node252.html

Canadian Centre for Occupational Health and Safety 135 Hunter Street East Hamilton ON Canada L8N 1M5 www.ccohs.ca/ see also www.ccohs.ca/oshanswers/phys_agents/ultravioletradiation.html

Canberra Eurisys GmbH Walter-Flex-Strasse 66 65428 Rüsselsheim Germany Canberra Industries, Inc. 800 Research Parkway Meriden, Connecticut 06450 USA www.canberra.com Many international representatives (75) to be found under: www.canberra.com/about/default.asp

CERN European Centre for Particle Physics CH-1211 Geneva 23 Switzerland www.cern.ch 392 Photo Credit for Commercial Products and other Copyrighted Material

Cole-Parmer Instrument Company 625 East Bunker Court Vernon Hills Illinois 60061 USA www.coleparmer.com/ Representatives in Canada, China, , and India to be found under: www.coleparmer.com/catalog/login.asp

Culham Science Centre Abingdon, Oxon OX14 3DB England www.nda.gov.uk/sites/culhamjet/

Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland www.epfl.ch/index.en.html

EG&G Berthold GmbH & Co. KG Calmbacher Strasse 22 75312 Bad Wildbad Germany American Laboratory Trading LLC 70 Bridge Street Groton, CT 06340 USA www.americanlaboratorytrading.com/product-details-EGG-Berthold- 140095-1157-4965.html

ESM Eberline Instruments GmbH, Thermo Fisher Scientific Inc. 81 Wyman Street Waltham, MA 02454 USA www.thermo-esm.com

Freiwillige Feuerwehr E§feld e.V. D-97232 E§feld Germany www.ffwessfeld.de/ Photo Credit for Commercial Products and other Copyrighted Material 393

GRAETZ Strahlungsmesstechnik GmbH Westiger Strasse 172 58762 Altena Germany www.graetz.com/

GSF Ð Forschungszentrum für Umwelt und Gesundheit GmbH GSF National Research Center for Environment and Health in the Helmholtz Association Ingolstädter Landstrasse 1 85764 Neuherberg Germany www.gsf.de/

Harshaw TLD see Thermo Scientific www.thermo.com/com/

ICx Radiation GmbH (former: target systemelectronic GmbH) Kölner Strasse 99 42651 Solingen Germany 100 Midland Road Oak Ridge, Tennessee 37830 USA www.icx-radiation.de/ Headquarters ICx Technologies 2100 Crystal Drive Arlington, VA 22202, USA

JL Goslar, Kerntechnik und Strahlenschutz Im Schleeke 108 D-38640 Goslar Germany www.jlgoslar.de

Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94551 USA www.llnl.gov/ 394 Photo Credit for Commercial Products and other Copyrighted Material

L. Meitner and K. Freitag Zeitschrift für Physik, Vol. 37, page 481 (1926) also in K.W.F. Kohlrausch ’Radioaktivität’, page 478; Akademische Verlagsgesellschaft, Leipzig 1928 www.aka-verlag.com/ mab Strahlenmesstechnik Neuer Höltigbaum 30 D-22143 Hamburg Germany www.pmabode.de

Materialprüfungsamt Nordrhein-Westfalen Marsbruchstrasse 186 D-44287 Dortmund Germany www.mpanrw.de/start.html

Mini Instruments Perspective Instruments Ltd Pinewood 61 Folly Lane, Shaw Wiltshire SN12 8HB England www.perspectiveinstruments.co.uk/

Oxford Technologies Ltd 7 Nuffield Way Abingdon Oxon, UK OX14 1RJ www.oxfordtechnologies.co.uk

PTWÐFreiburg PhysikalischÐTechnische Werkstätten Dr. Pychlau GmbH Lörracher Strasse 7 79115 Freiburg Germany www.ptw.de

QSA Global GmbH Gieselweg 1 38110 Braunschweig Germnay Photo Credit for Commercial Products and other Copyrighted Material 395

QSA Global Inc. 40 North Avenue Burlington, MA 01803 USA Sales offices also in France and Honk Kong www.qsa-global.de www.isotrak.de

RadiologyInfoTM www.radiologyinfo.org [email protected] [email protected]

Radon Lab Forskningsveien 3 B 0373 Oslo Norway www.radonlab.net/tracketch.htm

RADOS Technology GmbH Ruhrstrasse 49 D-22761 Hamburg Germany World Headquarters Bishop Ranch 8 3000 Executive Parkway Suite 220 San Ramon, CA 94583 USA www.rados.com www.mirion.com/index.php?p=dosimetry_division Many international representatives (21) to be found under: www.mirion.com/index.php?p=locations#noram

S.E.A. GmbH (Strahlenschutz- Entwicklungs- und Ausrüstungs-Gesellschaft) Ortsdamm 139 48249 Dülmen Germany www.sea-duelmen.de

Siemens Healthcare Wittelsbacherplatz 2 80333 München Germany Representatives in 35 countries www.medical..com/ 396 Photo Credit for Commercial Products and other Copyrighted Material

Strahlenzentrum of the Justus-Liebig University Giessen Leihgesterner Weg 217 35392 Giessen Germany www.strz.uni-giessen.de/

Synchrotron Radiation Angiography (St. Fiedler) Inc. University of Saskatchewan 101 Perimeter Road Saskatoon, SK. Canada, S7N 0X4 www.lightsource.ca/ www.lightsource.ca/bioimaging/Saskatoon_2004_sf.pdf

Terra Universal, Inc. 800 S. Raymond Avenue, Fullerton, CA 92831 USA www.terrauniversal.com Many international representatives (21) to be found under: www.terrauniversal.com/international/localreps.shtml

Thermo Eberline ESM Frauenauracher Strasse 96 91056 Erlangen Germany www.esm-online.de/

Thermo Fisher Scientific Inc. 81 Wyman Street Waltham, MA 02454 USA www.thermo.com/ Many international representatives (209) to be found under: www.thermo.com/com/cda/article/general/1,,882,00.html

US Department of Energy Office of Civilian Management Yucca Mountain Project 1551 Hillshire Drive Las Vegas, NV 89134 USA www.ocrwm.doe.gov/contact/index.shtml www.ocrwm.doe.gov/factsheets/doeymp0010.shtml Photo Credit for Commercial Products and other Copyrighted Material 397

VacuTec Me§technik GmbH Dornblüthstrasse 14 D-01277 Dresden Germany www.e-meditec.de/firm05/vacutec_messtechnik_4508.htm

Wikipedia http://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator http://commons.wikimedia.org/wiki/Image:Coolidge_xray_tube.jpg http://en.wikipedia.org/wiki/Radium_Girls

This list has been checked early in 2009. Many companies occasionally change their name and can no longer be found easily. The ‘Supplier Name Change’ list helps to locate the companies with their new names. This list can be found under www.purchasing.upenn.edu/buyinfo/suppliers/name_changes.php.

399 Index∗

abbreviations, 340 Ð beyond-design, 283 Ð measurement, 55, 62, 64, 65, absorber, 33, 37, 38, 43Ð45, 72, Ð category, 115 83, 130, 174 279 Ð design-based, 124, 289 Ð specific, 15, 47, 48, 130, 189, Ð lead, 39 Ð dosimetry, 76, 77, 98, 279 280 Ð rod, see Ð large serious, 115 Ð time dependence, 137 absorption, 37, 42, 43, 53, 61, 84 Ð limit, 289 adhesive tapes, 81 Ð α rays, 35, 38 Ð radiation, 279, 310 AERB, 101, 102 β Ð rays, 37, 52, 251, 252 Ð Tokaimura, 233 aerosol, 280 Ð coefficient, see mass absorption accidental dose, 115 Ð filter, 280 coefficient accidental exposure, 92, 236 Ð radioactive, 182 Ð Ð energy, 293 accidental irradiation, 235 AIDS, 225 Ð Ð , 191 accounting, 112 air Ð Compton, 43, 45, 46 accuracy of measurement, 78 Ð accidents, 235 Ð edge, 43 acquisition of radioactive material, Ð discharged, 331 Ðenergy,7 112, 129 Ð , 280 Ð factor, 252 actinides, 279 airborne radioactivity, 280 Ð full, peak, 295 actinium, 178 Ðarea,97 Ð γ rays, 13, 42, 51, 52, 276 Ð decay chain, 349 ALARA principle, 91, 95, 280 Ð in lead, 42, 44, 46 279 albedo Ð law, 251, 271 activation, 149, Ð dosimeter, 75, 79 Ð Ð empirical, 271 Ð analysis, 280 Ð factor, 280 Ð measurement, 38, 52 Ð blood, 77, 283 Ð radiation, 212, 215 Ð hair, 76, 297 alerter, dose, 290 Ð rate, specific, 244 Ð neutron, 191, 201, 205, 304 Ð rate, 291 Ð , 306 Ð product, 156, 280 ALI levels, 107 Ðself,315 activity, 4, 5, 12, 14, 18, 29, 47, alpha abundance, isotopic, 28, 109, 207, 48, 61, 77, 80, 81, 83, 85, 89, Ð decay, 23, 280 300 109, 112Ð114, 118, 133, 137, Ð emitter, 117, 178 acceleration, 375 138, 141, 254Ð258, 270Ð272, Ð particle, 9, 10, 23, 32Ð35, 60, accelerator, 38, 71, 120, 121, 143, 275, 280 70, 76, 83, 261 184, 279 Ð absolute, 25, 181 Ð Ð range, see range, α particles Ð circular (ring), 145, 314 Ð body, 80 Ð -ray spectroscopy, 58 Ð linear, 39, 145, 302 Ð concentration, 137, 280, 331 Ð rays, 2, 7, 38, 57, 61, 63, 66, 79, Ð proton, 133, 140 Ð Ð maximum permitted, 329 117 accident, 18, 76, 92, 115, 179, Ð determination of, 85 Ð Ð absorption, 35, 38 205, 229, 235, 236 Ð γ , 261 Ð Ð energy spectrum, 23 ∗ Pages in italics refer to the glossary. 400 Index

AmÐBe source, see americiumÐ Ð supervised (surveyed), 91, 113, backscatter beryllium source 117, 317, 335 Ð method, gamma-, 180 ambient dose, 280 Ð unrestricted, 319 Ð peak, 282 Ð rate, 14, 280 areal , 245 backscattering, 85 American Directive, 90, 93 ARPANS, 99 Ð Compton, 286 americium, 139 artificial radioactivity, 2 badge, film, see film badge Ð 241, decay-level scheme, 373 asymmetric fission, 249 barium, 21, 28, 132, 152, 177 Ð Ðberyllium source, 26 atmosphere shielding effect, 171 barn, 40 amplification factor, neutron, 304 atom, 281 beam analysis, activation, 280 Ð diameter, 19 Ð dump, 157 angiography, 147, 280 Ð target, 31 Ð loss, 157 , 66, 147, 190, 281 atomic beams Ðpair,307 Ð , 281 Ð electron, 146, 156 Ð photon, 67 Ðenergy,281 Ð heavy-ion, 200, 201 Ð radiation, 281 Ð legislation, 281 Ð , 146 annual dose, 52, 55 Ð mass, 19 Ð photon, 146 Ð limit, 91, 93, 94 Ð Ð unit, unified, 338 Ð proton, 156 Ð whole-body, exceeding, 114 Ð nucleus, 19, 27, 28, 35, 169, becquerel (Bq), 4, 270, 282 annual intake, 281 249, 255, 281 Becquerel, H. A., 1, 2 ANSTO, 99 Ð number, 19, 28, 38, 43, 164, beta 180 antenna, mobile phone, 244, 245 Ð decay, 20Ð22, 26, 54, 282 Ð pile, 281 anti-static materials, 178 Ð Ð double, 291 Ð shell, 28 , 190, 281 Ð emitter, 23, 78, 117 attenuation + antineutrino, electron, 20 ÐÐ β ,20 Ð coefficient, see mass attenuation − , 226 ÐÐ β ,20 coefficient appropriate authority, 82 Ð Ðgamma coincidence method, Ð factor, 162 appropriate dosimetric service, 92 25 Ð law, 271 approval of design, 112, 113, 122, Ð rays, 2, 7, 14, 52, 57, 60, 61, 63, ÐÐ forβ rays, 251 160 66, 73, 227, 261, 282 ÐÐ forγ rays, 42, 271 approved occupational health Ð Ð absorption, 37, 52, 251, 252 Auger services, 92 Ðeffect,282 Ð Ð attenuation law, 251 approving organizations, 95, 122 Ð electron, 27, 28, 45 Ð Ð dose constant, 12 apron, leadÐrubber, 160 Australia, 98 Ð Ð range, see range, electrons aquifer storage, 281 authority Ð spectra, 20, 22 area, see also radiation area Ð appropriate, 82 , 282 Ð contamination, 97 Ð approving, 122 betavoltaic microbatteries, 154 Ð controlled, see controlled area Ð competent, 112, 114, 115 BetheÐBloch relation, 32, 282 Ð , 84 authorized , 128, 282 BetheÐWeizsäcker formula, 283 Ð exclusion, 92, 113, 124, 293 average dose equivalent, 12 , 27, 28, 249, 283, Ð high-contamination, 97 average radiation exposure, 11 305 Ð high-radiation, 97 averted dose, 282 Ð per nucleon, 190 Ð monitoring, 113 Avogadro constant, 15, 47, 338 biodiversity, 173, 283 Ð product with dose, 165 avoidance of , 38 biokinetics, 283 Ð radiation protection, 114, 184 biological Ð radioactive-material, 97 background, 77 Ð damage, 22 Ð radiological, 97 Ðeffect,68 Ð effect, 7, 8, 212, 213 Ð restricted, 124, 314 Ð radiation, 282 Ð effectiveness, 7, 41, 52, 54, 117, Ð special radiological, 97 Ð rate, 68, 141, 282 313 Index 401

Ð half-life, 18, 217, 270, 283, 297 calibration, 76, 82 cellular phone, 284, see also Ð repair mechanisms, 7, 35 Ð of detectors, 82 mobile phone Ð shield, 283 Ð radiation, 152, 284 Ðnetwork,285 bismuth 207, decay-level scheme, Ð source, 112 cementation, 285 372 Canada, 100 ceramic material, 139 bituminization, 283 cancer, 175, 214 cesium, 14, 21, 22, 29, 112, 132, blackening of film badges, 72 Ð bronchi, 183, 221 139, 177Ð179, 217, 218, 223, blankets, radioactive electric, 188 Ð frequency, 215 227, 229Ð232, 263, 285 blood activation, 77, 283 Ð incidence, 284 Ð 137, decay-level scheme, 371 body Ð leukemia, 221, 232, 237, 302 chain Ð activity, 80 Ð lung, 183, 221 Ð decay, see decay chain Ð counter, 283 Ð probability, 214 Ð reaction, 206, 208, 233, 234, 285 Ð dose, 11, 76, 113, 283 Ð radiation, 241 Ð Ð controlled, 207 Ð -intrinsic radioactivity, 17 Ð radiation-induced, 219, 220, Ð Ð natural, 207, 208 boiling-water reactor, 193, 283 311 chance coincidence, 26 bomb Ð risk, 214, 220, 221 characteristic X rays, see Xrays, 281 Ð Ð factor, 232 Ð atomic, characteristic Ð skin, 242 Ð hydrogen, 298 characterization, 113 Ð thyroid gland, 221 Ð nuclear, 219, 305 charge Ð treatment, 177 , 22, 132, 283 Ð carrier, 59, 86 capture bookkeeping, 129 Ð Ð pair, 46, 82, 83 Ð cross section, 284 boron, 39 Ð elementary, 82, 292 Ð electron, see electron capture Ð decay, 199 charged particles, detection, 31 Ð neutron, 204, 305 Ð trifluoride, 70 chart of nuclides, 285, 300, 360 carbon, 61, 173, 174, 231 Ð Ð counter, 40, 70 chelating agent, 285 Ð 14C, 284 brachytherapy, 230 chemical Ð dating, 284, 288 , 34, 283 Ð dosimetry, 285 284 branching ratio, 21 , Ð separation technique, 109 284 Brazil, 99 cask, Ð toxicity, 318 CASTOR breeder, 284 Cherenkov Ð container, 134, 135 Ðfast,294 Ð counter, 285 Ð transports, 189 Ðthermal,317 Ð effect, 285 Ð Ð exposure by, 135 bremsstrahlung, 27, 35, 39, 146, Chernobyl, 179, 230, 231, 236, cataract, 242, 284, 310 161, 166, 273, 275, 278, 284 285 catastrophe, reactor, 230, 236 Ð avoidance, 38 chest X-ray, 163Ð165, 189, 262 category Ð spectrum, continuous, 146 China, 101 Ð -A worker, 92, 109, 114 brittleness, 139 chromosome, 47, 285 Ð -B worker, 92 bronchi, 221 cigarette ash, radioactivity of, 181 Ð laser, hazard, 297 Ð cancer, 183, 221 circuit Ð of accident, 115 building materials, 173 Ð primary, 193 Ð transport, 134 -up, 284 Ð secondary, 193 CEDE, 107 circular accelerator, 145, 314 classification of nuclear waste, 47 cadmium, 86 Ð differentiation, 212 cleanup, 285 Ð 109, decay-level scheme, 371 Ð germ, 46 clearance, 285 Ð control rod, 207 Ð Ð hit, 47 Ð levels, 90, 93, 106, 125, 332 calcination, 284 Ð reproductivity, 212 clinical dosimetry, 285 402 Index cloud chamber, 9, 38, 286 conditioning, 286 Ð passive, 197 Ð diffusion, 9, 10 confidence level, 287 Ð water, 192, 193 Ð expansion, 38, 286 confinement, plasma, 203 core meltdown, 197, 287 14C method, 61, 284, 288 constant cornea, inflammations of, 242 coal plant, 178 Ð Avogadro, 15, 47, 338 coronary angiography, 147 cobalt, 14, 18, 21, 22, 28, 34, 35, Ð Planck, 260, 278 cosmic rays, 47, 71, 149, 169Ð171, 42, 49, 51, 56, 87, 89, 112, 118, Ð Rydberg, 147 176, 186, 287, 309 142, 178, 223, 229, 235, 237, constants, physical, 338 Ð elemental abundance, 150 248, 252, 257, 267, 286 container, 113 Ð secondary, 314 Ð 57, decay-level scheme, 369 Ð CASTOR, 134, 135 cosmogenic isotopes, 287 Ð 60, decay-level scheme, 369 Ð waste, 115 count rate, 25, 26, 47, 61, 64, 65, coefficient, neutron absorption, containment, 287 77, 83, 85, 89, 141 191 Ð system, 209 Ð coincidence, 25 coincidence contamination, 14, 57, 77, 80, 81, counter, 60, 61, 77, 79, 83, 84, 287 Ð arrangement, 151 89, 113, 126, 136, 287, 333, see Ð body (body counter), 283 Ð chance, 26 also surface contamination Ð boron-trifluoride, 40, 70 Ð method, 25 Ð area, 97 Ð characteristic, 65 , 11, 286 Ð checks, 127 Ð Cherenkov, 285 Ð equivalent, 11 Ð ‘exudation’, 136 Ð dead time, 85 collider, 145 Ð high-, area, 97 Ð end-window, 77 , 157 Ð measurement, 55, 61, 62, 65, –flow,295, 303 combat use of nuclear weapons, 80Ð82, 113, 114, 141 Ðgas,61 236 Ð monitor, 61, 127, 141 Ð gas flow, 61, 296 equivalent, 179, Ð of ground, 178 Ð GeigerÐMüller, 59, 60, 64, 65, 248, 286 continuous spectrum, 28, 146 70, 78, 296 compaction, 286 continuous-wave laser, 244 Ð germanium, 66 competent authority, 112, 114, contrast agent, 147, 187, 287 Ð helium-3, 40 115 control Ð large-area, 61, 62, 81, 127 compressed-air Ð function, 112 Ð neutron, 305 apparatus, 286 Ð of pollution, 114 Ð plastic scintillation, 86 compresses, radium, 188 Ð rod, 191, 207, 287, 313 Ð plateau, 61, 65, 308 Compton Ð weekly, 103 Ð proportional, 40, 59, 70, 82, 89 Ð absorption, 43, 45, 46 controlled area, 91, 96, 97, 109, Ð scintillation, 62, 63, 65, 66, 85, Ð backscattering, 286 113, 114, 287, 335 314 Ð edge, 44, 69, 286 controlled , 207 Ð , 66, 69, 315 Ð effect, 41, 44, 45, 52, 286 conversion, 287 Ð threshold, 41 Ð Ð inverse, 148, 299 Ð coefficient, 287 Ð time-of-flight, 318 Ð process, 43, 53 Ð electrons, 27, 28 Ð whole-body, 80, 81, 320 Ð scattering, 42, 45, 46 Ð inner, 27 Ð window, 320 Ð Ð cross section, 44 Ð method, 153 Ð working point, 61 compulsory cover, 286 Ð of units, 339 counting computed tomography, 286 Ð principle of, 153 Ðgas,83 computer monitor, 166 Ð probability, 28 Ð medium, 70 concentration converter, neutron, 70 course of disease, 212 Ð activity, 137, 280, 331 coolant, 195, 196 criminal acts, 236 Ð Ð maximum permitted, 329 cooldown, 287 critical energy, 38 Ð limits, 125 cooling, 209 , 288 shielding, 156 Ð agent, 192 critical organ, 107, 288 Index 403 criticality, 196, 234, 288 Ðlevel,288 Ð sensitivity, 47 Ð prevention of, 129 Ð -level scheme, 21Ð23, 77, 288, Ð technique, 59 cross section, 40, 288 368Ð373 detector Ð capture, 284 Ð method, 288 Ð calibration, 82 Ð Compton effect, 44 Ð mode, 289 Ð detection efficiency, 151 Ð fission, 192, 295 Ð product, 178, 182 Ð diamond, 167 Ð neutron-induced Ð radiationless, 311 Ð fire, , 294 Ð Ð fission, 192 Ð radioactive, 377 Ðgasflow,61 Ð Ð reactions, 40, 197 Ð radon, 76 Ð germanium, 66, 69, 70, 88 Ð , 45 Ð rate, 4 Ð HPGe (high-purity germa- Ð , 43, 72 Ðseries,289 nium), 69, 70, 88 cryptococcus neoformans, 225 Ð spontaneous, 1, 316 Ð neutron threshold, 41 crystal Ð three-body, 20 Ð nuclear track, 70, 76 Ð germanium, 296 Ð time, 78 Ð personal, 79 Ð scintillation, 66 Ð time constant, 14 Ð plastic, 41, 76, 308 , 288 deceleration, 40 Ð scintillation, 67 Curie Ð neutron, 305 ÐI.,2 Ð semiconductor, 69, 70, 88 decommission, 289 Ð silicon, 66 ÐM.,2 decontamination, 127, 289 Ð Ð ion-implanted, 70 ÐP.,2 decorporation, 217, 289 Ð sodium-iodide, 67, 86, 87 curie (Ci), 4, 15, 270, 288 delayed neutrons, 149 curium, 139 Ð track-etch, 71, 76, 308, 319 delayed radiation effects, 236, 289 current density, natural, 240 deuterium, 200, 204, 290 deleptonization, 149, 289 CW laser, 244 Ð Ðtritium fusion, 191, 199, 200, delta electron (rays), 33, 289 , 288 290 Ð spectrum, 33 cystamine, 216, 312 deuteron, 148, 290 density diagnosis, see diagnostics Ð energy, 30 daily control, 103 diagnostic medical radiation, 94 Ð energy flux, 292 damage diagnostics, 1, 176 Ð flux, 295 Ð biological, 22 Ð coronary angiography, 147 Ð ionization, 7 Ð genetic, 215 Ð of the thyroid gland, 151 Ð radiation, 212, 213, 216, 218 Ð measurement, 179, 180 , 237, 289 Ð X-ray, 160, 176, 178, 321 DARI unit, 17 dial painter, 228 dating, 61 deposit, natural, 208 diameter Ð method, 284, 288 deposited dose, 59 Ð of atom, 19 dead time, 64, 89 depth dose, 16 Ð of nucleus, 19 Ð correction, 85, 271 derivative, 289, 374 diamond detector, 167 Ð counter, 85 design Ðeffect,85 Ð approval, 122, 160 difference quotient, 374 decay, 4, 288 Ð Ð qualification, 113 differentiation, 375 Ð α, 23, 280 Ð -approved source, 112 differentiation of cells, 212 Ð β, 20Ð22, 26, 54, 282 Ð -basis accident, 124, 289 diffusion cloud chamber, 9, 10 Ð Ð double, 291 detection, 31, 39, 41, 62, 65, 68 dilution, 186 Ð γ ,21 Ð efficiency, 40, 61, 65, 84, 85, DIS dosimeter, 59 Ð boron, 199 87Ð89, 141, 151, 290 discharge of radioactive material, Ð chain, 9, 24, 52, 76, 117, 288, Ð neutrons, 39 290 348, 349 Ð of charged particles, 31 discharged air, 331 Ð constant, 4, 5, 137, 270, 288 Ð photon, 41 disclosure, duty of, 115 Ð law, 5, 14, 270, 288 Ð reactions, 39 disease, course of, 212 404 Index disinfection by UVC radiation, Ð Ð average, 12 Ð relative, 35, 52 243 Ð Ð collective, 11 Ð skin, 16 disintegration, 26 Ð Ð commitment, 11 Ð sub-, 178 disposal, 290 Ð Ð commitment, 50-years, 11, Ð threshold, 214, 318 Ð facility, 290 179, 248, 286, 294 Ð tissue, per line, 35 ÐÐ final,294 Ð Ð effective, 12, 16, 291 Ð total, 52, 185 –final,294 Ð Ð maximum permitted, 272 Ð units Ð of radioactive material, 112, Ð Ð photon, 10 Ð Ð for low penetration depth, 16 113 Ð Ð rate, 10Ð12, 14 Ð Ð for penetrating radiation, 16 Ð of radioactive waste, 57, 131, Ð Ð tissue, 165 148 Ð estimated, 95 Ð whole-body, see whole-body distance law, 49, 290 Ð exposure, 294 dose distribution Ð gonad, 296 Ð yearly, 321 Ð Gaussian (normal), 68, 271, Ð ion, 10, 58, 270, 300 dosimeter, 291 296 Ð lethal, 177, 212, 226, 302 Ð alarm, 79 Ð Landau, 33, 301 Ð lifetime irradiation, 302 Ð albedo, 75, 79 Ð MaxwellÐBoltzmann, 303 Ð limit, 90, 91, 113, 114, 117 ÐDIS,59 Ð Poisson, 68, 271, 308 Ð Ð annual, 91, 93, 94 Ð film, 294, see also film badge DNA, 290 Ð Ð exceeding, 114 Ð finger-ring, 75 documentation, 73, 92, 163, 311 Ð Ð for minors, 96 Ð pen-type pocket, 71, 72, 89, 307 Ð written, 113 Ð Ð for the public, 96 Ð personal, 58, 307 dose, 9, 11, 17, 77, 160, 184, 212, Ð Ð liberal, 93 Ð phosphate , 74, 308 270, 290 Ð Ð occupational, 93, 95 Ð Ð spherical, 75 Ð accidental, 115 Ð liver, 109 Ð pocket, 308 Ð alerter, 290 Ð measurement, 114 Ð ‘sliding-shadow’, 16, 74 Ð ambient, 280 Ð occupational, 91 Ð thermoluminescence, 75, 318 Ð annual, 52, 55 Ðorgan,15 Ð Ðarea product, 165 Ð partial-body, 11, 12, 15, 164, Ð track-etch, 71 Ðaverted,282 307 dosimetry Ð body, 11, 76, 113, 283 Ð personal, 307 Ð accident, 76, 77, 279 Ð collective, 11, 286 Ð Ð depth, 16 Ð chemical, 285 Ð commitment, 290 Ð quantity Ð clinical, 285 Ð committed, 179 Ð Ð kerma, 7, 271, 301 Ð neutron, 70 Ð comparison, 55 Ð Ð modified, 15 Ð nuclear accident, 98 Ð constant, 13, 270, 290 Ð Ð of the first interaction step, 7 Ð patient, 163 ÐÐ forβ rays, 12 Ð rate, 10, 49, 52, 165, 166, 171, Ð personal, 71, 78, 79 γ ÐÐ for rays, 12Ð14 172, 184, 189, 210, 270, 291 Ð Ð operative units, 16 Ð cumulative, 288 Ð Ð alerter, 291 double , 291 Ð deposited, 59 Ð Ð ambient, 14, 280 dropping of nuclear , 236 Ð depth, 16 Ð Ð determination, 55 dry wipe technique, 89 Ð Ð individual, 16 Ð Ð energy, 10, 55, 277, 292 DTPA, 217 Ð Ðeffect relation, 220, 290 Ð Ð gamma, total, 56 Ð effective, 291 Ð Ð ion, 11, 58, 300 dual-energy technique, 147 Ð energy, 6Ð8, 18, 48, 74, 75, 270, Ð Ð measurement, 61, 65, 67, 78 dump sites, 291 292 Ð Ð ratio, 14 dust sampler, 174 Ð equivalent, 8, 11, 15, 219, 221, Ð -rate duty 270, 290 Ð Ð meter, 79 Ð of disclosure, 115 Ð Ð annual limit, 91 ÐÐ warner,79 Ð to give notice, 291 Index 405 early radiation effect, 212, 291 Ð range, see range, electron Ð kinetic, 7 Earth’s magnetic field, 240 Ð volt (eV), 21, 247, 292 Ð loss, 31Ð36, 46, 60, 62, 83, 145, EC (electron capture), see electron electrosmog, 166, 292 292 capture electroweak interaction, 292 Ð Ð measurement of, 60 ecosystem, 291 element Ð maximum, 20, 51, 77, 323 EDTA, 217 Ð abundance, in cosmic rays, 150 Ð neutron, 41 effect, see also radiation effect Ð symbols, 345 Ð resolution, 66, 69, 86, 88, 292 Ð background, 68 Ð transuranium, see transuranium Ðrest,314 Ð Cherenkov, 285 elements Ðspectrum Ð Compton, see Compton effect elementary charge, 82, 292 ÐÐ ofα rays, 23 Ð dead time, 85 elements, periodic table, 367 ÐÐ ofβ rays, 20, 22 Ð of electromagnetic fields, 240 emanation, 292 ÐÐ ofδ rays, 33 Ð relation to dose, 220, 290 embryo, 96 ÐÐ ofγ rays, 69 Ð somatic, 315 emergency Ð Ð of an X-ray tube, 147, 162 effective Ð nuclear, 225 Ð Ð of fission neutrons, 71 Ð dose, 291 Ð situation, 91, 115, 312 Ð to produce an electronÐhole Ð Ð equivalent, 12, 16, 291 emission pair, 66 Ð half-life, 217, 270, 291, 297 Ð neutron, 26 Ð transfer, linear (LET), 33, 301 effectiveness, 141 Ð of coal plants, 178 Ð transition, 22, 23 Ð biological, 7, 41, 52, 54, 117, emitter , 293 313 Ð α, 117, 178 enrichment, 190, 293 efficiency, 25, 61, 77, 141, 292 Ð β, 20, 23, 78, 117 Ð isotopic, 301 Ð detection, see detection Ð γ , 21, 117 Ð technique, 80 efficiency Ð pointlike, 112 environment Ð quantum, 85 Ð positron, 22 Ð monitoring, 114 Elastosan foot rests, 187 empirical absorption law, 271 Ð protection of, 57 electric blankets, radioactive, 188 empirical range, 271 Environmental Protection Agency, electric field strength, 238 emulsion, nuclear, 305 293 electrocardiogram (ECG), 240 enclosure, magnetic, 200, 203 environmental radioactivity, 169 electroencephalogram (EEG), 240 end-window counter, 77 epithermal neutrons, 293, 305 electromagnetic energy equilibrium Ð fields, 238 Ð absorption, 7 Ð activity, 138 Ð Ð production, 240 Ð Ð coefficient, 293 Ð radioactive, 137, 138, 312 Ð Ð heating effect, 244 Ð atomic, 281 , see dose Ð interaction, 19, 292 Ð binding, 27, 28, 283 equivalent Ð radiation, 27, 31, 168, 238 Ð Ð nuclear, 249, 305 error Ð Ð power, 240 Ð Ð per nucleon, 190 Ð statistical, 86 Ð Ð spectrum, 239 Ð critical, 38 Ð systematic, 88 electron, 9, 10, 31, 170, 292 Ð cutoff parameter, 33 Ðtotal,88 Ð Auger, 27, 28, 45 Ð density, 30 , 242, 293 Ð beams, 146, 156 Ð dose, 6Ð8, 18, 48, 74, 75, 270, escape peak, 67 Ð capture, 20, 27, 69, 292, 301 292 Ð single-, 315 Ð conversion, 27, 28 Ð Ð rate, 10, 55, 277, 292 estimated doses, 95 Ð δ, 33, 289 Ð electromagnetic radiation, 238 EURATOM, 90 Ð Ðhole pair, 66 Ð excitation, 27, 28, 45 European Directive, 90, 91 Ð knock-on, 301 Ð fluence, 292 examination Ð microscope, 165 Ð flux density, 292 Ð kidney, 18 Ð neutrino, 20 Ð ionization, 60 Ð medical, 92, 114, 128, 185 406 Index

Ð X-ray, exposure, 163, 164 fading, long-term, 75 flow counter, 61, 295 exceeding fallout, 29, 178, 232, 294 Ð methane, 303 Ð of allowed annual whole-body fast breeder, 294 fluence, 295 dose, 114 fast neutrons, 71, 140, 191, 192, Ðenergy,292 Ð of dose limits, 114 305 Ð neutron, 305 exceptional situation, 95 femtosecond laser, 244 fluorescence, 1, 2, 74 excess Fermi Ð nuclear resonance, 306 Ð neutrons, 20 Ð ÐKurie diagram, 23, 294 Ð X-ray, 321 Ð of neutrons, 26, 249 Ð E., 206 flux Ð relative risk (ERR), 221 fertilizer, phosphate, 178, 308 Ð density, 295 excitation, 31, 38, 39, 41, 75, 212 fetus, 96 ÐÐ energy,292 Ð energy, 27, 28, 45 field strength, electric and Ð neutron, 305 , 21, 28, 293 magnetic, 238 flying personnel, 71, 149, 184, exclusion area, 92, 113, 124, 293 fields, electromagnetic, 238 186, 295 excretion, 80 Ð heat production, 240, 244 food Ð products, 217 filling level, 179 Ð chain, 179 exemption Ð indicators, 178 Ð irradiation, 223, 295 Ðlevels,90 film foot Ð limit, 93, 106, 109, 271, 293, Ð badge, 16, 72, 73, 294 Ð monitor, 127, 295 326 Ð Ð blackening, 72 Ð rests, Elastosan, 187 exhalation, 293 Ð cassette, multi-, 73 Ð X-ray device, 187 expansion cloud chamber, 38, 286 Ð dosimeter, 294 formulary, 270 expert, , 303 Ð X-ray, 72 fractionated irradiation, 35, 216, exponential function, 5, 293, 377 filter, 75, 80 295 exposure, 1, 57, 91, 111, 113, 114, Ð aerosol, 280 fragmentation, 295 160, 163, 171, 173, 183Ð186, final disposal facility, 294 frequency, 238 189, 294, 310 finger-ring dosimeter, 75 Frisch, O., 2 Ð accidental, 92, 236 fire fuel Ðaverage,11 Ð detector, ionization, 178, 294 Ð cycle, 295 Ð by CASTOR transports, 135 Ð fighting, 123, 124 Ð element, 193, 195 Ð by X-ray examinations, 163, fission, 2, 26, 30, 70, 71, 132, 207, Ð nuclear, 113, 306 164 208, 294, 306 ÐÐ spent,315 Ð cosmic rays, 170 Ð asymmetric, 249 Ð rods, 295 Ð due to technical environment, Ð cross section, 192, 295 full width at half maximum, 68, 183 Ð fragment, 295 295 Ð external, 57, 294 Ð neutron-induced, cross section, full-absorption peak, 295 Ð internal, 299 192 fully protected tube housing, 295 Ð maximum, 91 Ð neutrons, 26, 70, 190 function control (test), 112, 150 Ð natural, 17, 175, 176, 184 Ð Ð energy spectrum, 71 fusion, 149, 306 Ð planned special, 94, 95, 308 Ð Ð prompt, 149, 309 Ð by magnetic confinement, 200 Ð rates, 97 Ð product, 26, 190, 209, 295 Ð deuteriumÐtritium, 191, 199, Ð reversal of magnetic field, 171 Ð Ð highly radioactive, 149 200, 290 Ð special reasons, 126 Ð reactor, 191, 193, 195 Ð hydrogen, 191, 198, 199, 298 Ðwaysof,78 Ð spontaneous, 316 Ð inertial, 200, 202, 299 external irradiation, 79, 109 Ðternary,317 Ð laser, 200, 202, 301 external radiation exposure, 57, Ð yield, 191, 192 Ð protonÐproton, 309 294 flight personnel, see flying Ð reactor, 198, 204, 205, 295 eyes, cataract, 242, 284, 310 personnel Ð self-sustaining, 200 Index 407

FWHM, 68, 295 gray (Gy), 7, 297 high-purity germanium (HPGe) ground contamination, 178 detector, 69, 70, 88 gamma high-radiation area, 97, 298 Ð activity, 261 therapy, 144, 297 high-rate measurement, 64 Ð backscatter method, 180 , 297 high-temperature Ð decay, 21 Hahn, O., 2, 139, 188 Ð plasma, 203 Ð emitter, 21, 117 hair Ð reactor, 195, 298 Ð quantum, 296 Ð activation, 76, 297 highly radioactive fission Ð , 296 Ð lotion, radioactive, 187 products, 149 Ð rays, 2, 9, 13, 20, 27, 31, 34, 43, half maximum, full width at, 68, , 29, 219, 236 52, 53, 57, 62, 65, 66, 87, 88, 295 histogram, 68 179, 180, 296 half-life, 5, 14, 15, 21, 24, 47, 77, hormesis, 219, 298 Ð Ð absorption, 13, 42, 51, 52, 276 109, 138, 270, 275, 297, 325 hot particles, 298 Ð Ð attenuation law, 42, 271 Ð biological, 18, 217, 270, 283, hot spot, 298 Ð Ð dose constant, 12Ð14 297 HPGe detector (high-purity Ð Ð energy spectrum, 69 Ð effective, 217, 270, 291, 297 germanium detector), 69, 70, Ð spectrometer, 67 Ð physical, 18, 217, 270 88 Ð spectroscopy, 65, 69 half-value thickness, 56, 271, 297 hydrogen gas hand monitor, 127 Ð bomb, 298 Ð amplification, 60 Ð fusion, 191, 198, 199, 298 handling Ð -cooled reactor, 296 Ð pellets, 298 Ð license, 297 Ð counter, 61 Ð of incidents and accidents, 115 Ð counting, 83 IAD unit, 17 Harrisburg, 209 Ð flow counter, 61, 296 ICNIRP, 240, 244 hazard Ð radioactive, 109, 117, 174 ICRP, 15, 90, 101, 105, 116, 298 Ð category for lasers, 297 Ðtest,317 ICRU, 15, 101 Gaussian distribution, 68, 271, Ð -class areas for fire brigade, 124 identification, 299 296 health Ð of radioisotopes, 67, 69 Geiger–Müller counter, 59, 60, Ðphysics,297 image 64, 65, 70, 78, 296 Ð services, approved occupa- Ð quality, 160 generator of unwanted X rays, 166 tional, 92 Ð subtraction, 147 genetic damage, 215 heat imaging techniques, 22 genetic radiation effects, 236, 296 Ð exchanger, 193, 298 impact parameter, 299 geomagnetic latitude, 296 Ð of reaction, 198 incident, 115 germ cell, 46 Ð residual in reactor, 313 Ð nuclear, 306 Ð hit, 47 heat-up, 298 inclusion, plasma, magnetic, 203 germanium heating incorporation, 11, 22, 57, 80, 81, Ð counter, 66 Ð effect of electromagnetic fields, 114, 117, 126, 169, 174, 176, Ðcrystal,296 240, 244 299 Ð detector, 66, 69, 70, 88 Ð with neutral particles, 203, 298 Ð dangers due to, 80 glove box, 127 heavy-ion Ð iodine, 299 , 19, 296 Ð beams, 200, 201 Ð measurement, 80, 81 goggles, safety, 244 Ð therapy, 34, 35, 144, 298 index, transport, 319 gold, 176 helium, 39 India, 101 gonad dose, 296 Ð -3 counter, 40 indicator, see radio tracer , 296 Ð coolant, 195, 196 individual depth dose, 16 Ð moderation, 192, 195 helix antenna, 245 , 156, 299 Ð pebbles, 196 high-contamination area, 97 inertial fusion, 200, 202, 299 Ð reactor, 296 high-power laser, 201, 244 inflammations of the cornea, 242 408 Index ingestion, 81, 299 iridium, 229 , 143, 165, 166 inhalation, 80, 81, 116, 118, 169, iron 55, decay-level scheme, 368 knock-on electrons, 33, 301 175, 299, 331 irradiation, 1, 8, 12, 71 krypton, 109, 178, 230, 254 inhibiting resorption, 217 Ð accidental, 235 Kurie injuries Ð dose, lifetime, 302 Ð diagram resp. plot, see Ð radiation, 311 Ð external, 79, 109 FermiÐKurie diagram Ð , 316 Ð facilities, 300 Ð F. N. D., 23 inner conversion, 27 Ð food, 223, 295 inorganic , 62, 65, 85, Ð fractionated, 35, 216, 295 labeling, 113Ð115, 121, 134 86 Ðpathway,300 Ð transport index, 134, 319 insects, sterilization, 224 Ð pendulum, 307 Landau distribution, 33, 301 instruction, 111, 113, 124 isobars, 20, 300 lanthanum, 230, 249 intake, 107 isomers, 300 large-area counter, 61, 62, 81, 127 Ð annual, 281 isotones, 20, 300 laser, 243 integral (integration), 374, 376 isotope, 14, 18, 19, 23, 28, 77, 78, Ð CW, 244 interaction, 299 109, 117, 138, 173, 175, 178, Ð femtosecond, 244 Ð cross section, neutron-induced 179, 182, 186, 189, 300, 325 Ð fusion, 200, 202, 301 reactions, 40 Ð battery, 300, see also Ð hazard category, 297 Ð electromagnetic, 19, 292 radioisotope batteries Ð high-power, 201, 244 Ð electroweak, 292 Ðchart,285, 300, 360 Ð limits, 243, 244 287 Ð of neutrons, 39 Ð cosmogenic, Ð pointer, 243, 301 Ð identification, 67, 69 Ð probability, 61 Ð pulse, 200 Ð primordial, 309 Ð process, 39, 41, 42 late radiation effects, 214 Ð production, 177 Ð residual, 19 latency, 301 Ð radio, see radioisotope Ð step, 7 latitude, geomagnetic, 296 Ð radium, 76 Ð strong, 19, 70, 316 lead, 27, 181, 182 Ð ratios, 109 Ð weak, 320 Ð absorber, 39 isotopes, table of, see chart of internal exposure, 299 Ð absorption in, 42, 44, 46 nuclides International Commission on Ð Ðrubber apron, 160 isotopic Radiological Protection, 8 Ð safe, 130 Ð abundance, 28, 109, 207, 300 intervention level, 299 Ð shielding, 168 Ð enrichment, 301 inverse Compton effect, 148, 299 ITER, 204, 301 leak test, 111, 114 iodine, 14, 26, 133, 176, 179, 191, legislation, atomic, 281 230, 249 Japan, 102 lens of the eye, opacity, 310 Ð incorporation, 299 JET, 204, 301 LEP, 145 ion, 300 Joachimstal, 116 lepton, 301 Ð dose, 10, 58, 270, 300 Joint European Torus (JET), 204, LET, 33, 301 Ð Ð rate, 11, 58, 300 301 lethal dose, 177, 212, 226, 302 ionization, 31, 38, 39, 41, 59, 212, Joliot, F., 2 leucocytes, 236 300 leukemia, 221, 232, 237, 302 Ð chamber, 40, 57Ð59, 66, 71, 78, K-edge subtraction technique, 147 level 179, 300 kaon, 144, 150 Ð ALI, 107 Ð Ð shadow-free, 58 K capture, see electron capture Ð diagram, 302 Ð density, 7 keratitis, 242 Ð excited, 21 Ð energy, 60 kerma, 7, 271, 301 Ð metastable, 151 Ð fire detector, 294 kidney examination, 18 liberal dose limits, 93 ionizing radiation, see radiation, kinetic energy, 7 license, 160, 297 ionizing KleinÐNishina formula, 301 licensing, 120 Index 409 lifetime, 5, 275, 302 magnetic confinement, 200, 203 Ð dose, 114 Ð irradiation dose, 302 Ð fusion by, 200 Ð Ð rate, 61, 65, 67, 78 Ð particle, 144 magnetic field Ð energy loss, 60 light Ð Earth, 240 Ð filling level, 179 Ð guide, 62, 85 Ð strength, 238 Ð gamma backscatter, 180 Ð source, tritium, 319 magnetron, 166 Ð high-rate, 64 Ð yield, 62 , 184, 303 Ð incorporations, 80, 81 light-water reactor, 302 man-sievert, 303 Ð low beta activities, 174 limitation of activities, 114 manganese, 48 Ð personal dosimetry, 71, 79 limits mass Ð technique, radiation protection, Ð accident, 289 Ð absorption coefficient, 43, 45, 80 Ð annual intake, 81 46, 48, 51, 84, 164, 168, 252, Ð thickness, 179 Ð concentration, 125 271, 279, 303 medical Ð dose, see dose limit Ð atomic, 19 Ð checkup, 113 Ð embryo/fetus, 96 Ð attenuation coefficient, 42, 43, Ð diagnostics, see diagnostics Ð exemption, 93, 106, 109, 271, 45, 56, 271, 281, 303 Ð examination, 92, 114, 128, 185 293, 326 Ð critical, 288 Ð expert, 163 Ð laser, 243, 244 Ðdefect,303 Ð files, 128 Ð legal, 185 Ð number, 32 Ð physics expert, 303 Ð radiation, 185, 311 Ð rest, 44, 314 Ð supervision, 128, 303 Ð Ð protection, 240 Ð subcritical, 316 Ð surveillance, 92 Ð surface contamination, 333 Ð unit, 47 Ðtherapy,see therapy Ð UV radiation, 243 Ð Ð atomic, 338 medicine, nuclear, see nuclear Ð WHO, 237 material medicine linear accelerator (LINAC), 39, Ð anti-static, 178 Meitner, L., 2 145, 302 Ð building, 173 , 225 linear energy transfer (LET), 33, Ð ceramic, 139 melanoma, malignant, 242 301 Ð radioactive, see radioactive meltdown, reactor core, 287 Linear No-Threshold, see LNT material memory cell, 58 hypothesis Ð reactor, neutron-activated, 205 metal finger-ring dosimeter, 75 liquid scintillator, 63, 302 318 metastable state, 21, 151, 152, 303 liquid-drop model, 302 Ð tissue-equivalent, lithium, 39, 200, 204 maximum annual intake, 81 meter, dose rate, 79 liver dose, 109 maximum energy, 20, 51, 77, 323 methane flow counter, 303 maximum exposure, 91 method LNT hypothesis, 215, 219, 232, 14 302 maximum permitted dose Ð C (dating), 61, 284, 288 logarithm, natural, 5, 302, 378, equivalent, 272 Ð coincidence, 25 379 MaxwellÐBoltzmann distribution, Ð conversion, 153 logging, well, 320 303 Ð decay, 288 long-term fading, 75 , 60 Ð decorporation, 217 lost sources, 129, 230, 236 measurement Ð gamma backscatter, 180 low-level Ð absorption, 38, 52 Ð nuclear medicine, 178 Ð monitor, 174 Ð accuracy, 78 Mexico, 103 Ð radiation, 179 Ð activity, 55, 62, 64, 65, 83, 130 microbatteries, betavoltaic, 154 , 183, 221 Ð coincidence, 26 microbeam radiation therapy, Ð contamination, 55, 61, 62, 65, MRT, 34 Mössbauer effect, 304 80Ð82, 113, 114, 141 mA s product, 303 Ð density, 179, 180 Ð klystron, 165 numbers, 249, 303 Ð detection efficiency, 87, 88 Ð radiation, pulsed, 240 410 Index mineral Ð isotopes, 173 Ð reaction, cross section, 40, 192, Ð hunter, 109 Ð plutonium, 173 197 Ð spring, 116, 304 Ð radiation, 55, 173, 185 Ð reflector, 234, 305 mining, 185 Ð Ð exposure, 17, 175, 176, 184 Ð slow, 192 minors, dose limits, 96 Ð radioactivity, 1, 51, 55, 169, Ð source, 148, 305, 315 mitosis, 212 174, 185, 216 Ð thermal, 40, 70, 71, 78, 191, mixed oxides, 304 Ð reactor, 193, 207, 208, 210, 192, 305, 318 mobile phone, 244 304, 307 Ð threshold, detector, and Ð antenna, 244 Ð sources, 57 reactions, 41 mode, decay, 289 natural logarithm, 5, 302, 378, 379 Ð yield, 149 moderation, 192, 304 neptunium, 139, 173 nickel, 21 moderator, 40, 193, 208, 234 Ð decay chain, 349 non-ionizing radiation (NIR), 238, Ð graphite, 192, 195 nervous system, 240 305 modified dose quantities, 15 neutral particles, heating with, 298 normal distribution, 68, 271, 296 M¿ller scattering, 304 neutrino, 20, 31, 144, 150, 169, notice, duty to give, 291 molybdenumÐtechnetium 304 nuclear generator, 151 Ð accident dosimetry, 98 monitor, 141 Ð beams, 146 Ð computer, 166 Ð factories, 146 Ð binding energy, 249, 305 Ð contamination, 61, 127, 141 neutron, 7, 19, 20, 26, 31, 33, Ð bomb, 219, 305 Ð foot, 127, 295 39Ð41, 75, 304 Ð Ð dropping, 236 Ð hand, 127 Ð absorption coefficient, 191 Ð disintegrations, 26 Ð low-level, 174 Ð activation, 191, 201, 205, 304 Ð emergency, 225 Ð radiation, personal, 61 Ð amplification factor, 304 Ð emulsion, 305 Ð release, 130 Ð bombardment, 132, 139, 177 Ð -energy worker, 100, 101 Ð whole-body, 127 Ð capture, 204, 305 Ð fission, see fission monitoring, 96, 113, 304 Ðconverter,70 Ð fluorescence (resonance Ð of the environment, 114 Ð counter, 305 absorption), 306 month, working-level, 321 Ð deceleration, 305 Ð forces, 316 mortality, 214 Ð detection, 39 Ð fuel, 113, 306 Moseley law, 147, 304 Ð dosimetry, 70 ÐÐ spent,315 MOSFET transistor, 58 Ð emission, 26 Ð fusion, see fusion MOX, 304 Ð energy, 41 Ð incident, 306 MRT (microbeam radiation Ð epithermal, 293, 305 Ð installations, 93 therapy), 34 Ð excess, 26, 249 Ð interaction, see strong multi-wire proportional chamber, Ð excessive, 20 interaction 61 Ð fast, 71, 140, 191, 192, 305 Ð isotopes, see isotope multifilm cassette, 73 Ð fission, 26, 70, 190 Ð medicine, 18, 21, 176, 178, 185 multiple scattering, 9, 304 Ð Ð energy spectrum, 71 Ð pharmaceuticals, 306 , 9, 46, 47, 144, 150, 170, Ð Ð prompt, 149, 309 Ð photoelectric effect, 306 304 Ð flux, omnidirectional, 150 Ð fluence, 305 Ð power,3,190 , 47, 215, 304 Ð flux, 305 Ð power plant, 28, 78, 89, 109, Ð generator, 148 178, 190, 306 , 219, 236 Ð interactions, 39 Ð reaction, 306 natural Ð moderation, 192, 304 Ð reactor, 306, see also reactor Ð chain reaction, 207, 208 Ð poison, 305 Ð security class, 306 Ð current density, 240 Ð prompt or delayed, 149 Ð submarine, 235 Ð deposit, 208 Ð radiation, 26 Ð -track detector, 70, 76 Index 411

Ð waste, 306 Ð subatomic, 316 phosphorus, 77 Ð Ð classification, 47 Ðtherapy,307 Ð 32, decay-level scheme, 77 Ð weapons passport photoelectric effect, 41, 44Ð46, Ð Ð combat use, 236 Ð radiation, 113 52, 62, 308 Ð Ð tests, 230, 236 Ð X-ray, 160, 321 Ð cross section, 43, 72 nucleon, 19, 306 path, mean free, 60 Ð nuclear, 306 Ð binding energy per, 190 pathway, irradiation, 300 photofission, 308 nucleotide, 306 patient dosimetry, 163 photomultiplier, 62, 65, 66, 85 nucleus, 307, see also atomic peak photon, 7, 14, 19, 21, 28, 41, nucleus Ð backscatter, 282 43Ð46, 48, 53, 56, 61, 62, 65, Ð diameter, 19 Ð Bragg, 34, 283 66, 83Ð86, 146, 148, 164, 308 Ð superheavy, 347 Ðescape,67 Ð beams, 146 nuclide, 307 Ð full absorption, 295 Ð detection, 41 Ðchart,285, 300, 360 Ðpair,67 Ð equivalent dose, 10 number, mass, 32 Ð photo-, 69, 308 Ð from annihilation, 67 numbers, magic, 249, 303 Ð sources, 146 Ð single-escape, 315 photopeak, 69, 308 pebble-bed reactor, 195, 197, 307 occupational dose, 91 photosynthesis, 225 pen-type pocket dosimeter, 71, 72, Ð limits, 93, 95 physical constants, 338 89, 307, 308 occupational risk, 220 physical half-life, 18, 217, 270 official warning labels, 113 pendulum irradiation, 307 physical quantities, 339 ohmic heating of plasma, 203 periodic table of elements, 367 physician, authorized, 128, 282 (natural reactor), 193, 207, person physics, health, 297 208, 210, 304, 307 Ð category A, 92, 109, 114 pigmentation, 242 opacity (lens of the eye), 310 Ð category B, 92 pile, atomic, 281 organ, 12 Ð non-radiation-exposed, 114 , 34, 35, 144, 150, 308 Ð critical, 107, 288 Ð radiation-exposed, 91, 102, pitchblende, 308 Ð dose, 15 103, 105, 185, 310 Planck’s constant, 260, 278 organic scintillator, 62 Ð Ð risk, 222 plane, 171 organization, approving, 95 personal planned special exposure, 94, 95, Ð detector, 79 308 packaging, 133, 307 Ð dose, 307 pair plant, reprocessing, 313 Ð Ð depth, 16 Ð annihilation, 307 plasma, 308 Ð dosimeter, 58, 307 Ð electronÐhole, 66 Ð confinement, 203 Ð dosimetry, 71, 78, 79 Ð peak, 67 Ð heating, 203, 308 Ð Ð operative units, 16 Ð production, 28, 41, 42, 44Ð46, Ð Ð by neutral particles, 203 52, 307 Ð radiation monitors, 61 Ð Ð ohmic, 203 partial-body dose, 11, 12, 15, 164, personnel, flying, 71, 149, 184, Ð high temperature, 203 307 186, 295 Ð hot, X rays from, 148, 201 particle PET (positron-emission tomogra- Ð inclusion, 203 Ð α, see phy), 22, 307 plastic Ð β, see beta rays pharmaceuticals, nuclear, 306 Ð detector, 41, 76, 308 Ð charged, detection, 31 phosphate Ð , 86 Ð hot, 298 Ð fertilizer, 178, 308 Ð scintillator, 65, 308 Ð lifetime, 144 Ðglass plateau, counter, 61, 65, 308 Ð neutral, heating, 298 Ð Ð dosimeter, 74, 308 plutonium, 2, 139, 173, 178, 208, Ð physics installations, 102 Ð Ð spherical dosimeter, 75 217, 230, 233, 235 Ð radiation, 143 screen, 178 Ð natural, 173 412 Index pocket dosimeter, 308 proton, 19, 20, 31, 33, 40, 170, Ð diagnostic medical, 94 Ð nuclear, see pen-type pocket 309 Ð dose, see dose dosimeter Ð accelerator, 133, 140 Ð effect, 310 pointlike emitter, 112 Ð beams, 156 Ð Ð biological, 7, 8, 212, 213 , 68, 271, 308 Ð Ðproton fusion, 309 Ð Ð delayed, 236, 289 pollution Ð therapy, 33, 309 Ð Ð early, 212, 291 Ð air, 280 public, 91, 100, 103, 106 Ð Ð ionizing, 9 Ð control, 114 Ð dose limits, 96 Ð Ð late, 214 polonium, 2, 173, 181Ð183 pulse-height spectrum, 70 Ð Ð somatic, 315 population, 57, 78, 232 Ð Ð stochastic, 316 Ð group, 11 qualification, 120, 309 Ð electromagnetic, 27, 31, 168, positron, 20, 31, 308 quality factor, see radiation 238, 239 Ð annihilation, 66 weighting factor Ð -exposed persons, 91, 102, 103, Ð -emission tomography (PET), quantities, physical, 339 105, 114, 185, 310 22, 307 quantum, 310 Ð Ð risk, 222 γ Ð emitter, 22 Ð , 296 Ð exposure, see exposure , 309 Ð efficiency, 85 Ð field, 8, 15 potassium, 172Ð174, 178, 181, , 19, 310 Ð fluorescence, 1, 74 186, 189 quasi-elastic scattering, 40 Ð γ , see gamma rays 310 potential risks, 95 quencher, Ð genetic effects by, 236, 296 power plant Ð hardness, 139 RaÐBe source, see radiumÐ Ð coal, 178 Ð indirect ionizing, 7 beryllium source Ð nuclear, see Ð -induced cancer, 219, 220, 311 rad (radiation absorbed dose), 7, powers, 380 Ð injury, 311 310 pp cycle, 198, 309 Ð ionizing, 1, 2, 7, 50, 57, 75, radar radiation and equipment, pregnancy, 96, 100, 104 176, 212, 300, 311 166 311 pressurized-water reactor, radiation, 37, 160 Ð limits, 185, 243, 193Ð195, 309 Ð absorption, 212, 215 Ð load, 55 primary circuit, 193 Ð accident, 76, 92, 115, 205, 229, Ð loss, 38 primary cosmic rays, 309 310 Ð low-level, 179 primordial isotopes, 309 Ð Ð in military fields, 235 Ð microwave, pulsed, 240 principle, ALARA, 91, 95, 280 Ð α, see alpha rays Ð monitor, personal, 61 probability Ð annihilation, see annihilation Ð natural, 55, 173, 185 Ð conversion, 28 Ð area, 97, 113, 117, 310 Ð neutron, 26 Ð interaction, 61 Ð Ð definition, 335 Ð non-ionizing, 238 procedures, working, 111 Ð Ð high-, 97 Ðofficer,311 promethium, 178 Ð Ð very-high-, 97 Ð particle, 143 prompt fission neutron, 149, 309 Ð background, 282 Ð passport, 113 proportional Ð belt, see VanAllenbelt Ð power, electromagnetic, 240 Ð chamber, 309 Ð β, see beta rays Ð protection, 22, 27, 36, 123 Ð Ð multi-wire, 61 Ð calibration, 152, 284 Ð Ð area, 114, 184 Ð counter, 40, 59, 70, 82, 89 Ð cancer, 241 Ð Ð control, 113 protection Ð casualties, 236 Ð Ð documentation, see documen- Ð air,water,, 125 Ð cataract, 242, 284, 310 tation Ð of environment, 57 Ð -controlled area, 113 Ð Ð guide, 311 Ð radiation, see radiation Ð cosmic, see cosmic rays Ð Ð international, 90 protection Ð damage, 212, 213, 216, 218 Ð Ð limits, 240 Ð respiratory, 113 Ð δ, 33, 289 Ð Ð literature, 381 Index 413

Ð Ð measurement technique, 80 Ð gas, 109, 117, 174 312, see also radioisotope Ð Ð monitoring, 113 Ð hair lotion, 187 batteries Ð Ð officer, 110, 111, 113Ð115, Ð material Ð identification of, 67, 69 120, 163, 311 ÐÐ area,97 Ð long-lived, 133 Ð Ð practical work, 114 Ð Ð discharge of, 290 Ð short-lived, 152 Ð Ð principles, 119 Ð Ð disposal of, 112, 113, 290 Ð thermoelectric generator Ð Ð regulations, see regulations Ð Ð import and export, 120 (RTG), see radioisotope Ð Ð safety rules, 110, 111 Ð Ð loss and acquisition, 112, 114, batteries Ð Ð supervisor, 110, 115, 163, 311 129, 229, 230, 236 radiological Ð Ð with X rays, 163 Ð Ð release, 80, 174, 179 Ðarea,97 Ð Ð written test, 272 Ð Ð sealed, 133 Ð Ð special, 97 Ð quality, 15 Ð Ð short-lived, 131 Ð conditions, specific, 95 Ð radar, 166 Ð Ð storage, 114, 129, 139, 294 Ð emergencies, 91, 312 Ð release, 78 Ð Ð transportation, 120 Ð surveillance, 92 Ð resistance, 218, 224, 225 Ð Ð unsealed, 81, 126, 133 Ð worker, 95 Ð risk, 12, 93, 177, 215, 311 Ð source radiology, 38 Ð secondary, 144 Ð Ð sealed, 83, 112, 114 radionuclide, 312, see also Ð sensitivity, see Ð Ð unsealed, 112, 319 radioisotope Ð sickness, 1, 212, 311 Ð toothpaste, 187 , 312 Ð Ð course of disease, 212 Ð tracing, 312 radioprotective substance, 216, Ð sources, 143 Ð washout, 232 312 Ð Ð cosmic, 149 Ð waste, 115, 130Ð132, 139, 140, radiosensitivity, 212, 216, 218 Ð statistical effects, 68 320 radiotherapy, 236 Ð sterilization by, 223, 224 Ð Ð disposal of, 57, 131, 148 radium, 2, 4, 15, 38, 52, 63, 87, Ð stray, 316 radioactivity, 1, 2, 4, 78, 113 172Ð174, 179, 181, 186, 189, Ð sub-doses, 178 Ð airborne, 280 228, 265 Ð surveyed area, see surveyed ÐÐ area,97 Ð Ðberyllium source, 26, 71, 235, area Ð artificial, 2 312 Ð , 35, 145, 317 Ð body-intrinsic, 17 Ð compresses, 188 Ð Ð source, 147, 317 Ð cigarette ash, 181 Ð spring, 116 Ð terrestrial, 169, 172, 175, 176, Ð environmental, 169 radon, 9, 24, 76, 116, 117, 169, 317 Ð induced, 156, 299 173Ð175, 181, 182, 185, 312 Ðtherapy,312 Ð natural, 1, 51, 55, 169, 174, Ð decay, 76 Ð Ð microbeam, 34 185, 216 Ð in ground water, 185 Ð ultraviolet, 241 Ð soil, 181 Ð in rainwater, 186 Ð Ð limit, 243 , 312 Ð in sea water, 185 Ð warning label, 113, 114 radiography Ð isotope, 76 Ð weighting factor, see weighting Ð γ , 296 Ð treatment, 188 factor, radiation Ð gauge, 235 range, 34, 41, 53, 313 Ðworker,see worker radioisotope, 13, 18, 21, 30, 70, Ð α particles, 35, 36, 38, 79, 117 ÐX,see Xrays 77, 78, 81, 86, 112, 113, 133, Ð electrons, 35, 36, 50, 51, 250, radiationless decay, 311 137, 169, 173, 175Ð177, 181, 251 radio tracer, 299, 318 182, 186, 189, 231, 323, 329, Ð empirical, 271 radioactive 332, 333 raster-scan technique, 34 Ð aerosols, 182 Ð batteries, 153, 154, 178, 312 rate of , 215 Ð electric blankets, 188 Ð cow, 151, 152 ratios of isotopes, 109 Ð equilibrium, 137, 138, 312 Ð generator (Radioisotope Ther- Rayleigh scattering, 313 Ð fallout, 29, 178, 232, 294 moelectric Generator, RTG), rays, cosmic, see cosmic rays 414 Index

RBE factor (relative biological relation, doseÐeffect, 220, 290 Ð regulator, 313 effectiveness), 7, 313 relative biological effectiveness, Ð safety, 314 reaction see RBE factor roentgen (R), 9, 98, 103, 314 Ð coefficient, negative, 196 relative dose, 35, 52 Röntgen, W. C., 2, 146 Ð detection, 39 release, 313 Russia, 104 Ð heat of, 198 Ð monitor, 130 ruthenium, 140 reactivity, 313 Ð of nuclear weapons, 236 Ð 106, decay-level scheme, 370 reactor, 306 Ð of radioactive material, 80, 174, Rutherford, E., 2 Ð accident, 76, 179, 236 179 Rydberg constant, 147 Ð boiling-water, 193, 283 Ð rate, 78 Ð catastrophe, 230 Ð surveillance, 78 safe, lead, 130 Ð Ð in Chernobyl, 236 rem (roentgen equivalent man), 8, safety, 205 Ð core, 118 313 Ð -analysis report, 121 Ð fast shutdown, 209 repair mechanisms, biological, 7, Ð goggles, 244 Ð first critical, 206 35 Ð measures, practical, 119 Ð fission, 191, 193, 195 repository, 313 Ð public, 124 Ð fusion, 198, 204, 205, 295 reprocessing plant, 313 Ð regulations, 234 Ð rod, 314 Ð gas-cooled, 296 reproductivity of cells, 212 Ð rules, radiation protection, 110, Ð graphite, 296 residual heat, 313 111 Ð high-temperature, 195, 298 residual interaction, 19 Ð standards, 90 Ð ITER, 204, 301 resistance, see radiation resistance sandwich shielding, 38 Ð JET, 204, 301 resonance absorption, 306 SAR value, 244, 314 Ð light-water, 302 resorption, inhibiting, 217 scale factor, 10 Ð material, neutron-activated, 205 respiratory equipment, 114 scattering Ð meltdown, 287 respiratory protection, 113 Ð back-, 85 rest energy, 314 Ð natural, 193, 207, 208, 210, Ð Compton, 42, 45, 46 304 307 rest mass, 44, 314 , Ð Ð cross section, 44 restricted area, 124, 314 Ð pebble-bed, 195, 197, 307 Ð M¿ller, 304 Ð poison, 313 retention, 314 Ð multiple, 9, 304 Ð pressurized-water, 193Ð195, ring accelerator, 314 Ð quasi-elastic, 40 309 risk Ð Rayleigh, 313 Ð residual heat, 313 Ð additional absolute, 222 Ð Thomson, 318 Ð swimming-pool, 317 Ð –benefit estimate, 314 scintigram, 314 Ð Three Mile Island, 209, 318 Ð cancer, 214, 220, 221, 232 scintillation, 39, 41 Ð tokamak, 203, 318 Ð excess relative (ERR), 221 Ð counter, 62, 63, 65, 66, 85, 314 recommendations, 90, 116 Ð factor, 215, 216, 219, 221, 232, Ð Ð plastic, 86 recuperation factor, 81 233, 237, 314 Ðcrystal,66 recycling, 130, 313 Ð for exposed persons, 222 Ð detector, 67 reference man, 313 Ðlevel,314 scintillator, 62, 63, 65, 70, 85, 86, reflector, 313 Ð occupational, 220 308 Ð neutron, 234, 305 Ð potential, 95 Ð liquid, 63, 302 regeneration, 216 Ð radiation, 12, 93, 177, 215, 311 sealed , 83, 112, regulations Ð stochastic, 214 114, 133 Ð on radiation protection, 81, 110, RNA, 314 secondary cosmic rays, 314 160, 311 rod secondary radiation, 144 Ð safety, 234 Ð absorber, see control rod secondary water circuit, 193 Ð X-ray, 160, 321 Ð control, 191, 207, 287 security class, nuclear, 306 regulator rod, 313 Ðfuel,295 self absorption, 315 Index 415 semiconductor Ð design-approved, 112 standards of safety, 90 Ð counter, 66, 69, 315 Ð lost, 230, 236 state Ð Ð germanium, 66 Ð natural, 57 Ð excited, 28, 293 Ð Ð silicon, 66 Ð neutron, 148, 305, 315 Ð metastable, 21, 151, 152, 303 Ð detector, 69, 70, 88 Ð photon, 146 statistical effects, 68 Ð Ð germanium, 69, 70, 88 Ð radiation, 143 statistical error, 86 sensitivity, 71 Ð radiumÐberyllium, 26, 71, 235, statistics, 316 Ð detection, 47 312 steering rod, 313 Ð radio (radiation), see radiosen- Ð sealed, 83, 112, 114 , 316 sitivity Ð strength, 315 sterile-insect technique, 224 sensitizer, 216, 315 Ð , 147, 317 sterility, 316 sewage water, 331 Ð theft, 236 sterilization, see also irradiation shadow-free , Ð unsealed, 81, 112, 126, 319 Ð by irradiation, 223, 224 58 South Africa, 105 Ð of insects, 224 shell, atomic, 28 , 132, 140, 315 stochastic process, 316 shield, biological, 283 Ð , 148, 315 stochastic radiation effects, 316 shielding, 39, 162, 166, 168, 261 special incidents, 126 stochastic risk, 214 Ð concrete, 156 special radiological areas, 97 stopping power, 316 Ð effect of the atmosphere, 171 specific absorption rate, 244 storage Ð sandwich, 38 specific activity, 15, 47, 48, 130, Ð aquifer, 281 sievert (Sv), 8, 315 189, 280 Ð of radioactive material, 114, signal voltage, 82, 86 specific radiological conditions, 129, 139, 294 silicon, 77 95 Ð of radioactive waste, 115, Ð detector, 66 spectrometer, 315 130Ð132, 139, 140 Ð Ð ion-implanted, 70 Ð γ ,67 Stra§mann, F., 2, 139 single-escape peak, 315 spectroscopy stray radiation, 316 skin Ð α,58 , 19, 70, 316 Ð cancer, 242 Ð β,20 strontium, 18, 22, 23, 37, 69, 132, Ð dose, 16 Ð γ , 65, 69 138, 139, 178, 179, 230 Ð tanning, 242 spectrum Ð 90, decay-level scheme, 370 ‘sliding-shadow’ method and Ð α,23 sub-doses of radiation, 178 dosimeter, 16, 74 Ð β, 20, 22 , 316 slow neutrons, 192 Ð γ ,69 subcritical mass, 316 , 294 Ð continuous, 28, 146 submarine, nuclear, 235 smoking, 181, 182, 221, 315 Ð δ,33 subtraction image, 147 sodium, 22, 23, 78, 283 Ð electromagnetic, 239 sulphur, 76 Ð 22, decay-level scheme, 368 Ð of fission neutrons, 71 , 242 Ð 24, decay-level scheme, 77 Ð pulse-height, 70 supercriticality, 317 Ð -iodide detector, 67, 86, 87 Ð ultraviolet, 241 superheavy nuclei, 347 soft tissue, 315 Ð X-ray, 147, 162 supervised area, see surveyed area soil radioactivity, 181 spent , 315 supervison, medical, 303 solid angle, 13, 48, 49, 52, 54, 55, spermiogenesis, 316 surface contamination, 77, 136, 83 , 316 333 solid-state ionization chamber, 66 spontaneous fission, 1, 316 surveillance, 96 somatic radiation effect, 315 spring, radium, 116 Ð medical, 92 source, 315 standard deviation, 68 Ð of radiation release, 78 Ð calibration, 112 standard ion dose, 10 Ð radiological, 92 Ð cosmic radiation, 149 standard weighting factor, 94 , 317 416 Index surveyed area, 91, 113, 117, 317, thickness Ð -etch 335 Ð half-value, 56, 271, 297 Ð Ð detector, 71, 76, 308, 319 swimming-pool reactor, 317 Ð measurement, 179 Ð Ð dosimeter, 71 synchrotron, 143, 317 Ð tenth-value, 56, 271 Ð nuclear, detector, 70, 76 Ð radiation, 35, 317 Thomson scattering, 318 training, 124 Ð Ð source, 147, 317 thorium, 23, 24, 173, 178, 181, transfer factor, 319 systematic error, 88 185, 186, 189, 196 transistor, MOSFET, 58 Ð decay chain, 348 transition, 27 Ð energy, 22, 23 tagging system, 146, 147 , 187 three-body decay, 20 Ð matrix element, 22 tanning of the skin, 242 transmutation, 131, 139, 148, 319 tapes, adhesive, 81 Three-Mile-Island reactor, 209, 318 transport, 120, 133 target, 161, 164 Ð CASTOR, 189 threshold Ð atom, 31 Ð Ð exposure, 135 Ð counter, 41 technetium, 18, 133, 177 Ð category, 134 Ð dose, 214, 318 Ð generator, 151, 317 Ð class number, 133 technique thyroid gland, 107, 176 Ð index, 134, 319 Ð chemical separation, 109 Ð cancer, 221 transuranium elements, 2, 139, Ð detection, 59 Ð diagnosis, 151 140, 208, 319, 347 Ð dual-energy, 147 time trinitrotoluol, 29 Ð enrichment, 80 Ð dependence of activity, 137 tritium, 118, 173, 178, 200, 204, Ð imaging, 22 Ð dilatation, 144 231, 319 Ð K-edge subtraction, 147 Ð -of-flight counter, 318 Ð fusion with deuterium, 191, Ð raster-scan, 34 tissue, 12 199, 200, 290 Ð sterile-insect, 224 Ð dose per line, 35 Ð light source, 319 Ð wipe, dry, 89 Ð equivalent dose, 165 , 70, 319 probe, 55 Ð -equivalent material, 318 trypanosomiasis, 224 tenth-value thickness, 56, 271 Ðsoft,315 fly, 224 teratogen, 317 Ð weighting factor, see weighting tumor teratogenicity, 317 factor Ð therapy, 34, 177 ternary fission, 317 TNT equivalent, 29 Ð treatment, 144, 177 tunnelling probability, 199 terrestrial radiation, 169, 172, 175, tobacco plant, 182 TV sets, 166 176, 317 Tokaimura accident, 233 test tokamak, 318 ultraviolet Ð principle, 203 Ð function, 112, 150 Ð radiation, 241 tomography Ðgas,317 Ð Ð disinfection, 243 Ð computed, 286 Ð leak, 111, 114 Ð Ð limit, 243 Ð positron-emission (PET), 22, Ð wipe, 81, 141, 257, 321 Ð spectrum, 241 307 theft of sources, 236 UMTS, 319 therapy, 1, 33Ð35, 144, 160, 176, toothpaste, radioactive, 187 Ð , 245 177, 230, 297, 309, 312 total dose, 52, 185 uncertainty principle, 319 thermal breeder, 317 total error, 88 , 146, 319 thermal neutrons, 40, 70, 71, 78, total gamma-dose rate, 56 unified atomic mass unit, 338 191, 192, 305, 318 toxicity, 318 unit, 4, 90, 338, 339 thermal X rays, 201 Ð chemical, 318 Ð conversion of, 339 thermocoupler, 178 tracer, 299, 318 ÐDARI,17 thermoluminescence dosimeter, tracing, radioactive, 312 Ð dose, for penetrating radiation 75, 318 track and low penetration depth, 16 Index 417

Ð IAD, 17 ways of exposure, 78 Ð point of a counter, 61 Ð mass, 47, 338 W , 320 Ð procedures, 111 unrestricted area, 319 , 320 written test on radiation UNSCEAR, 319 weapon, nuclear, tests, 230, 236 protection, 272 unsealed radioactive weekly control, 103 Ð material, 81, 126, 133 weighting factor, 8, 12, 320 X rays, 2, 8, 9, 27, 28, 31, 45, 71, Ð source, 112, 319 Ð radiation, 8, 9, 15, 41, 94, 165, 162, 166, 168, 176, 276, 321 unwanted X rays, 166 270, 310, 312, 336 Ð characteristic, 28, 45, 147, 148, uranium, 1, 2, 23, 26, 28Ð30, 70, Ð standard, 94 162 71, 137, 138, 174, 178, 181, Ð tissue, 12, 16, 94, 107, 164, Ð fluorescence, 321 185, 186, 190, 191, 196, 207, 256, 270, 318, 337 Ð from hot particle plasmas, 148 208, 210, 233, 249, 250, 255, , 320 Ð highly intense, 146 258 WHO limit, 237 Ð radiation protection, 163 Ð decay chain, 348 whole-body Ð thermal, 201 Ð depleted, 237, 289 Ð contamination monitor, 127 Ð unwanted, 166 Ð enriched, 293 Ð counter, 80, 81, 320 X-ray Ð mine, 183 Ð dose, 11, 12, 91, 109, 164, 165, Ð chest, 163Ð165, 189, 262 Ð ore, 109 175, 182, 184, 212, 214, 270, Ð device for feet, 187 320 Ð diagnostics, 160, 176, 178, 321 Van Allen belts, 320 Ð Ð annual, exceeding, 114 Ð examination, exposure, 163 very-high-radiation area, 97 Ð exposure, 164 Ð monitor, 127 vitrification, 320 Ð film, 72 , 320 voltage signal, 82, 86 Ð lines, characteristic, 28, 162 Ð magnets, 146 Ð passport, 160, 321 window counter, 320 warner, dose rate, 79 Ð regulations, 160, 321 wipe warning label, 113, 114 Ð spectrum, 147, 162 Ð sample, 321 washout, 320 Ð therapy, 160 Ð test, 81, 141, 257, 321 Ð radioactive, 232 Ð tube, 27, 146, 161Ð163, 168, Ð Ð dry, 89 waste 275, 276 worker, 95 Ð container, 115 xenon, 12, 209, 230 Ð nuclear, 306 Ð category A, 92, 109, 114 Ð Ð classification, 47 Ð category B, 92 yearly dose, 321 Ð radioactive, see radioactive Ð instruction and training, 124 yellowcake, 321 waste Ð medical examination, 128 Yokota glass, 321 water Ð nuclear-energy, 100, 101 yttrium, 26, 37, 66, 69, 132, 191, Ð circuit Ð pregnant, 96, 100, 104 249 Ð Ð primary, 193 Ð radiation-exposed, 91, 102, Yukawa potential, 322 Ð Ð secondary, 193 103, 105, 114, 185, 310 Ð cooling, 192, 193 Ð radiological, 95 Z , 322 Ð sewage, 331 working zinc sulfide, 322 wavelength, 238 Ð level, 103, 321 zircaloy, 322 Ðshifter,63 Ð Ð month, 321 zirconium, 37, 140